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Massively parallel reporter assays (MPRAs) are a high-throughput method for evaluating in vitro activities of thousands of

candidate cis-regulatory elements (CREs). In these assays, candidate sequences are cloned upstream or downstream from a

reporter gene tagged by unique DNA sequences. However, tag sequences may themselves affect reporter gene expression

and lead to major potential biases in the measured cis-regulatory activity. Here, we present a sequence-based method for

correcting tag-sequence-specific effects and show that our method can significantly reduce this source of variation and im-

prove the identification of functional regulatory variants by MPRAs. We also show that our model captures sequence fea-

tures associated with post-transcriptional regulation of mRNA. Thus, this new method helps not only to improve detection

of regulatory signals in MPRA experiments but also to design better MPRA protocols.

[Supplemental material is available for this article.]

Functional characterization of cis-regulatory elements (CREs) and
their sequence variants is an essential but challenging first step
for understanding gene expression regulation and how sequence
variation impacts this process. Given the large expected number
of regulatory variants in the human genome, and their pivotal
role in human complex traits (Maurano et al. 2012; Albert and
Kruglyak 2015; Lee et al. 2018), there is a pressing need for exper-
imental methods that can rapidly test elements for cis-regulatory
activity to identify CREs and their variants en masse for detecting
causal effects. Massively parallel reporter assays (MPRAs)
(Patwardhan et al. 2009, 2012; Kwasnieski et al. 2012; Melnikov
et al. 2012) are promising for this purpose as studies identifying
functional regulatory variants underlying complex human disease
and traits have shown (Tewhey et al. 2016; Ulirsch et al. 2016).

Several different designs have been proposed forMPRA exper-
iments. In a typical MPRA, CREs of interest are cloned upstream of
aminimal promoter-driven reporter gene uniquely tagged by short
DNA sequences (tags) placed at the 3′ untranslated region (UTR).
Different locations of tags and CREs have also been explored.
Self-transcribing active regulatory region sequencing (STARR-seq)
(Arnold et al. 2013) places CREs downstream from the reporter’s
transcript start site and uses the transcribed CREs as “tags.” More
recently, some of the MPRA designs place tags in the 5′ UTR of
the reporter (Klein et al. 2020). CRE activities are then measured
by relative read counts of the transcribed tags versus the input li-
brary tags, using high-throughput sequencing. These analyses
are, however, subject to potential biases in the detected reporter
expression originating from tag-sequence-specific effects. Prior
studies (Melnikov et al. 2012; Ulirsch et al. 2016) have clearly
shown reproducible effects of tag sequence on reporter readout,

suggesting sequence-specific effects on expression, likely from
mRNA stability and/or RNA-binding proteins, but efforts to identi-
fy sequence features responsible for such biases have not been very
satisfactory (Melnikov et al. 2012; Ernst et al. 2016). To alleviate
this problem, most MPRA studies average the effects of multiple
tags (10 or more) per CRE. This tactic, however, does not remove
the root problem because the biases are sequence-dependent and
nonrandom, and tag sequences are not uniformly distributed
across CREs. Ideally, a model that explains the effect of tags in
DNA sequence level would not only refine the MPRA results but
also help to design better MPRAs. To address this issue, we intro-
duce here a sequence-based, machine learning method, MPRA
tag sequence analysis (MTSA), for predicting and correcting tag-se-
quence-specific effects.

Results

Tag sequences significantly contribute to expression variation

Our primaryhypothesis is that variation in tag expression assigned
to the same CRE can be predicted from tag DNA sequence: our
strategy is outlined in Figure 1 (seeMethods). As proof of principle,
we analyzed 20 publicly available MPRA data sets from nine differ-
ent studies (Melnikov et al. 2012; Kheradpour et al. 2013; Mogno
et al. 2013; Kwasnieski et al. 2014; Ernst et al. 2016; Tewhey et
al. 2016; Ulirsch et al. 2016; Inoue et al. 2017; Klein et al. 2020)
in which individual tag-level expression and their sequences
were available (Supplemental Table S1). Briefly, we first calculated
relative tag expression, that is, tag expression normalized to a zero
mean across all tags in one set associated with the same CRE, to
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eliminate CRE-to-CRE variation in expression. Tags with small
read counts from input libraries show much larger variation in
their relative expression (Supplemental Fig. S1). Because this vari-
ation is likely caused by random sam-
pling and PCR amplification of low
representation tags in MPRA libraries,
we excluded them from model training
and subsequent analyses. In fact, remov-
al of such less-abundant tags is already
common practice in MPRA studies
(Kheradpour et al. 2013; Kwasnieski
et al. 2014; Ulirsch et al. 2016; Inoue
et al. 2017). We note that tag-sequence-
specific biases of these excluded tags
can still be corrected after building mod-
els. Next, we trained support vector re-
gression (SVR) models (Drucker et al.
1997) to learn the contribution of each
tag sequence to its relative expression.
We used gapped k-mers as sequence
features (Ghandi et al. 2014)

and developed new software based on LS-GKM (Lee 2016) and
the SVR routines implemented in LIBSVM (Chang and
Lin 2011). The trained SVR models achieved high Pearson’s
correlations between observed and predicted relative expression
(r=0.4–0.7), with fivefold cross-validation for most data sets (Fig.
2A; Supplemental Fig. S2). These results confirm that a significant
fraction (up to 50%) of expression differences between tags corre-
sponding to a specific CRE arise from tag sequence effects. We also
analyzed nine MPRA data sets from Klein et al. (2020), which was
designed to test different types of MPRA designs for the same CRE
and tag pairs in the same cell line. These MPRA data sets showed a
varying degree of correlations between the observed and predicted
expression (r=0.08–0.57) (Supplemental Fig. S3). Although we
achieved a reasonable correlation for STARR-seq libraries, we con-
sistently had less correlation for other MPRA designs. We found
that STARR-seq experiments showed a much larger variance in
the tag expression, which were then captured well by MTSA. The
remaining seven data sets showed comparable variance to other
data sets from different studies. However, MTSA failed to explain
much of them, suggesting that technical biases unrelated to the
tag sequences may exist.

MTSA uses two rounds of training to build more accurate
models. The first round with fivefold cross-validation corrects
CRE-wide bias (i.e., CREs associated with tags that only increase
or decrease expression). Subsequently, this corrected expression
is used in the second round to build the tag-sequence-specific
model. We discovered that this approach consistently improved
the correlations between the observed and predicted expression
by 0.01–0.14 in all cases (Supplemental Table S2). These results
also confirm that simple averaging will not eliminate tag-se-
quence-dependent biases, especially if a small number of tags per
CRE is used. Also, in contrast with our previous experience with
building sequence-based models for CREs (Lee et al. 2011), the
use of reverse complement sequences as distinct featuresmarginal-
ly but consistently improved model performance (Supplemental
Table S3). This result implies that the effect exerted by transcribed
tags (single-strand RNA), which distinguish reverse complement
k-mers, is more influential on reporter expression than the effect
exerted by nontranscribed tags (double-strand DNA) that do not
distinguish such k-mers. Thus, we hypothesize that the major mo-
lecularmechanisms by which tag sequences affect reporter expres-
sion are post-transcriptional, involving mRNA stability and
processing, but not transcriptional, involving CREs. To further
show that MTSA can reduce sequence-specific biases in absolute

Figure 1. Overview ofMPRA tag sequence analysis. For each tag, relative
expression within each of the CREs is calculated. Tag sequences and their
relative expression are then used to train support vector regression (SVR)
models using gapped k-mers as features. Tag sequence effects on their ex-
pression, as learned by SVR, are used to correct biases in raw expression
data.

BA C

Figure 2. MTSA accurately predicts tag sequence effects on expression. (A) Observed relative expres-
sion is compared to its predicted value from tag sequence with fivefold cross-validation usingMPRA data
from Ulirsch et al. (2016). (B,C) MTSA correction improves the correlation between two randomly select-
ed tags from each CRE: log2 transformed raw expression (B) and MTSA-corrected expression (C ) are
compared.
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expression, we compared raw expression between two randomly
selected tags from each CRE, before and after MTSA. To avoid over-
fitting, tags used for comparison were excluded before training.
The correlation of MTSA-corrected expression between tags is con-
sistently higher than the original values (Fig. 2B,C; Supplemental
Fig. S4).

Tag-sequence-based correction of MPRA expression improves

the precision of reporter activity measurements

MTSA corrections provide enhanced statistical power for identify-
ing functional CRE variants by reducing tag-to-tag expression var-
iation unrelatedwith the CRE effect, although it marginally affects
CRE expression. To show this, we first compared CRE-level expres-
sion and their standard deviation between tags before and after
MTSA correction. For most data sets we tested, correlations of
CRE-level expression before and after MTSA correction are high
(r>0.95), and the variance between tags is significantly reduced af-
ter correction (Supplemental Fig. S5).We also tested how the num-
ber of tags affects MTSA correction. Using the Ino17 data in which
100 tags per CREwere available, we down-sampled the data to sim-
ulate conditionswith fewer tags per CREs.We then compared their
CRE-level expression to those with all 100 tags, with and without
MTSA correction. The MTSA correction consistently improved the
correlation, especially when the number of tagswere fewer than 50
(Supplemental Fig. S6). On the other hand, ourmodel does not im-
prove the correlation ofCRE expression between experimental rep-
licates because they have an identical set of tags (Supplemental
Table S4).

Because the effects of single DNA variants on gene expression
are typically small to modest, even small improvements allow im-
proved identification of functional variants. To illustrate the power
of such improvement, we applied these methods to a MPRA data
set designed to find human regulatory variants affecting human
redbloodcell traits (Ulirschet al. 2016).Using the rawdata,wecon-
firmed33 (54%)of 61 variants and found fournew significant SNPs
after MTSA correction (Fig. 3A,B; Supplemental Notes). Further,
variants that became statistically insignificant after MTSA correc-
tion (n=28 of 61) were predicted to have a much smaller impact
on CRE activity by deltaSVM, a machine learning method for
predicting regulatory effects from sequence substitutions (Lee
et al. 2015), than those that remained significant (n=33 of 61;

Mann–Whitney U test, P=0.001) (Fig. 3C). Moreover, the propor-
tion of SNPs whose direction of effects agreed with their
deltaSVM-predicted direction also increased from 66% (40 of 61)
to78%(29of 37) afterMTSAcorrection. Thus,MTSAcorrection im-
proved the statistical power of the analyses considerably.

Tag sequence effect on expression depends on both MPRA

design and cellular context

MTSA training assigns aweight to each of the k-mers, which can be
interpreted as its relative contribution to expression. The weights
can also be used as a scale to compare different data sets even if
they do not have the same set of tags. Pairwise comparisons using
these weights uncover interesting aspects of tag effects. We found
that both the experimental design and cellular context are impor-
tant factors (Fig. 4). Seven data sets (Mel12, Khe13, Khe13K, Ern16,
Ern16K,Uli16, Uli16G) use the same design initially introduced by
Melnikov et al. (2012). These studies can be further divided into
two subgroups: four studies using the K562 cell lines (Khe13K,
Ern16K, Uli16, and Uli16G), and the other three (two HepG2
[Khe13, Ern16] and one HEK293T cell line [Mel12] studies).
These two groups show strong intra-group correlation with no or
weak correlation in between. Moreover, there is essentially no cor-
relation between Khe13 versus Khe13K, as well as Ern16 versus
Ern16K that share the same MPRA design, suggesting that cellular
context can strongly influence the tag sequence effect in MPRA
studies. Conversely, MPRA designs also strongly influence the
tag-sequence effects; for example, the SVR weights from six data
sets from HepG2 cell lines (Khe13, Ern16, Ino17, Ino17W, and
Kle20) were only strongly correlated when the MPRA design was
identical. In sum, both experimental designs and cellular contexts
are major factors determining the sequence-specific effect of tags.

Post-transcriptional regulation influences MPRA expression

through tag sequences

Tag sequence effects can arise from several potential molecular
mechanisms such as 3′ UTR effects on gene expression (Mignone
et al. 2002; He and Hannon 2004; Dominguez et al. 2018). Our ap-
proach now enables us to perform quantitative investigations of
these molecular mechanisms and provides a basis for their experi-
mental validation. Specifically, we considered five distinct biolog-
ical features that could influence MPRA expression: (1) base (A, C,

G, or T) counts in tag sequences, (2)
CREs, (3) miRNA binding sites, (4) RNA
binding protein (RBP) binding sites, and
(5) reflected stability of mRNA secondary
structures. We computationally estimat-
ed the effect of each of these features
from tag sequences and estimated
their contribution to the tag sequence ef-
fect on reporter expression (Methods).
Briefly, we used sequence-based predic-
tion models (gkm-SVM) (Ghandi et al.
2014; Lee 2016) trained on open chroma-
tin regions (DNase-seq) from the corre-
sponding cell lines to predict the effect
of tag sequences as CREs. Regarding
miRNA binding sites, we only evaluated
the most highly expressed miRNAs (n=
20) because miRNAs with lower ex-
pression are rarely active, as previously
shown (Mullokandov et al. 2012).

BA C

Figure 3. MTSA correction improves the identification of regulatory variants. (A,B) MTSA correction
not only significantly reduces false positive identification but improves the correlation between
deltaSVM and MPRA expression (from 0.53 to 0.62): log2 fold changes using raw expression (A) and
MTSA-corrected expression (B) are compared to their deltaSVM scores. SNPs detected by both are high-
lighted in red. (C) Predicted impact on CRE activity by deltaSVM is compared by group: significant SNPs
without MTSA correction only (green), significant SNPs with MTSA correction only (blue), significant
SNPs both with and without MTSA correction (red). The significant SNPs after MTSA correction (blue
and red) are more explainable by their sequence changes (i.e., larger absolute deltaSVM values). One-
sided Mann–Whitney U test results are shown: (∗) P<0.05; (∗∗) P<0.005.
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Similar to miRNA, we considered highly expressed RBPs only and
scanned the RBP binding sites using motifs from CISBP-RNA data-
base (Ray et al. 2013). To predict the stability of themRNA second-
ary structures, we padded tags with their flanking sequences (±50
bp) and estimated their minimum free energy (MFE) using
Vienna RNA software (Gruber et al. 2008). Next, we built multivar-
iate linear regression models and compared their adjusted r2. We
found that ∼14%–51% of tag-sequence-specific effects can be at-
tributed to them, among which base counts and RBP binding sites
are the most significant factors as these two feature sets explain
>90% of the signals explained by all five feature sets combined
(Fig. 5). As a negative control, we repeated the same analyses using
randomized tag sequences and found that they only explained
<1% of the variance (Supplemental Fig. S7), further supporting
the significance of our results.

We also evaluated these two feature sets inmore detail to gain
insights into potential biological mechanisms. We first assessed
the base counts becausemultiplemolecularmechanisms canbe as-
sociated with them.We directly compared the base counts and the
relative tag expression after adjusting other features (MFE, CRE,
miRNA, and RBP). We found that the base count effects are highly

specific to experiment designs and cell types (Supplemental Fig.
S8). For example, although base “T” is negatively associated with
the expression in Tew16, Ern16, and Mel12, it is positively associ-
ated with HSS, Khe13K, Ino17, and Kwa14.We also found that the
base counts significantly correlate with the estimated minimum
free energy of mRNA secondary structure (Supplemental Fig. S9).
Thus, if nonadjusted tag expression was used, MFE also becomes
strongly associated with tag-sequence-specific expression for sev-
eral data sets (Supplemental Fig. S10), suggesting that mRNA
stability can be another potential molecular determinant. Next,
we systematically compared effect sizes of RBP binding sites from
our regression models across the data sets (Fig. 6). We first discov-
ered that many RBP binding sites are present in a study-specific
way owing to a significant coverage difference in tag sequences.
For the RBP binding sites present in multiple studies, the direction
of effect is largely concordant, but its size is cell type–specific. For
example, SNRPA (M348_0.6) shows a strong negative effect in
K562 (Uli16, Khe13K, Ern16K), but not in the other cell types,
which is consistent with its expression pattern. Last, we extracted
the 10 most positively and negatively associated 8-mers from each
of the data sets and compared them with RBPs (Supplemental

Figure 4. Pairwise Pearson’s correlations between the 21 data sets using trained 8-mer SVR weights. Differences in the MPRA designs and cell types are
major determining factors of the tag sequence effects. Pearson correlation coefficients are shown in the matrix.
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Table S5). We found that a few strong RBPs, such as SNRPA
(M348_0.6), match some of these 8-mers (Supplemental Table
S5). Many of these high-scoring 8-mers contain flanking sequenc-
es of the tags. One interesting case is the right flanking sequence of
Melnikov’s design, AGATC (Melnikov et al. 2012). It is not only en-
riched in these top-scoring 8-mers, but also partially matches the
SNRPA (M348_0.6) binding site, which has the strongest effect
on the tag expression in K562. This result is consistent with the
fact that adding flanking sequences improves the model perfor-
mance significantly, especially for the K562 data sets, such as
Khe13K and Ern16K (Supplemental Table S6).

Discussion

MTSA is, to the best of our knowledge, the first method for predict-
ing and correcting tag sequence effects on reporter gene expression
by using tag DNA sequence. We expect that MTSA will not only
improve recognition of functional regulatory variants underlying
a trait or disease but help us to design better MPRA experiments.
The most straightforward tactic would be to empirically exclude
tags with a large predicted sequence effect; alternatively, one can
theoretically screen large tag sequence libraries to identify se-
quences deemed to have a significant impact and eliminate
them from consideration. As base counts and RBP binding sites
are predicted to affect the tag expression significantly, one can de-
sign tags with similar profiles of base counts and avoid potential
RBP binding sites to systematically reduce tag-sequence-specific ef-
fects. It is important to note that these binding sites should be con-
sidered with the flanking sequences. These strategies may not be
feasible for a completely new MPRA design as the tag sequence ef-
fect is specific to experiment designs and cell types. Also, it is im-
possible to apply these strategies toMPRA that uses degenerate tags
(Tewhey et al. 2016; Klein et al. 2020). Even in these situations,
MTSA can mitigate the problem.

We showhere that post-transcriptionalmechanisms can affect
MPRA expression through tag sequences. However, the sequence
features we evaluated were only able to explain <50% of the varia-
tion, indicating that additional mechanisms affecting reporter
expression may exist. For example, RNA modifications in the

3′ UTR, such as adenosine-to-inosine (A-
to-I) editing and N6-methyladenosine
(m6A), have been shown to affect mRNA
expression (Nishikura 2010; Fu et al.
2014). It is also possible that we may
have underestimated the true effects of
the evaluated features because there are
several assumptions and limitations in
our analyses. For example, RBPs not in
the CISBP-RNA database or yet unknown
RBPs can affect the tag expression. The es-
timated stability may not capture the full
complexity of the in vivo contexts either.

Given that post-transcriptional
mechanisms can significantly affect
MPRA expression, we may have to be
more cautious in interpreting STARR-
seq results. Because CRE sequences by
themselves are transcribed in STARR-seq
(Arnold et al. 2013), they can subse-
quently affect their expression through
post-transcriptional mechanisms in a
CRE-sequence-specific fashion. We ana-

lyzed two STARR-seq data sets for which tags were added in addi-
tion to CREs and found significant tag sequence effects similar
to the other data sets. However, many tags showed more pro-
nounced effects on its expression beyond what could be predicted
by tag sequences. Specifically, many tags havemuch lower expres-
sion than their predicted expression (Supplemental Fig. S3A,B).
We speculate that this could result from transcribed CREs, but
more careful evaluations are required. Ultimately, a sequence-
based understanding of tag effects on reporter expression will
help us to better interpret MPRA studies.

Of note, the SVR with gkm-kernel is a generalizable approach
and can be applied to other problems, such as quantitative predic-
tion of ChIP-seq, ATAC-seq, and DNase-seq signals from DNA se-
quences. Thus, we also provide a general implementation of SVR
with gkm-kernel in the LS-GKM software package (Lee 2016).

Methods

Public MPRA data sets

We downloaded public MPRA data sets from the NCBI Gene
Expression Omnibus database (GEO; https://www.ncbi.nlm.nih
.gov/geo/) for the following studies: GSE31982 (Melnikov et al.
2012), GSE33367 (Kheradpour et al. 2013), GSE87711 (Ulirsch
et al. 2016), GSE71279 (Ernst et al. 2016), GSE83894 (Inoue et al.
2017), and GSE142696 (Klein et al. 2020). From the Melnikov
study (Mel12), we used the “single-hit-scanning” data set for
which multiple tags per CRE were available. From the
Kheradpour study, we analyzed both HepG2 (Khe13) and K562
(Khe13K) data sets. From the Ulirsch study, we primarily used
the K562 data set (Uli16) for all analyses, but we also analyzed
the K562+GATA1 data set (Uli16G) for the functional variant
analysis and the SVR weight comparison. From the Ernst study,
we were only able to analyze the pilot design MPRA data sets
because the tiling design has only one tag per element. We used
both HepG2 (Ern16) and K562 (Ern16K) data sets. From the
Inoue study, we primarily used the episomal data set (Ino17),
but we also analyzed the chromosomal data set (Ino17W) for the
SVR weight comparison. From the Klein study, we evaluated the
nine MPRA data sets but primarily analyzed the STARR-seq design

Figure 5. Variation in relative tag expression is explained in part by RBP binding sites and base frequen-
cies in tags. Multivariate linear regression analyses were performed using five different biological feature
sets. We used residuals of predicted expression for the individual feature set analysis after correcting for
other features. BaseFreq and RBP are the two most dominant feature sets. (BaseFreq) base counts in tag
sequences; (MFE) minimum free energy of mRNA secondary structures; (CRE) tags as cis-regulatory ele-
ments; (miRNA) microRNA binding sites; (RBP) RNA-binding protein binding sites; (RBP + BaseFreq) RBP
and BaseFreq features combined; (All) all features combined.
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data sets (HSS andORI). In addition, we extracted and analyzed the
tag-level expression from supplemental data for the CRE-seq:
Mog13 (Mogno et al. 2013) and Kwa14 (Kwasnieski et al. 2014).
Regarding the study by Tewhey et al. (2016), we obtained the
tag-level expression data from the author and used the 7.5k design
MPRA data sets, NA12878 (Tew16), and NA19239 (Tew16N),
because the other one was too sparse at the individual tag level.

For each data set, we first combined all replicates to increase
sequence coverage per tag, excluding tags with zero DNA or RNA
counts. Expression was calculated as log2(RNA/DNA) followed by
normalization to zero mean for each of the CREs to obtain relative

expression. Next, we excluded tags with
small DNA counts to reduce non-se-
quence-specific variation. The threshold
was manually determined for each data
set based on the relationship between rel-
ative expression and DNA (plasmid) tag
counts. For the nine data sets from
Klein’s study, we selected tags that have
enough DNA reads (counts per million
reads [CPM]>3) in all nine MPRA data
sets for a fair comparison. We further ex-
cluded CREs with a small number of tags
to reduce the variance of relative expres-
sion caused by the small sample size. As
a result, we have the same set of tags and
CREs across the nine data sets. In total,
for training, we identified at least 10,000
tags for most of the data sets. The detailed
parameters used for MTSA analyses are
summarized in Supplemental Table S7.

Building sequence-based models using

support vector regression

To model tag expression from the se-
quence, we used support vector regres-
sion (SVR) methods (Drucker et al.
1997) using gapped k-mer frequencies
from tags and their flanking sequences
(±5 bp) as features. We used 8-mers
with four gaps (wildcards) as a default pa-
rameter throughout the study. To imple-
ment SVR, we adopted and modified the
LS-GKM (Lee 2016) and LIBSVM (Chang
and Lin 2011) software. To remove CRE-
level bias, we first trained an SVR model
with fivefold cross-validation and cor-
rected expression using the trained mod-
el. We then retrained the SVR model
using corrected expression.We estimated
expression from sequence using fivefold
cross-validation and evaluated model
performance using Pearson correlation
coefficients between observed and pre-
dicted relative expression values. We
also separately trained an SVR model us-
ing all data to score 8-mer weights as
well as predict sequence-specific biases
of tags excluded from training.

Analysis of raw tag expression

comparisons

Our sequence-based correction was eval-
uated by comparing individual tag ex-

pression within a CRE. Specifically, we randomly selected two
tags from each CRE and built the SVR model by following the pro-
cess described above.We then predicted the sequence effects of the
reserved tags using the trained model and corrected raw expres-
sion. For a fair comparison, we only kept tag pairs that have the
same number of DNA reads (Supplemental Table S7).

Analysis of regulatory variants affecting red blood cell traits

To evaluate the efficacy of our sequence-based correction on regu-
latory variant identification, we analyzed the MPRA data (Uli16)

Figure 6. Effects of RBP binding sites in tags on relative expression are cell type–specific. (Left)
Estimated effect sizes of RBPs from the multivariate linear regression model are compared across data
sets. Only the RBPs with P-value < 10−6 in at least one data set are considered. RBPs that were not
evaluated in the corresponding data set are shown as gray circles. (Right) Expression level of RBPs as
log2(TPM+1) in the four cell lines.
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designed for identifying functional regulatory variants affecting
red blood cell traits (Ulirsch et al. 2016). We obtained the original
R scripts from the supplemental website of the investigators (avail-
able at theMTSAGitHub repository) andmodified them to add our
MTSA correction routine. We performed analysis with and with-
out MTSA corrections and identified 37 and 61 variants that
showed significantly different CRE activities between reference
and alternative alleles, respectively. For the deltaSVM comparison
analysis, we obtainedprecalculated deltaSVMscores for all variants
available from the supplemental website (Ulirsch et al. 2016).
deltaSVM was calculated using a gkm-SVM model trained on
K562 DNase I hypersensitive sites, data that are completely inde-
pendent of MPRA data. Note that the training sequences for this
deltaSVMmodel are entirely different from the training sequences
for the tag correction.

Analysis of potential molecular mechanisms of tag sequence

effects on reporter expression

We considered five different biological feature sets bywhich tag se-
quences could affect reporter expression in MPRA. Specifically, we
evaluated (1) base count effects on expression, (2) tags as CREs
themselves, (3) tag effects on the stability of mRNA secondary
structures, (4) miRNA binding sites, and (5) RNA-binding protein
(RBP) binding sites. The detailed steps to calculate each set of fea-
tures is described in the following sections. For each feature set, we
built a multivariate linear regression model with the predicted tag
effects on reporter expression as a dependent variable with and
without adjusting the effects of other features and estimated the
variance attributed to these features.We also built regressionmod-
els using all features simultaneously (i.e., a full model) and the two
most significant feature sets (RBP+base counts). We used adjusted
r2 from the lm() function implemented in R software (R Core Team
2019).

Evaluation of tag sequences as CREs

To quantify CRE activities of tags, we computationally predicted
tag sequences’ CRE activities using gkm-SVM models trained on
DNase-seq data from the same cell type.We followed our previous-
ly establishedpipelinewithminorchanges (Lee et al. 2018). Briefly,
starting from the top 50,000 regions from the ENCODEDNase-seq
narrowPeak files (ENCFF711IED for HepG2, ENCFF821KDJ for
K562, ENCFF127KSH for HEK293T, and ENCFF073ORT for
GM12878), we trained gkm-SVM models against equal numbers
of randomgenomic regions thatmatchGCcontent and repeat frac-
tion of the positive set. We used 600-bp regions extended from the
centers of peaks. All three models achieved high accuracy as mea-
sured by area under the ROC curves (AUC: 0.92-0.94) with fivefold
cross-validation.We then scored tagswith ±5 bp flanking sequenc-
es using the model from the same cell type (HEK293T for Mel12,
HepG2 for Khe13/Ino17, and K562 for Uli16).

Minimum free energy calculation of mRNA secondary structures

To evaluate the effect of tag sequences on mRNA stability of the
secondary structure, we calculated minimum free energy (MFE)
of tag sequences with ±50 bp flanking sequences. We used the
“RNAfold” command-line tool implemented in the Vienna RNA
software (Gruber et al. 2008).

Analysis of miRNA binding sites in tag sequences

To identify functional miRNA binding sites in the tag sequences,
we first determined the top 20 highly expressed miRNA families
as defined by those sharing the same miRNA 7-bp seed in each of

the four cell types (HEK293T, HepG2, K562, and a lymphoblastoid
cell line [GM12878]), because miRNA expression is mainly cell
type–specific. We obtained miRNA expression data for K562,
HepG2, and GM12878 from ENCODE (accession number ENCSR
569QVM for K562 and ENCSR730NEO for HepG2, ENCSR77
0HBF for GM12878), and HEK293T from miRmine (accession
number SRX556516) (Panwar et al. 2017). For each miRNA in the
corresponding cell type, we identified tags with ±5 bp flanking se-
quences containing its 7-bp miRNA seed, resulting in a binary
variable. We obtained miRNA seed sequences from TargetScan
7.2 (Agarwal et al. 2015). Rare miRNA binding sites (fewer than
five tag matches) were removed. To remove redundant miRNAs,
we calculated the pairwise Pearson’s correlation and only kept
miRNAs with r<0.8. The number of miRNA variables selected for
each data set is summarized in Supplemental Table S8.

Analysis of binding sites of RNA-binding proteins

in tag sequences

To identify putative binding sites of RNA-binding proteins (RBPs)
within the tag sequences, we analyzed 172 motifs associated with
143 distinct RBPs from the CISBP-RNA database (Ray et al. 2013).
For each of these motifs, we scanned tags with ±5 bp flanking se-
quences using FIMO (Grant et al. 2011) with P<0.001. Similar
to miRNA, we only included highly expressed RBPs (TPM>10)
and removed redundant motifs with cutoff r<0.8. Rare RBP
binding sites (<1% tag matches) were also removed. The number
of RBP variables selected for each data set is summarized in
Supplemental Table S8.

Software availability

We implemented new software, MPRA Tag Sequence Analysis
(MTSA), which is freely available under the GNU General Public
License v3.0 as Supplemental Material (Supplemental Code) and
atGitHub (https://github.com/Dongwon-Lee/mtsa). A generic im-
plementation of SVR with gkm-kernel is also freely available at the
LS-GKM GitHub repository (https://github.com/Dongwon-Lee/
lsgkm).
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