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Abstract: Although it was known that obesity is an independent risk factor for metabolic disorders in-
cluding diabetes, the factors that link these diseases were obscure. The Hedgehog-interacting protein
(Hhip) is a negative regulator in tissue remodeling, and inhibits the proliferation of adipocytes, and
promotes their differentiation. In addition, Hhip was positively associated with diabetes. However,
the relationship between Hhip and obesity in the human body remains unclear. An analysis of the
relationship between Hhip and normal weight, overweight, and obesity levels. Participants receiving
a physical checkup were recruited. Anthropometric and biochemical data were collected. Serum Hhip
levels were determined by enzyme-linked immunosorbent assay (ELISA). Subjects were classified into
normal-weight, overweight, and obese groups based on their body mass index (BMI). The association
between Hhip and obesity was examined by multivariate linear regression analysis. In total, 294 sub-
jects who were either of a normal weight (n = 166), overweight (n = 90), or obese (n = 38) were enrolled.
Hhip concentrations were 6.51 ± 4.86 ng/mL, 5.79 ± 4.33 ng/mL, and 3.97 ± 3.4 ng/mL in normal-
weight, overweight, and obese groups, respectively (p for trend = 0.032). Moreover, the regression
analysis showed that BMI (β = −0.144, 95% confidence interval (CI) = −0.397−0.046, p = 0.013) was
negatively associated with Hhip concentrations after adjusting for sex and age. Being overweight
(β = −0.181, 95% CI = −3.311−0.400, p = 0.013) and obese (β = −0.311, 95% CI = −6.393−2.384,
p < 0.001) were independently associated with Hhip concentrations after adjusting for sex, age, fast-
ing plasma glucose, the insulin level, and other cardiometabolic risk factors. Our results showed that
overweight and obese subjects had lower Hhip concentrations than those of normal weight. Being
overweight and obese were negatively associated with Hhip concentrations. Hhip might be a link
between obesity and diabetes.

Keywords: hedgehog-interacting protein; impaired fasting glucose; impaired glucose tolerance;
newly diagnosed diabetes; normal glucose tolerance

1. Introduction

Obesity is recognized as an independent risk factor for the development of many
diseases, such as diabetes mellitus, cardiovascular diseases, and even cancer [1–3]. The
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World Health Organization defines obesity as abnormal or excessive fat accumulation that
may impair health [4]. In clinical practice, the body mass index (BMI) has been used for
diagnosing obesity and being overweight [5]. An energy imbalance of more calories being
consumed than expended is the most important cause of obesity, and the consequence is
the storage of excess energy in adipose tissues that increase in size by hypertrophy and
hyperplasia [6,7].

The Hedgehog (Hh) signaling pathway is known to be an important pathway for
the growth, development, and homeostasis of many tissues in animals, especially during
embryonic development [8]. Recently, Hh signaling was proven to be related to adipose
tissue differentiation [9–12]. Activation of Hh signaling inhibits adipocyte differentia-
tion in vitro [9]. Targeted activation of Hh signaling suppresses high-fat-diet-induced
obesity and improves whole-body glucose tolerance and insulin sensitivity in vivo [10].
Because the Hh signaling pathway was reported to be involved in adipogenesis, it was
proposed as a potential therapeutic target for metabolic diseases such as type 2 diabetes
and obesity [11,13].

The Hh-interacting protein (Hhip), a membrane glycoprotein, is a negative regulator
that attenuates Hh signaling by binding to its ligands [14,15]. During 8-day adipocyte
differentiation, Hhip messenger RNA and protein expressions peaked at day 6 in 3T3-L1
cells [13]. In addition, Hhip messenger RNA expression in adipose tissues was higher in
3-day-old than in 180-day-old pigs [13]. Recombinant Hhip treatment promoted 3T3-L1
cell differentiation by upregulating the expression of peroxisome proliferator-activated
receptor γ and glucose transporter 4 and downregulating the expression of the Hh signal-
ing transcription factor, Gli1 [13]. We previously reported that the Hhip was positively
associated with prediabetes and type 2 diabetes [16]. Because obesity is closely associ-
ated with dysglycemia [1], we explored the relationship between Hhip levels and being
overweight/obese in humans in this study.

2. Materials/Subjects and Methods
2.1. Participants

This study was approved by the Institutional Review Board of National Cheng Kung
University Hospital (ER-104-204) (Tainan, Taiwan), and all participants signed an informed
consent form before joining the study. All participants in the study were recruited between
January 2016 and December 2016 from the Health Examination Center of National Cheng
Kung University Hospital.

Blood was sampled at 9:00 from all participants after they had fasted for 12 h overnight.
Subjects without a history of diabetes received an oral glucose tolerance test. After fasting
blood sampling, subjects were instructed to drink 75 g glucose in 300 mL water within 5 min.
Two hours after drinking glucose solution (11 am), a blood sample was collected again to
measure blood glucose level. Those who (1) had an acute or chronic inflammatory disease
as determined by a leukocyte count of >10,000/mm3 or clinical signs of infection; (2) had
any other major diseases, including generalized inflammation or advanced malignant
diseases contraindicating this study; (3) were pregnant; (4) had a history of diabetes and
were receiving insulin therapy, glucagon like-peptide-1, or oral antidiabetic drugs; (5) were
taking drugs that affect glucose homeostasis, such as corticosteroids, thiazides, etc.; (6) had
experienced an acute coronary syndrome, cerebrovascular accident, or pancreatitis during
the past three months; or (7) were taking lipid-lowering medications or antihypertensive
drugs were excluded.

We grouped all participants into one of three groups according to the recommen-
dations of the Health Promotion Administration of Taiwan based on their BMI—normal
weight (18.5 kg/m2 < BMI < 24 kg/m2), overweight (BMI ≥ 24 kg/m2), and obese
(BMI ≥ 27 kg/m2) [17].
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2.2. Data Collection

We measured every subject’s body height and waist circumference to the nearest 0.1
cm and body weight (BW) to the nearest 0.1 kg. The BMI was defined as the BW (kg) di-
vided by the body height (m) squared. We asked participants to rest in the supine position
in a quiet place to measure the blood pressure between 08:00 and 10:00 while in a fasted
status. An appropriate-sized cuff was used for the right upper arm, and the pressure was
checked twice at an interval of at least 5 min using a DINAMAP vital signs monitor (model
1846SX; Critikon, Irvine, CA, USA). The hexokinase method (Roche Diagnostic, Mannheim,
Germany) was used to measure the blood glucose. An enzyme-linked immunosorbent
assay (ELISA) (Mercodia AB, Uppsala, Sweden) was used to measure serum insulin levels.
A highly sensitive ELISA kit (Immunology Consultants Laboratory, Newberg, OR, USA)
was used to determine high-sensitivity C-reactive protein. A human Hhip ELISA kit (My-
BioSource, San Diego, CA, USA) was used for determining serum Hhip concentrations. The
intra-assay coefficient of variation of the ELISA was 5.52% and the inter-assay coefficient
of variation of it was 4.9%. An autoanalyzer (Hitachi 747E; Tokyo, Japan) in the central
laboratory of National Cheng Kung University was employed to obtain serum alanine
aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density
lipoprotein cholesterol, and low-density lipoprotein cholesterol. A high-performance liquid
chromatographic method (Tosoh Automated Glycohemoglobin Analyzer; Tokyo, Japan)
was used to measure glycated hemoglobin (HbA1c). The estimated glomerular filtration
rate (eGFR) was calculated by the modification of the diet in a renal disease equation. The
homeostasis model assessment of insulin resistance was defined by the formula that is
equal to fasting insulin (mU/L) multiplied by fasting plasma glucose (mg/dl) divided by
405 to investigate insulin resistance [18].

2.3. Statistical Analyses

Data were analyzed using SPSS software (vers. 24.0; SPSS, Chicago, IL, USA). Baseline
characteristics are expressed as the mean ± standard deviation (SD) for continuous vari-
ables or as a percentage for categorical variables. A one-way analysis of variance (ANOVA)
was used to determine any difference in variables among the groups. Chi-square tests were
used to analyze differences in categorical variables among the groups. The Bonferroni
correction was used for a post hoc study to see if serum Hhip concentrations differed
among the groups. A multivariate linear regression analysis was performed to identify
independent variables related to serum Hhip concentrations. The criterion for statistical
significance was a p-value of <0.05.

3. Results

Overall, 294 subjects were enrolled and classified into the normal-weight (n = 166),
overweight (n = 90), and obese (n = 38) groups. The average age of them was
61.34 ± 11.87-year-old. Comparisons of baseline characteristics of these participants are
shown in Table 1. There were significant differences in the BW (p < 0.001), waist circum-
ference (p < 0.001), BMI (p < 0.001), diastolic blood pressure (p = 0.022), HbA1c (p = 0.026),
high-density lipoprotein cholesterol (p = 0.008), triglycerides (p = 0.008), homeostasis
model assessment of insulin resistance (p < 0.001), and insulin levels (p < 0.001) among
the three groups. Hhip concentrations were 6.51 ± 4.86 ng/mL, 5.79 ± 4.33 ng/mL,
and 3.97 ± 3.4 ng/mL in the normal-weight, overweight, and obese groups, respectively
(Figure 1, trend test p = 0.032). In the post hoc analysis, serum Hhip concentrations were
significantly lower in the obese group (p = 0.006), compared to the normal-weight group.
Serum Hhip concentrations were not different between the overweight group and the
normal-weight group (p = 0.667). Moreover, after exclusion of the study subjects with
diabetes, the serum Hhip concentrations were 5.99 ± 4.86 ng/mL, 5.28 ± 3.91 ng/mL, and
4.1 ± 3.55 ng/mL in the normal-weight, overweight, and obese groups. We still observed
that serum Hhip concentrations significantly decreased among groups using post hoc
analysis (p for trend test was 0.044).
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Table 1. Comparisons of clinical parameters among normal-weight, overweight, and obese subjects.

Clinical Parameters Normal Weight Overweight Obese p

n 166 90 38
Female (%) 42.8 31.1 44.7 0.147

Hypertension (%) 17.1 23.3 27 0.272
Diabetes (%) 24.7 31.1 31.6 0.459
Age (years) 61.7 ± 11.9 60.5 ± 11.8 61.4 ± 12.3 0.736

Body weight (kg) 56.4 ± 7 67.59 ± 7.47 75.79 ± 10.8 <0.001
Waist circumference

(cm) 78.37 ± 6.82 87.51 ± 5.77 94.43 ± 8.44 <0.001

Body-mass index
(kg/m2) 21.65 ± 1.87 25.44 ± 0.88 28.49 ± 1.75 <0.001

SBP (mmHg) 125.3 ± 18.1 128.5 ± 16.1 131.5 ± 16.7 0.098
DBP (mmHg) 72.2 ± 10.4 74.9 ± 9.7 76.8 ± 12.0 0.022
FPG (mg/dL) 101.78 ± 43.28 107.36 ± 35.33 116.47 ± 49.68 0.131

Post-load 2-h glucose
(mg/dL) 155.34 ± 80.21 147.54 ± 68.90 175.41 ± 97.48 0.234

HbA1c (%) 6.13 ± 1.28 6.24 ± 1.05 6.79 ± 2.09 0.026
ALT (U/L) 25.51 ± 19.50 35.19 ± 53.50 24.89 ± 10.43 0.068
AST (U/L) 27.23 ± 13.70 30.56 ± 41.84 24.68 ± 25.45 0.429

Creatinine (mg/dL) 0.87 ± 0.20 0.87 ± 0.18 0.88 ± 0.20 0.886
eGFR 90.63 ± 19.76 91.72 ± 15.65 88.22 ± 19.24 0.62

hsCRP (mg/L) 3.68 ± 7.52 3.73 ± 6.27 4.48 ± 4.71 0.809
HDL-C (mg/dL) 55.73 ± 15.39 49.98 ± 13.55 51.74 ± 12.49 0.008
LDL-C (mg/dL) 126.33 ± 33.89 129.02 ± 35.91 131.28 ± 44.65 0.694

Triglycerides (mg/dL) 110.47 ± 68.96 127.56 ± 60.71 144.94 ± 70.84 0.008
Triglycerides (mg/dL) * 1.99 ± 0.21 2.06 ± 0.20 2.12 ± 0.20 <0.001

Cholesterol (mg/dL) 204.16 ± 39.555 204.51 ± 41.545 212.00 ± 47.594 0.56
HOMA-IR 0.50 ± 0.47 0.97 ± 1.50 1.26 ± 1.011 <0.001

Data are expressed as the mean ± standard deviation or as a percentage. * Values were log-transformed before analysis. Hhip, Hedgehog-
interacting protein; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, estimated glomeruli filtration rate; hsCRP, high-sensitivity C-
reactive protein; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; HOMA-IR, homeostasis model
assessment of insulin resistance.

In the multivariate linear regression analysis (Table 2), the BMI (β = −0.144, 95%
CI = −0.397−0.046, p = 0.013) was negatively associated with Hhip concentrations after
adjusting for sex and age (model 1). After adding the fasting glucose and insulin levels as
confounding factors into model 1, the BMI (β = −0.147, 95% CI = −0.411−0.041, p = 0.017)
was still independently associated with Hhip concentrations (model 2). To evaluate if
the BMI status made a difference in Hhip concentrations, the normal-weight group was
used as a reference to compare with the overweight and obese groups. We found that
being overweight (β = −0.181, 95% CI = −3.311−0.400, p = 0.013) and obese (β = −0.311,
95% CI = −6.393~−2.384, p < 0.001) were independently negatively associated with Hhip
concentrations after adjusting for sex, age, fasting plasma glucose, insulin level, high-
sensitivity C-reactive protein, systolic blood pressure, the estimated glomeruli filtration
rate (eGFR), alanine aminotransferase, cholesterol, triglycerides, high-density lipoprotein
cholesterol, and low-density lipoprotein cholesterol (model 3).
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Figure 1. Comparisons of serum concentrations of the Hedgehog-interacting protein (Hhip) in normal-weight, overweight,
and obese subjects. Box and whisker plot of serum Hhip concentrations in participants with normal-weight (n = 166),
overweight (n = 90), and obese subjects (n = 38). The line inside the box represents the median of the distribution, the box
top, and bottom values are defined by the 25th and 75th percentiles, and the whiskers are minimum and maximum values.

Table 2. Results of multivariate linear regression analysis between the Hedgehog-interacting protein (Hhip) and clini-
cal variables.

Variable
Model 1 Model 2 Model 3

β (95% CI) p β (95% CI) p β (95% CI) p

Age (years) −0.029
(−0.056~0.033) 0.612 −0.034

(−0.058~0.032) 0.565 −0.006
(−0.062~0.057) 0.938

Sex 0.143
(0.278~2.412) 0.014 0.134

(0.182~2.350) 0.022 0.158
(0.204~2.857) 0.024

Body-mass index −0.144
(−0.397~−0.046) 0.013 −0.147

(−0.411~−0.041) 0.017

OW vs. NW −0.181
(−3.311~−0.400) 0.013

OB vs. NW −0.311
(−6.393~−2.384) <0.001

Fasting glucose
(mg/dL)

0.024
(−0.010~0.015) 0.694 0.007

(−0.015~0.016) 0.925

Insulin (mIU/L) −0.011
(−0.210~0.175) 0.859 0.049

(−0.175~0.354) 0.503

hsCRP (mg/L) 0.016
(−0.078~0.100) 0.809

SBP (mmHg) 0.06
(−0.021~0.054) 0.397

eGFR −0.026
(−0.042~0.029) 0.715

ALT (U/L) −0.07
(−0.027~0.008) 0.296

CHOL (mg/dL) −0.063
(−0.147~0.133) 0.923

TGs (mg/dL) * 0.029
(−8.388~9.701) 0.886

HDL-C (mg/dL) −0.101
(−0.182~0.116) 0.663

LDL-C (mg/dL) 0.129
(−0.126~0.158) 0.821

* Values were log-transformed before analysis. OW, overweight; NW, normal weight; OB, obese; hsCRP, high-sensitivity C-reactive
protein; SBP, systolic blood pressure; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; CHOL, cholesterol; TGs,
triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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4. Discussion

To the best of our knowledge, this is the first human study to explore the relationship
between obesity and the Hhip. We found that Hhip levels progressively decreased from
the normal-weight and overweight groups to the obese group. In addition, the BMI was
negatively associated with serum Hhip concentrations. Moreover, being overweight and
obese were negatively associated with serum Hhip concentrations.

According to our previous study, the presence of prediabetes and type 2 diabetes was
positively associated with serum Hhip concentrations, while the BMI was not [16]. How-
ever, the average BMI in the previous study was similar among subjects with normal glu-
cose tolerance (BMI = 22.3 kg/m2), impaired fasting glucose (BMI = 23.6 kg/m2), impaired
glucose tolerance (BMI = 23.4 kg/m2), and newly diagnosed diabetes (BMI = 23.3 kg/m2),
although the difference reached borderline statistical significance (p = 0.049), which may
be at risk of a type 1 error, and subjects with obesity might not have been included. It
is therefore unknown whether or not being overweight/obese is associated with plasma
Hhip concentrations. Wei et al. reported that recombinant Hhip can increase adipocyte
differentiation, which results in increased accumulation of lipid droplets in adipocytes by
inhibiting the Hh signaling pathway in 3T3-L1 cells, and Hhip messenger RNA expression
in adipose tissues was lower in 180-day-old than in 3-day-old pigs [13]. It was suggested
that serum Hhip concentrations may be negatively regulated by differentiated adipose tis-
sues. Once one becomes obese, the production of Hhip should decrease to prevent further
adipocyte differentiation. However, the mechanism as to how adipose tissues influence
serum Hhip concentrations remains unclear. To address this hypothesis, further human
studies are required. In our cohort, obese subjects had a lower level of Hhip protein, which
can be viewed as a mechanism of negative feedback, in order to promote the Hh pathway
and inhibit fat formation. We still found that serum Hhip concentrations significantly
decreased in the obese group after excluding subjects with diabetes. Moreover, in our
previous study, subjects with prediabetes or type 2 diabetes have a higher level of Hhip
concentrations. We, therefore, speculated that elevated Hhip concentrations might be a hint
that these overweight or obese subjects may have a risk to progress into diabetes compared
with those who have lower Hhip concentrations. Hh signaling plays an important role
in inhibiting fat formation [11]. A previous animal study showed the activation of Hh
signaling decreased obesity induced by a high-fat diet in adult mice [10], and a deficiency
of Hh signaling in myeloid cells increased the BW of mice [19]. In obese subjects, the
circulating leptin level increases. Wang et al. reported that leptin decreased the weight
of obese mice induced by a high-fat diet and inhibited Gli1 expression [20]. In a human
study, expression of the Hh signaling transcription factor, Gli1, significantly decreased in
adipose tissues of insulin-sensitive obese subjects compared to lean subjects, which may
indicate that Hh signaling decreases in obese humans [21]. Circulating Hh ligands and
expressions of Hh ligands in adipose tissues increased in obese mice. However, serum
Hh ligand levels significantly decreased in morbidly obese (BMI > 40 kg/m2) people,
even in those with HbA1c > 7%, possibly due to the inhibitory effect of metformin on Hh
ligand expression in adipose tissues [19]. As leptin negatively regulates Hh signaling by
decreasing Gli1 expression and Hhip is a negative regulator that attenuates Hh signaling
by binding to Hh ligands, we may speculate that decreased serum Hhip concentrations in
obese subjects are a compensatory mechanism of decreasing Gli1 expression. However,
further study is needed to clarify the regulatory architecture. Cholesterol has been shown
to be an endogenous Smoothened activator, which is a second messenger activating the
Hedgehog signaling pathway [22]. Exogenously added cholesterol would activate Hh sig-
naling pathway in vitro [23]. Cholesterol is not just necessary but also sufficient to activate
signaling by the Hh pathway [24]. Hh signaling plays an important role in inhibiting fat
formation [11], which means that elevated cholesterol levels might activate Hh signaling to
minimize fat formation at the same time that Hhip should be downregulated to avoid fat
formation. However, there has been no human study to discuss the relationship between
cholesterol and Hhip so far. In our study, we found no difference in cholesterol levels
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among the three groups. Moreover, in multivariate linear regression analysis, cholesterol
was not an independent factor of serum Hhip concentrations. The relationship among
cholesterol level, Hh signaling pathway, and serum Hhip concentrations needs to be eval-
uated in a human study. There were some limitations in this study. First, this study was
designed as a cross-sectional study which did not allow for causal inferences between
serum Hhip concentrations and BMI or obesity. Second, although one study revealed that
the Hhip was associated with moderate to severe chronic obstructive pulmonary disease,
all of our participants were apparently healthy with no airway symptoms [25]. Third, we
could not directly measure Hhip expression by adipose tissues. Therefore, we could not be
sure whether serum Hhip concentrations were representative of those in adipose tissues.
Finally, all study subjects were Taiwanese, and thus our findings might not be applicable to
other ethnicities.

5. Conclusions

Our results demonstrated that serum Hhip concentrations were negatively associated
with BMI, and obese subjects had lower serum Hhip concentrations than normal-weight
subjects. Further research is needed to explore the pathophysiological roles and clinical
implications of the Hhip in obesity.
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Abbreviations

BMI body mass index
ALT alanine aminotransferase
AST aspartate aminotransferase
DBP diastolic blood pressure
eGFR estimated glomeruli filtration rate
FPG fasting plasma glucose
HbA1c glycated hemoglobin
HDL-C high-density lipoprotein cholesterol
Hhip Hedgehog-interacting protein
HOMA-IR homeostasis model assessment of insulin resistance
hsCRP high-sensitivity C-reactive protein
LDL-C low-density lipoprotein cholesterol
SBP systolic blood pressure
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