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The impact of genomic epistasis effects on the accuracy of predicting the

phenotypic values of residual feed intake (RFI) in U.S. Holstein cows was

evaluated using 6215 Holstein cows and 78,964 SNPs. Two SNP models and

seven epistasis models were initially evaluated. Heritability estimates and the

accuracy of predicting the RFI phenotypic values from 10-fold cross-validation

studies identified the model with SNP additive effects and additive × additive

(A×A) epistasis effects (A + A×A model) to be the best prediction model. Under

the A + A×A model, additive heritability was 0.141, and A×A heritability was

0.263 that consisted of 0.260 inter-chromosome A×A heritability and

0.003 intra-chromosome A×A heritability, showing that inter-chromosome

A×A effects were responsible for the accuracy increases due to A×A. Under

the SNP additive model (A-only model), the additive heritability was 0.171. In the

10 validation populations, the average accuracy for predicting the RFI

phenotypic values was 0.246 (with range 0.197–0.333) under A + A×A

model and was 0.231 (with range of 0.188–0.319) under the A-only model.

The average increase in the accuracy of predicting the RFI phenotypic values by

the A + A×A model over the A-only model was 6.49% (with range of

3.02–14.29%). Results in this study showed A×A epistasis effects had a

positive impact on the accuracy of predicting the RFI phenotypic values

when combined with additive effects in the prediction model.
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Introduction

Residual feed intake (RFI) is a measure of an animal’s feed

efficiency (Koch et al., 1963; Kennedy et al., 1993; Pryce et al.,

2014; Tempelman et al., 2015). In U.S. Holstein cattle, genome-

wide association study (GWAS) and genomic prediction of RFI

using single nucleotide polymorphism (SNP) markers have been

reported (Yao et al., 2013; VanRaden et al., 2018; Li et al., 2019; Li

et al., 2020). A national genomic evaluation has been

implemented for feed-saved that is calculated based on RFI

and body weight composite (Gaddis et al., 2021) using a SNP

additive model. Additive effects are inheritable and genomic

estimated breeding values (GEBV) based on additive effects

are used for selecting breeding individuals. Additive effects

also affect a cow’s lifetime performance. A selection index of

GEBV’s of dairy traits named net merit is used as a measure of

lifetime profit (VanRaden et al., 2014). Nonadditive effects

including dominance and epistasis effects affect a cow’s

lifetime performance if they exist but the inheritance of

nonadditive effects is more complicated than that of additive

effects and is discussed towards the end of this article. Given that

approximately 1 million Holsteins in the U.S. were genotyped in

2020 and 2021 (CDCB, 2022) and the RFI phenotype is expensive

to measure, an increase in the accuracy of predicting future RFI

phenotypic performance may result in a reduction in the dairy

expenses. In this study, we investigate the impact of epistasis

effects on the genomic heritability of RFI and the accuracy of

predicting the RFI phenotypic values of U.S. Holstein cows using

prediction models with SNP additive, dominance and epistasis

effects up to the third-order.

Materials and methods

Holstein population, SNP and phenotypic
data

The Holstein population in this study had 6215 cows with

RFI phenotypic observations and 78,964 imputed SNPs. The

RFI phenotypic values were the phenotypic residuals after

removing fixed non-genetic effects available from the

December 2021 U.S. Holstein genomic evaluation data. The

6215 phenotypic values had a bell-shaped distribution with

long tails. To evaluate the potential impact of the extreme

phenotypic values, we evaluated the prediction accuracy after

removing 17 phenotypic observations that were four standard

deviations from the mean existed. The removal of 17 such

extreme phenotypic values reduced the number of

observations to 6198 with a similar bell-shaped distribution

without the long tails of the original data (Supplementary

Figure S1 and Table 1). However, the original dataset of

6215 cows had slightly higher accuracy (0.231) of

predicting the phenotypic values than the dataset after

removing the 17 extreme phenotypic values (0.227).

Therefore, the original dataset with 6215 cows was used in

this study.

Mixed model for GBLUP and GREML

Genomic best linear unbiased prediction (GBLUP) of genetic

values was used for calculating the accuracy of predicting the RFI

phenotypic values, and genomic restricted maximum likelihood

estimation (GREML) was used for estimating the heritability of

each type of genetic effects using mixed models. The effect types

evaluated by GBLUP and GREML included SNP additive and

dominance effects, pairwise and third-order epistasis effects, and

intra- and inter-chromosome additive × additive (A × A) effects.

Details of those effect types and the mixed models are described in

Da et al., 2022. Since the prediction model with additive and A × A

effects was identified as the best prediction model in this study, only

these effects are included in the description of the mixed model for

GBLUP and GREML here for simplicity of notations. For the

phenotypic data in this study that already removed fixed non-

genetic effects from the phenotypic values, the mixed model with

additive and A × A epistasis genetic values as well as the variance-

covariance matrices of the model can be described as:

y � Xμ + Zg + e � Xμ + Z(a + d + aa + ad + dd) + e (1)
V � Var(y) � ZGZ′ + σ2eI (2)

G � Ga + Gd + Gaa + Gad + Gdd

� σ2αA + σ2δD + σ2ααAA + σ2αδAD + σ2δδDD (3)

where y = column vector of phenotypic observations, Z =

incidence matrix allocating phenotypic observations to each

individual = identity matrix for one observation per

individual, µ = mean of the phenotypic values, X = column

vector of 1’s as the model matrix for µ, a = column vector of

genomic additive values, d = column vector of genomic

dominance values, aa = column vector of genomic additive ×

additive (A×A) values, ad = column vector of genomic additive ×

dominance (A×D) values,dd = column vector of genomic

dominance × dominance (D×D) values, g = column vector of

total genetic values = a + d + aa + ad + dd, e = column vector of

random residuals, σ2e = residual variance, I = identity matrix,

Ga � Var(a) � σ2αA, Gd � Var(d) � σ2δD,

Gaa � Var(aa) � σ2ααAA, Gad � Var(ad) � σ2αδAD,

Gdd � Var(dd) � σ2δδDD, σ2α = variance of additive effects,

σ2δ = variance of dominance effects, σ2αα = variance of A×A

effects, σ2αδ = variance of A×D effects, σ2δδ = variance of D×D

effects, A = genomic additive relationship matrix, D = genomic

dominance relationship matrix, AA = genomic A×A relationship

matrix, AD = genomic A×D relationship matrix, DD = genomic

D×D relationship matrix. The calculations of the genomic

epistasis relationship matrices can use either the approximate

method that is the genomic version of Henderson’s Hadamard
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products between additive and dominance relationship matrices

(Henderson, 1985; Su et al., 2012; Muñoz et al., 2014; Vitezica

et al., 2017) or the exact method that removes intra-locus

epistasis that should not exist from the approximate method

(Jiang and Reif, 2020). The EPIHAP package implements both

methods (Liang et al., 2022), and this study used the exact

method. The pairwise epistasis values and their genomic

relationship matrices were further divided into intra- and

inter-chromosome epistasis values and genomic matrices

using the approach of Da et al. (2022).

Estimation of genomic heritability

The estimation of variance components used the method of

genomic restricted maximum likelihood estimation (GREML)

using a combination of EM-REML and AI-REML algorithms

implemented by the EPIHAP computing package (Liang et al.,

2021, Liang et al., 2022). GREML estimates of variance

components were used for calculating heritability estimates

from the entire sample of 6215 cows and from the

10 validation populations for calculating the observed

standard deviation of each genomic heritability.

Evaluation of prediction accuracy using
cross-validation

A 10-fold cross validation study was used to evaluate the

accuracy of predicting the phenotypic values of each trait for each

model. Individuals with phenotypic observations were randomly

divided into 10 validation populations. The first nine validation

populations had equal sample size of 621 cows each and the 10th

population had 626 cows. In each validation population,

phenotypic values were omitted when calculating GBLUP for

training and validation individuals. Four measures of prediction

accuracy were compared for the final prediction models,

including three measures described previously (Legarra et al.,

2008), denoted as R̂0p, R0pand ~R0; and the fourth measure of R0i

from the EPIHAP package (Liang et al., 2021, Liang et al.,

2022), where R̂0p = the observed accuracy of predicting

phenotypic values as the correlation between GBLUP and

the phenotypic values in each validation population and

then averaged over all validation populations, R0p =

expected accuracy of predicting phenotypic values, ~R0 =

expected accuracy of predicting genetic values calculated

from R̂0pand heritability, Ri = accuracy of predicting

genetic values as the square root of the reliability for the ith

individual that can be a training or validation individual, and

subscript ‘0’ indicates validation population. The

formulations of these four accuracy measures for validation

populations are:

R̂0p � corr(ĝ0, y0) � [∑10

k�1corr(ĝ0k , y0k)]/10 (4)

R0p � R0

��
h2

√
� [∑10

k�1(∑n0k

i�1R
k
0i

��
h2k

√ )/n0k]/10 (5)

~R0 � R̂0p/ ��
h2

√
� [∑10

k�1R̂
k

0p/ ��
h2k

√ ]/10 (6)

Ri � corr(ĝi, gi) � [(GZ′PZG)
ii
/Gii]1/2 in general (7)

� {(GαZ′PZGα + GααZ′PZGαα
+GαZ′PZGαα + GααZ′PZGα

)
ii

/[aiiσ2α+(aa)iiσ2αα]}1/2

for A + A×Amodel (8)
where ĝ0 = GBLUP of g0; g0 = unobservable genetic values; y0 =

phenotypic observations; subscript ‘0’ denotes validation

population; “corr” stands for correlation; h2 = genomic

heritability;

R0 = average accuracy of predicting genetic values in

validation populations; Rk
0i = the R0i value of the kth

validation population as the square root of the reliability

calculated by EPIHAP (Eq. 7); h2k = the heritability estimate

of the kth training population; R̂
k
0p = the R̂0p value of the kth

validation population; n0k = the number of individuals in the kth

validation population; ĝi = GBLUP of gi; gi = unobservable

genetic value of the ith individual, which can be a training or

validation individual, Gii = the ith diagonal element of the G

matrix defined by Eq. 3, and aii and (aa)ii are the ith diagonal

elements of the additive and A×A relationship matrices

respectively. EPIHAP (Liang et al., 2021, Liang et al., 2022)

calculates the reliability (R2
i ) for all individuals and flags a

training individual as ‘T’ and a validation individual as ‘V’. In

Eq. 7 and Eq. 8, P � V−1 − V−1X(X′V−1X)−X′V−1, and in Eq. 8,

TABLE 1 Genomic heritability estimates for the A-only and A + A×A prediction models.

Genetic effect Full sample 10 training populations (mean ± SD)

A-only A + A×A A-only A + A×A

Additive 0.171 0.141 0.171 ± 0.008 0.142 ± 0.007

A × A — 0.263 — 0.252 ± 0.031

Total 0.171 0.404 0.171 0.394

SD, standard deviation.
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V � Z(Ga + Gaa)Z′ + σ2eIN (9)

The Ri of Eq. 8 is for the A + A×Amodel. For the additive-only

(A-only) model, EPIHAP automatically removes terms involving

Gαα from the numerator of Eq. 8 and the V matrix of Eq. 9, and

removes (aa)iiσ2αα from the denominator of Eq. 8. For the A + A×A

model, EPIHAP calculates three reliabilities for GBLUP of additive

values, GBLUP of A×A values and GBLUP of total genetic values as

the sum of additive and A×A values. The additive reliability of the

A-only model was compared with the reliability of GBLUP of total

genetic values of the A + A×A model.

Results and Discussion

Genomic heritability estimates

Heritability estimates from the full model with additive,

dominance and epistasis effects up to the third-order showed

that only additive effects (A), A×A and A×A×A had nonzero

heritability estimates of 0.141, 0.260 and 0.005 respectively; and

SNP dominance effects (D) and dominance related epistasis effects

(A×D, D×D, A×A×D, A×D×D and D×D×D) all had zero

heritability (Supplementary Table S2). These results showed that

only A, A×A and A×A×A could contribute to the accuracy of

predicting the RFI phenotypic values. However, the A + A×A +

A×A×AandA+A×Amodels had the same prediction accuracy that

was higher than the accuracy of the A-only or A×A-only model

(Supplementary Table S3), indicating that A×A×A effects had no

contribution to the prediction accuracy. Therefore, the A + A×A

model was identified as the best epistasis model with the smallest

number of effect types among themodels with the highest prediction

accuracy. This model was compared with the A-only model for

heritability estimates and prediction accuracy to determine whether

A×A benefitted the prediction of RFI phenotypic values.

For the A-only and A + A×A models, two sets of heritability

estimates were calculated, one set using the full population with

6215 cows and one set using the 10 training populations each with

5594 cows for the first nine training populations and 5589 cows for

the 10th training population, and the results were similar (Table 1).

Partitioning the A×A effects in the A + A×A model into intra-

chromosome A×A effects (AAintra) and inter-chromosome A×A

effects (AAinter), the intra-chromosome A×A heritability was only

0.003, and the inter-chromosome A×A heritability was 0.260,

whereas the additive heritability of 0.141 remained unchanged

with or without partitioning A×A into intra- and inter-

chromosome A×A effects. Under the AAintra+AAinter model, the

intra-chromosome A×A heritability was 0.224, and the inter-

chromosome A×A heritability was 0.289 (Supplementary Table

S2). The comparison of the AAintra heritability estimates under

the A + A×A and AAintra+AAinter models showed that the inter-

chromosome A×A effects were responsible for the increases in

prediction accuracy due to A×A effects, and intra-chromosome

A×A effects were virtually completely accounted for by additive

effects when additive and A×A effects were in the same model. The

accuracy of predicting the RFI phenotypic values showed that the

accuracies of the A + A×A and A+AAinter models were the same

(Supplementary Table S3), confirming that intra-chromosome A×A

effects had no contribution to the prediction accuracy. However, A +

A×A was still considered the best prediction model because no

computing benefit was expected by removing AAintra from the

prediction model. This was the first known study showing that

additive and intra-chromosome A×A effects were virtually

completely confounded whereas additive and inter-chromosome

A×A effects virtually had no confounding in terms of accuracies of

predicting the RFI phenotypic values and the RFI heritability

estimates. Such results were consistent with the results of a

Holstein epistasis GWAS that found confounding between

additive and intra-chromosome A×A effects and hypothesized

that genetic selection based on genome-wide SNP additive effects

likely accounted for most intra-chromosome A×A effects of the five

production traits (Prakapenka et al., 2021). The RFI results of this

study and the epistasis GWAS results of the production traits

provided accumulating evidence towards understanding the

relationship between additive and intra-chromosome A×A effects.

Accuracy of predicting RFI phenotypic
values in validation populations

Since the A + A×A model was identified as the best

epistasis model, the evaluation of the impact of epistasis

effects on the accuracy of predicting RFI phenotypic values

was based on the comparison between the A-only and A +

A×A models in validation populations. Results of the 10-fold

validation study showed that the accuracy of predicting the

RFI phenotypic values in the validation populations was

0.231 for the A-only model and was 0.246 for the best

epistasis model (A + A×A), a 6.49% accuracy increase due

to A×A effects over the accuracy of the A-only model (Table 2;

Figure 1). In all ten validation populations, the A + A×A

model was more accurate than the A-only model. The range of

the prediction accuracy was 0.188–0.319 for the A-only model

and was 0.197–0.333 for the A + A×A model, and the range of

the increases in prediction accuracy of the A + A×A model

TABLE 2 Accuracy of predicting RFI phenotypic values in validation
populations.

Model Accuracy
(R̂0p, mean ± SD)

Increase
(%, mean ± SD)

A-only 0.231 ± 0.045 0.00 ± 0.00

A + A×A 0.246 ± 0.045 6.49 ± 3.73

SD = standard deviation. R̂0p is defined by Eq. 4. ‘Increase’ = 100×[(R̂0p of A + A×A

model) − (R̂0p of A-only model)]/(R̂0p of A-only model).

Frontiers in Genetics frontiersin.org04

Liang et al. 10.3389/fgene.2022.1017490

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1017490


over the A-only model was 3.02–14.29% (Figure 1). The

standard deviation (SD) of the prediction accuracy was

0.045 for either model. The range of the prediction

accuracy in terms of standard deviations from the mean

was 0.96–1.96 SD for the A-only model and was

1.09–1.93 SD for the A + A×A model. These results showed

that the variations of the two prediction models were all

within the range of 1.09–1.96 SD or

approximately −1.00 SD to 2.00 SD. Under the assumption

of a normal distribution for the accuracy of predicting the RFI

phenotypic values, the 95% interval of prediction accuracies

from validations would be in the range of Mean ± 2.00 SD, and

the observed ranges of 0.96–1.96 SD for the A-only model and

1.09–1.93 SD for the A + A×A model were all within the 95%

interval. For the accuracy increase of the A + A×A model

relative to the A-only model, the assumed 95% interval

was −0.95% to 13.95%. The observed range of the

accuracy increases in the ten validation populations was

3.02–14.29%, where the upper bound exceed that of the

assumed 95% interval.

Understanding of A×A heritability and
prediction accuracy

The comparison of heritability estimates and prediction

accuracy between the training and validation populations

provided an understanding of the performance of A×A effects.

The best prediction model for the training populations was the

A×A-only model, with the highest prediction accuracy of 0.988

(Supplementary Table S3). This high prediction accuracy

explained why the A×A-only model had the highest total

heritability of 0.538, compared to the next highest total

heritability of 0.406 from the full model with epistasis effects

up to the third-order (Supplementary Table S3). This high

prediction accuracy in the training populations likely was due

to a mixture of model overfitting that accounted for some

random residuals and true genetic effects. The evidence

supporting the assumption of model overfitting was the high

prediction accuracy of 0.988 in the training populations and the

high heritability of 0.538 that substantially reduced the

contribution of the random residuals to the phenotypic

variance, although the exact amount of overfitting could not

be determined. The evidence supporting the assumption of true

A×A effects contributing to the 0.538 heritability estimate was

the zero heritability of A×D that had twice as many effects as

A×A, the zero heritability of D×D effects that had the same

number of effects as the A×A, and the zero or nearly zero

heritability of the third-order epistasis with many more effects

than A×A (Supplementary Table S2). It is interesting to note that

the integration of the A and A×A effects in the same model likely

removed some inflation of the A×A heritability form the A×A-

only model because the A×A heritability from the A + A×A

model was 0.263, about half of the 0.538 heritability estimate

from the A×A-only model. Since this 0.263 A×A heritability

estimate still could be inflated for unknown reasons, this

0.263 estimate could be considered the upper bound of the

true A×A heritability. The lower bound can be found based

on the prediction efficiency of the additive and A×A effects. We

define prediction efficiency as the ratio of the observed accuracy

of predicting phenotypic values to the heritability estimate.

Under this definition, the additive prediction efficiency of the

A-only model was 0.231/0.171 = 1.35, and the A×A efficiency of

the A×A-only model was 0.201/0.538 = 0.37. Therefore, the A×A

efficiency was 27.41% of the additive efficiency. Requiring the

additive efficiency for the A×A effects, the efficiency adjusted

FIGURE 1
Accuracy of predicting RFI phenotypic values form 10-fold validation studies using 6215 Holstein cows.
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A×A heritability would be 0.201/1.35 = 0.155, which should be

the lower bound of the A×A heritability because the main reason

for the low A×A prediction efficiency likely was the low A×A

genomic relationships between the validation and training

individuals. Combining this result with the A×A heritability

from the A + A×A model, the true A×A heritability should be

in the range of 0.155–0.263.

The performance of the A×A-only model in the training and

validation populations was drastically different. The A×A-only

model had the highest prediction accuracy of 0.988 in the

training populations and the lowest accuracy of 0.201 in the

validation populations, an accuracy decrease of 12.99% relative

the A-only model (Supplementary Table S3). The exact reasons

for such a drastically different performance of the A×A-only

model were unknown, but a likely reason was the low A×A

genomic relationships between the training and validation

populations relative to the additive genomic relationships,

i.e., (aa)ij� (aij)2 (Cockerham, 1954; Henderson, 1985), where

(aa)ij = A×A genomic relationship between the ith and

jthindividuals, and aij = additive genomic relationship between

the ith and jthindividuals. Therefore, (aa)ij is lower than aij by a

factor of aij. For the example of half-sibs, the expected

relationships are aij = 1/4 and (aa)ij = 1/16. Consequently, the

similarity of the A×A GBLUP between a validation individual

and the half-sib training individuals is only 1/4 of the similarity of

the additive GBLUP. For this RFI dataset with 6215 cows,

19,310,005 pairwise relationships were possible. Of these,

31.70% additive relationships and only 0.98% of A×A

relationships were >0.01, and 5.60% additive relationships

were >0.05 whereas only 0.19% of the A×A relationships

were >0.05 (Supplementary Table S4). As a result of the low

A×A relationships, the A×A-only model should have low

accuracy for predicting the RFI phenotypic values in the

validation populations. The number of individuals in the

training population related to a validation individual also

affects the prediction accuracy of the validation individual.

The reliability or the accuracy of predicting genetic values

defined by Eq. 7 or 8 is affected by the relatedness between

the validation individual and the training individuals and by the

number of training individuals related to the validation

individual. The higher the relatedness and the larger number

of related training individuals, the higher the reliability of the

validation individual. Therefore, an interesting question is how

the two main prediction models, A-only and A + A×A, perform

for different levels of reliability, or how different reliability levels

affect the prediction accuracy.

Accuracy of predicting RFI phenotypic
values for different reliability levels

To study the effect of reliability levels on the accuracy of

predicting phenotypic values, we compared the four measures of

prediction accuracy defined by Eqs. 4–8 to provide an understanding

of these measures in the 6215 Holstein cows, and then analyzed the

accuracy of predicting the phenotypic values for cows with different

reliability levels.

The A-only model had the highest average reliability of 0.339,

followed by the 0.292 average additive reliability, 0.155 average

reliability of the total genetic values, and 0.024 average reliability of

A×A values under the A + A×Amodel (Table 3). The lower reliability

of the A + A×A model was due to the larger genetic variance as the

denominator of the reliability, aiiσ2α+(aa)iiσ2αα. The average

denominator of the reliability was 223,521.02 for the A + A×A

model and was 88,503.45 for the A-only model, i.e., the average

aiiσ2α+(aa)iiσ2αα value of the A + A×A model was 2.53 times as

large as the average aiiσ2α value of the A-only model. In contrast, the

numerators of the two models had a much smaller difference. The

average numerator was 34,654.22 for the A + A×A model and was

30,093.47 for the A-only model, i.e., the numerator of the A + A×A

model was 1.15 times as large as that of the A-only model. However,

the accuracy of predicting phenotypic values is expected to involve both

reliability and heritability as shown by Eq. 5, R0p � R0

��
h2

√
, and a

smaller reliability (R2
0) does not necessarily result in a smaller accuracy

for predicting phenotypic values. This expected accuracy of predicting

phenotypic values was 0.240 for the A-only model and 0.245 for the A

+ A×A model (R0p values in Table 4), showing that the A + A×A

modelwas expected to have a better accuracy for predicting phenotypic

values than the A-only model, even though the A + A×A model had

lower reliability than the A-only model. For the A-only model, the

expected accuracy (R0p = 0.240) was more than the observed accuracy

(R̂0p = 0.231). For the A + A×A model, the expected accuracy (R0p =

0.245) was almost the same as the observed (R̂0p = 0.246). The

expected accuracy for predicting genetic values was lower than the

observed, ~R0 = 0.561 versus mean R0i = 0.581 for the A-only model,

andwas slightly higher than the observed for theA+A×Amodel, ~R0 =

0.393 versusmean R0i = 0.390 (Table 4). These results showed that the

low reliability of the A + A×Amodel relative to the A-only model was

due to the large genetic variance of the A + A×Amodel relative to the

genetic variance of the A-only model, and that the accuracy of

predicting phenotypic values by one model with lower reliability

can still be higher than that of a model with a higher reliability.

With these results, we compared the accuracy of predicting phenotypic

values for groups of individuals with different reliability levels.

The reliability levels were determined in two ways: Sorting

reliability of predicting genetic values (R0i) under the A + A×A

model, and under the A-only model. Under the A + A×Amodel, ten

levels of reliability were defined based on sorting the GBLUP

reliability for total genetic values (Figure 2A). Under the A-only

model, ten levels of reliability were also defined based on the sorting

the GBLUP reliability of additive values such that each reliability level

had the same number of cows as the corresponding reliability level

under the A +A×Amodel (Figure 2B). The twomodels had the same

number of cows but generally did not have the same cows at each

reliability level. For example, for the highest reliability level

of >0.4 with 12 cows, only two cows were common to both
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models. Therefore, the comparison of the R̂0p values between the two

models at the same reliability level generally did not compare the same

cows. The same number of cows was required at each reliability level

to exclude the possibility that different accuracies of the twomodels at

the same reliability level were due to different sample sizes. The

prediction accuracy (R̂0p of Eq. 4) was calculated for each reliability

level and each model.

The results showed that the A +A×Amodel had higher accuracy

of predicting the RFI phenotypic values than the A-only model for all

reliability levels except the two highest reliability levels of >0.275 with
24 cows and >0.4 with 12 cows. The average reliability at each

reliability of each model was 0.155–0.460 for the GBLUP of total

genetic values of the A + A×A model and was 0.339–0.488 for

additive reliability of the A-only model, and A-only reliability was

higher than that of the A + A×A model at every reliability level

(Figure 2B). For the highest reliability level with 12 cows, theA+A×A

model had the worst performance relative to the A-only model, with

prediction accuracy that was only 47.20% of the A-only accuracy and

had lower accuracy for the second highest reliability level with 24 cows

(Figure 2A). For the reliability level<0.09with 465 cows, theA+A×A

model had the highest accuracy increase relative to the A-onlymodel,

a 46.81% increase over theA-onlymodel (Figures 2A,B). The fact that

the inclusion of A×A epistasis effects in the prediction model

improved the prediction accuracy over the A-only model for all

cows except the 24 cows with the highest additive reliability under the

A-only model indicated that the A + A×A model could be more

beneficial than the A-only model for predicting the RFI phenotypic

values for culling decisions, and that the A-onlymodel could perform

well for cows with the highest additive reliability. Given that RFI is

expensive to measure and the growth of the RFI sample size is

expected to be slow, the increase in reliability for about one million

genomic evaluated cows every year is expected to be a slow process.

This slow process should favor the A + A×A model for its better

accuracy than the A-only model for all reliability levels except the

24 cows with the highest additive reliability.

Negative additive relationships leading to
positive A×A relationships

Pedigree additive relationship between two individuals is

positive, but a genomic additive relationship can be negative

and genomic A×A relationship as the product of the additive

relationship with itself is positive. The negative additive

relationship could be interpreted as the two individuals

involved being less related than two individuals with a

positive genomic relationship, but the positive A×A

relationship resulting from the negative additive relationship

does not have a reasonable interpretation. Although this is a

problem for interpreting the A×A relationship, the negative

additive relationship and the positive A×A relationship

resulting from the negative additive relationship are not

problems for genomic prediction, because the additive and

A×A relationships originated from the model matrix of

additive effects (Da et al., 2022). Modifying the additive and

A×A relationships is equivalent to modifying the additive and

TABLE 3 Reliability estimates of validation cows for the A-only and A + A×A prediction models from 10 validation populations.

GBLUP values Reliability (R2
0i) of ‘A-only’ model Reliability (R2

0i) of ‘A + A×A’ model

Mean ± SD Min-max Mean ± SD Min-max

a 0.339 ± 0.048 0.182–0.508 0.292 ± 0.041 0.160–0.468

aa — - 0.024 ± 0.041 0.001–0.354

g = a + aa — — 0.155 ± 0.041 0.063–0.522

R2
0i is the squared value of Eq. 8 (modification is needed for the A-only model as described in the main text). SD = standard deviation. Min = minimum value. Max = maximum value.

TABLE 4 Comparison of four measures of prediction accuracy in validation populations and differences in the four measures between the two
prediction models.

Model R̂0p R0p � R0

��
h2

√
~R0 � R̂0p/

��
h2

√
R0

A-only (Mean ± SD) 0.231 ± 0.045 0.240 ± 0.080 0.561 ± 0.125 0.581 ± 0.007

A×A-only (Mean ± SD) 0.201 ± 0.039 0.156 ± 0.010 0.276 ± 0.060 0.213 ± 0.007

A + A×A (Mean ± SD) 0.246 ± 0.045 0.245 ± 0.090 0.393 ± 0.079 0.390 ± 0.011

Increase (%) 6.49 2.08 −29.95 −48.97

R̂0p is defined by Eq. 4. R0i is defined by Eq. 8 (modification is needed for the A-only model as described in the main text). SD = standard deviation. Increase = 100 × [(accuracy of A + A×A

model) − (accuracy of A-only model)]/(accuracy of A-only model).
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A×A model matrices. Therefore, for genomic prediction,

negative additive relationships and positive A×A relationships

resulting from the negative additive relationships should be left

unchanged.

For this RFI dataset with 6215 cows, 55.15% of the

19,310,005 genomic additive relationships between two cows

were negative, with an average value −0.022 (Supplementary

Table S4). For the general formula of A×A relationship,

(aa)ij� (aij)2, A×A relationship (aa)ij could not be negative even

when the additive relationship aij is negative. However, the genomic

version of (aa)ij� (aij)2 contains intra-locus epistasis that should

not exist (Martini et al., 2020), and hence the genomic A×A

relationship matrix based on (aa)ij� (aij)2 is an approximate

genomic epistasis relationship matrix (AGERM). This study used

the exact genomic epistasis relationship matrix (EGERM) that

removes the intra-locus epistasis by subtracting a quantity from

(aa)ij� (aij)2 (Jiang and Reif, 2020), and observed negative A×A

relationships that had very small absolute values. These negative

A×A relationships accounted for 10.56% of the 19,310,005 pairwise

A×A relationships with an average value −0.000009 ≈ 0. Therefore,

the problem of negative additive relationships leading to positive

A×A relationships was negligible in this RFI dataset when the

EGERM method was used. Using AGERM, no negative A×A

relationships were observed. However, the differences between

EGERM and AGERM were negligible with differences at the

third or fourth decimal point (Supplementary Table S4), and the

two methods had the same heritability estimates and prediction

accuracy. Therefore, EGERM and AGERM were equally good for

this study in terms of heritability estimates and prediction accuracy

although we chose to use EGERM.

Inheritance of nonadditive effects

Additive effects are allelic effects and are inheritable because each

parent transmits one allele of each locus to the offspring. This type of

inheritance of transmitting the exact genetic material for a genetic

effect from parents to offspring will be referred to as “direct

inheritance”. The discussion of nonadditive inheritance uses the

examples of dominance effects and A×A epistasis effects. The

mating system is assumed a sire mating with many dams. With

this mating system, the inheritance of dominance is indirect

inheritance, whereas the inheritance of A×A effects involves both

direct and indirect inheritance. We use “indirect inheritance” to refer

to the inheritance where a parental allelic combination in daughters is

the favorable genetic effect while each parental allele does not have a

genetic effect.

Dominance effect is the difference between the heterozygous

genotypic value and the average of the two homozygous genotypic

values. A nonzero dominance effect is partial dominance if the

heterozygous genotypic value is between two homozygous

genotypic values, complete dominance if the heterozygous

genotypic value is the same as one of the two homozygous

genotypic values, or overdominance if the heterozygous genotypic

value is more extreme than either of the two homozygous genotypic

values. A genome-wide association study (GWAS) in Holstein cattle

detected positive overdominance effects for the three yield traits and

negative overdominance effects for fat and protein percentages (Jiang

et al., 2019). The result of daughter genotypic arrays for given sire

genotypes showed that the frequency of the offspring heterozygous

genotype (Aa) was q, ½ and p for sire genotypes of AA, Aa and aa

respectively, where p = frequency of the A allele and q = the

FIGURE 2
Accuracy of predicting RFI phenotypic values form 10-fold
validation studies using 6215 Holstein cows for different reliability
levels. (A) Accuracy of predicting RFI phenotypic values by the A +
A×A and A-only models for different reliability levels of the
GBLUP of total genetic values under the A + A×A model. The
6215 validation cows from the 10-fold validations were first sorted
by the reliability of the GBLUP of the total genetic values under the
A + A×A model, and the correlation between the GBLUP and
phenotypic values of validation cows at each reliability level was
calculated. Then the 6215 validation cows from the 10-fold
validations were sorted by the reliability of the GBLUP of the
additive values under the A-only model, and the correlation
between the GBLUP and phenotypic values for the same number
of validation cows at each reliability level of the GBLUP of total
genetic values was calculated. The prediction accuracies of the
two models were compared for the same number of cows. (B)
Reliability of the GBLUP of total genetic values under the A + A×A
model and additive reliability under the A-only model for the same
numbers of cows. “Accuracy” is defined by Eq. 4. “Accuracy
increase” = 100 × [(accuracy of A + A × A model)—(accuracy of
A-only model)]/(accuracy of A-only model).
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frequency of the a allele in the population (Supplementary

Table S3). Assuming p > q and q < ½, the aa sire genotype

results in the highest heterozygosity in daughters, followed by

Aa and AA. To quantify the impact of indirect inheritance, the

difference between the heterozygosity of the daughters and the

heterozygosity of the population will be termed as “daughter

difference”, and the daughter difference relative to the

population heterozygosity termed as ‘relative daughter

difference’ (λ, Supplementary Table S5). Homozygous sire

genotype of a rare allele (A or a) has the largest impact on

increasing the heterozygosity in daughters. Based on this

analysis, selection for sires with high dominance values in

daughters theoretically could be selecting sires with the

homozygous genotype of a rare allele and could

dramatically increase the heterozygosity in future daughters

and improve the dominance values of the future population, if

the heterozygous genotype has a beneficial overdominance

effect. As allele frequencies become closer to be equal, indirect

inheritance diminishes, and dominance effect becomes

completely noninheritable (Supplementary Figure S2).

An A×A effect is the interaction effect between the additive

effects of two loci. Assuming two biallelic loci with alleles A and a

at locus 1 and alleles B and b at locus 2, four allelic combinations

between the two loci are possible, AB, Ab, aB, and ab; and nine

two-locus genotypes are possible, AABB, AABb, AAbb, AaBB,

AaBb, Aabb, aaBB, aaBb, and aabb. Assuming linkage

equilibrium and the AB allelic combination to be the

favorable combination and the other three combinations to be

the unfavorable combinations, the inheritance of the favorable

allelic combination (AB) is direct heritance for one sire genotype

(AABB), is indirect inheritance for four sire genotypes (Aabb,

AAbb, aaBB aaBb), and is a mixture of direct and indirect

inheritance for two genotypes (AABb, AaBB), whereas the

doubly heterozygous genotype (AaBb) does not change the

gametic or genotypic frequencies of the daughters, and the

inheritance of the ab combination is direct inheritance for the

aabb sire genotype. This analysis shows that the inheritance of

A×A effects involves both direct and indirect inheritance and is

much more complex than that of additive effect. For this reason,

the value of including A×A effect for sire selection should require

further study. For predicting phenotypic values, the issue of A×A

inheritance is not involved. Therefore, the utility of including

A×A in the prediction model currently is for predicting

phenotypic values that should benefit cow culling decision

with respect to the cow’s phenotypic potential.

Conclusion

The inclusion of additive × additive effects along with additive

effects in the prediction model improved the accuracy of predicting

the RFI phenotypic values inU.S. Holstein cows over the accuracy of

the additive-only model and is expected to have a positive economic

impact on selecting the top 30% of cows with the best genomic

evaluations. The nearly complete confounding between additive and

intra-chromosome A×A effects and the nearly complete absence of

confounding between additive and inter-chromosome A×A effects

in terms of prediction accuracy and heritability estimates provided

new evidence towards understanding the relationship between

additive and A×A effects.
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