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Pain is one of the most serious problems plaguing human health today. Pain is

not an independent pathophysiological condition and is associated with a high

impact on elevated disability and organ dysfunction. Several lines of evidence

suggested the associations of pain with cardiovascular diseases, especially

myocardial ischemia-reperfusion (I/R) injury, while the role of pain in I/R

injury and related mechanisms are not yet comprehensively assessed. In this

review, we attempted to explore the role of pain inmyocardial I/R injury, and we

concluded that acute pain protects myocardial ischemia-reperfusion injury and

chronic pain aggravates cardiac ischemia-reperfusion injury. In addition, the

construction of different pain models and animal models commonly used to

study the role of pain in myocardial I/R injury were discussed in detail, and the

potential mechanism of pain-related myocardial I/R injury was summarized.

Finally, the future research direction was prospected. That is, the remote

regulation of pain to cardiac function requires peripheral pain signals to be

transmitted from the peripheral to the cardiac autonomic nervous system,

which then affects autonomic innervation during cardiac ischemia-reperfusion

injury and finally affects the cardiac function.
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1 Introduction

The International Association for the Study of Pain (IASP) redefined pain as “an

unpleasant sensation or emotional experience associated with actual or potential tissue

damage, or described in terms of such damage” in 2020. This definition, which downplays

the description of tissue damage in favor of individual reports, is universally applicable to
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all pathophysiological pain manifestations (Collaborators, 2016).

Pain can be broadly divided into nociceptive, inflammatory, and

pathological pain, either spontaneous or induced (Woolf, 2010).

According to the duration of pain, pain can be divided into

transient, acute, or chronic pain as well. Transient pain refers to

programmed pain caused by the activation of pain sensors when

the body is injured by excessive external stimuli, which has

protective effects and medical intervention is not required.

Acute pain focuses on the activation of pain transmitters after

the body has suffered local damage, and heals spontaneously

without specific therapy. Patients are diagnosed with chronic

primary pain when pain lasts for more than 3 months

accompanied by significant emotional abnormalities or

dysfunction (Loeser and Melzack, 1999). In the International

Classification of Diseases revised by the World Health

Organization in 2018, chronic pain was listed as an

independent disease for the first time. Since then, pain as a

disease has attracted extensive attention and research around the

world (Barke et al., 2021).

Pain is an extremely common health problem in modern

society. About 17,000 people born in England, Scotland and

Wales took part in a pain study at the age of 45. The results

showed the overall prevalence of pain has reached 53%, including

10% with chronic neuralgia (Vandenkerkhof et al., 2011).

Bouhassira et al. showed that the prevalence of moderate to

severe chronic pain in the general population was 19.9%

(Bouhassira et al., 2008). Patients with chronic pain have a

high mortality rate. Chronic pain is one of the major global

disease burdens (Torrance et al., 2006; Bouhassira et al., 2008;

Phillips, 2009; Macfarlane et al., 2017). Chronic pain leads to

central and peripheral pathophysiological changes and is

regulated by multiple social, psychological, and physiological

factors (Dominick et al., 2012). More importantly, long-term

chronic pain gives patients very poor emotional experience and

psychological burden. However, analgesics for pain symptoms

such as non-steroidal drugs have obvious cardiovascular toxicity

(Breivik et al., 2006; Colombo et al., 2006; Scholz et al., 2019).

Individuals suffering from pain often follow an unhealthy diet

and lifestyle that increase the risk of death from factors such as

low levels of physical activity, malnutrition, sleep problems, and

substance abuse, all confer an increased the risk of cancer and

cardiovascular disease (Andersson, 2009; Vandenkerkhof et al.,

2011).

Cardiovascular diseases (CVD), including stroke, congenital

heart disease, arrhythmias, coronary heart disease, heart failure,

valvular disease, venous disease, etc., rema in the leading cause of

death worldwide causing enormous global health and economic

burden (Heusch and Gersh, 2017; Reed et al., 2017; Benjamin

et al., 2019; Mensah et al., 2019). The prevalence and mortality of

CVD continue to rise worldwide except in developed countries

(Roth et al., 2020). CVD is influenced by environmental and

genetic factors. Hypertension, obesity, diabetes, high blood

cholesterol levels, smoking, alcohol consumption, lacking

exercise all increase the risk of CVD (Mathers and Loncar,

2006; Forget, 2016; Kyu et al., 2016; Timmis et al., 2018).

Emerging research suggests that pain is also strongly linked

to CVD.

Accumulating evidence showed that pain and CVD share a

common genetic basis (Winsvold et al., 2015a; Pickrell et al.,

2016; Winsvold et al., 2017a; van Hecke et al., 2017). The large-

scale genome-wide association study (GWAS) of CAD (coronary

artery disease) and migraine pointed out the common

susceptibility gene locus PHACTR1 (encoding phosphatase

and actin regulator 1 protein) of the common mechanism of

the two diseases (Winsvold et al., 2017a). Chronic pain and CVD

often occur simultaneously, but the mechanisms of comorbidities

remain unclear (Birnbaum et al., 1997; Winsvold et al., 2015b;

Winsvold et al., 2017b; Tesarz et al., 2019; Booker and Content,

2020). The relationship between pain and CVD is not well

defined. Acute pain has protective effects on myocardial

ischemia-reperfusion (I/R) injury (Basalay et al., 2012;

Redington et al., 2012; Redington et al., 2013; Cheng et al.,

2017). However, long-term chronic pain causes the

myocardium to be more vulnerable to I/R injury (Li et al.,

2018; Yang et al., 2018; Tesarz et al., 2019). The purpose of

this review is to provide a better comprehension of the

association between pain and myocardial I/R injury. We first

introduce the existing pain models and the limitations of animal

models, and then summarize that acute pain may be a protective

way of myocardial ischemia-reperfusion injury, while chronic

pain may aggravate myocardial ischemia-reperfusion injury.

Finally, we also illustrate the limitations of clinical research

and future research directions: changes of autonomic nervous

system in pain related myocardial ischemia-reperfusion injury.

2 Animal models for pain-related
cardiovascular disease studies

Pain is defined as a disease that seriously affects human

health. At present, few studies on pain treatment have been

translated into clinical treatment. We all know the lack of

translational progress in the field of pain (Mogil, 2009;

Abboud et al., 2021). The understanding of pain is still

evolving. The construction of pain models in animals makes it

more convenient for pain-related research. Table 1 summarizes

common animal pain models in studies, as well as the modeling

process and respective characteristics.

Pain models mainly include neuropathic pain, inflammatory

pain, and pathological painmodels (Mogil, 2009). At present, animal

models to study the effect of pain on myocardial ischemia-

reperfusion injury are only carried out in neuralgia models, such

as chronic compression of the dorsal root ganglion (CCD) and

spared nerve injury model (SNI). Cheng et al. (Cheng et al., 2017)

found that chronic neuropathic pain has a cardioprotective effect in

the SNI mouse pain model, which is induced by parasympathetic
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TABLE 1 A summary of the different pain models and their characteristics.

Study Species Model Protocol Main features

Neuropathic pain
(Bennett and Xie,
1988)

rat chronic constriction injury
(CCI) of the sciatic nerve

• anesthetize • post-operatively, the rats show hyperalgesia,
ectopic pain, and spontaneous pain

• expose the sciatic nerve • the pain lasts more than 2 months
• use 4–0 catgut to encircle the sciatic nerve and

make 4 mild binding rings
• suture surgical incision
• pain test

(DeLeo et al., 1994) rat sciatic nerve freezing
injury model

• anesthetize • autophagy and pain were abnormal after
surgery

• expose the sciatic nerve • abnormal pain lasts for about 3 weeks
• the cryoprobe performs a freeze-thaw-freeze

cycle on the sciatic nerve
• the damage is reversible

• behavioral observation

(Decosterd and
Woolf, 2000)

rat nerve injury model with
sciatic nerve branches
preserved

• anaesthetize • hyperalgesia to mechanical and thermal stimuli
is observed postoperatively

• expose the sciatic nerve and its three branches • pain lasts for more than 7 weeks
• the sural nerve is intact, and the common

peroneal nerve and the tibial nerve are ligated
with 5–0 filament

• behavioral test

(Ho Kim and Mo
Chung, 1992)

rat spinal nerve ligation (SNL) • anesthetize • mechanical pain persistes for 10 weeks after the
operation

• one side of the paravertebral muscle is excised at
the level of L4 ~ S1

• no autophagy

• excise the L6 transverse process, and separate the
spinal nerves from L4 to L6

• the operation procedure is fixed and the model
is relatively stable

• ligation the L5 and L6 spinal nerves with a
3–0 thread

(Hu and Xing, 1998) rat Chronic Compression of
the Dorsal root
ganglion, CCD

• anesthetize • hyperalgesia with mechanical and thermal
stimulation is observed postoperatively

• expose the L5 intervertebral foramen • no autophagy
• a steel rod with a length of 4 mm and a diameter

of 0.6 mm is inserted into the L5 foramen of rats
to achieve stable compression of the dorsal root
ganglion

• hyperalgesia lasts more than 6 weeks

• suture the muscle and skin • a model of direct compression of the dorsal root
ganglion, which is relatively stable

Inflammatory pain
(Chacur et al., 2001) rat sciatic inflammatory

neuritis (SIN)
• anaesthetize • Mechanical hyperalgesia developed after the

operation, but no hyperalgesia to heat• the sciatic nerve is exposed and zymosan is
injected around the sciatic nerve

(Hunskaar and
Hole, 1987)

albino mice formalin induced pain
model

• 1% formalin is injected subcutaneously into the
dorsal part of the mice hind foot

• the pain behavioral response is the time it takes
the mouse to lick the injected paw

• in the early stage (0–5 min) of formalin
injection, pain receptors are directly affected,
while prostaglandin induced inflammatory pain
in the late stage (20–30 min)

(Malcangio and
Bowery, 1996)

rat freund’s adjuvant induced
pain model

• 0.5 ml Complete Freund’s adjuvant (CFA) is
injected into the articular cavity of the rat hind
limbs

• 4 hours after CFA injection, the rats developed
local inflammatory response and hyperalgesia to
heat stimulation

• pain behavior can last for 4 weeks

Pathological pain
(Courteix et al.,
1993)

rat diabetes-induced pain
model

• intraperitoneal injection streptozotocin • postoperatively, the rats develope chronic
hyperalgesia of heat and mechanical• pain test

Schwei et al. (1999)
(Schwei et al., 1999)

C3H/HeJ
mouse

pain model of femoral
bone cancer

• anesthetizeIncise left knee joint • mice injected with cancer cells show bone
destruction

• tumor cells NCTC2472 are injected into the
femoral cavity

• the animals show harmful behavioral reactions,
which are positively correlated with the degree
of bone destruction

• mechanically stimulate experimental animals at
21 days after injection

• the mouse model is able to mimic the pain
caused by bone cancer in humans
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pathway dependent on the paraventricular thalamus (PVA). Li et al.

(Li et al., 2018) established a CCD pain model and found that

chronic pain induced aldehyde overload, which in turn caused

persistent hyperalgesia and increased MI/R injury. In the study

of Yang et al. (Yang et al., 2018), chronic pain was induced by the

nerve injurymodel (SNI). The study found thatMelatonin improves

TNF- α and inhibits RIP3-MLKL/CaMKII signal-induced necrosis

to improve myocardial ischemia vulnerability caused by chronic

pain. In the future, the research on pain and cardiovascular disease

can be verified in more comprehensive pain models, such as

inflammatory pain and pathological pain models.

However, there are still many problems related to the clinical

translatability of the animal models. First of all, the behavioral

performance of animal models and clinical patient symptoms are

significantly different. Translating findings from animal models

into clinical studies remains a major challenge (Burma et al.,

2017). Secondly, because the experimenters evaluated pain

indirectly, the results were highly subjective and varied greatly

(Bouali-Benazzouz et al., 2021). The current pain model is

inconvenient to observe and evaluate spontaneous pain and

persistent pain, but clinical patients are also troubled by

persistent pain and spontaneous pain in addition to induced

pain. In addition, Clinical pain patients are often accompanied by

anxiety, depression, insomnia, and other problems (Zhuo, 2016).

When studying the influence of pain on the heart, the influence of

anxiety, depression, and insomnia accompanied by pain on the

heart function has not been paid attention to. However, there are

various clinical causes of pain. For example, some primary

diseases or chemotherapy drugs can also cause nerve damage.

Therefore, future studies should consider the pathological status

of clinical pain and carry out relevant studies in more pain

models and consider the effects of accompanying anxiety on

cardiac function. In the current studies, they did not explore

whether the effect of pain on cardiovascular disease was caused

by pain-induced anxiety, so we expect future studies to rule out

the effect of anxiety on cardiac function.

3 Pain is a protective approach to
cardiac ischemia-reperfusion injury
that is different from ischemic
preconditioning and ischemic
postconditioning (Figure 1)

3.1 Ischemia preconditioning and ischemia
postconditioning

It is well known that cardiomyocytes are terminally

differentiated cells and cannot regenerate once dead.

Therefore, timely restoration of coronary blood flow after

myocardial ischemia can maximize the protective effects. At

present, the most effective strategy for myocardial ischemia is

surgical treatment to achieve coronary artery reperfusion.

However, reperfusion inevitably leads to myocardial injury,

that is ischemia-reperfusion (I/R) injury (Braunwald and

Kloner, 1985; Sharma et al., 2012; Hausenloy and Yellon,

2013; Hausenloy et al., 2016). I/R injury mainly induces

endothelial dysfunction, free radical production, nitric oxide

consumption, and cytokine release, which leads to myocardial

cell death and infarction, cell apoptosis, and autophagy, all

ultimately impair cardiac function (Otani, 2008). It is urgent

to seek effective therapies to improve I/R injury (Reed et al.,

2017).

At present, the endogenous protective modes of myocardial

I/R injury are mainly IPC and IPostC (Figure 1). IPC refers to

several episodes of transient coronary artery occlusion and

reperfusion before ischemia, which can reduce myocardial

injury caused by sustained coronary artery occlusion and

reperfusion. This protective effect can slow down the process

of cell death, but it cannot prevent the end point of cell death

(Rezkalla and Kloner, 2004; Heusch, 2015; Basalay et al., 2020).

IPC includes direct and remote IPC (RIPC). Direct IPC

comprises a few short ischemic-reperfusion sessions before the

heart is subjected to sustained ischemia-reperfusion. RIPC is the

temporary ischemic treatment of other organs than those that are

about to be damaged to tolerate subsequent ischemia (Basalay

et al., 2018). These two strategies can protect myocardial cells

from sustained I/R injury. Patel et al. found that 15 min or

3 cycles of 5 min mesenteric artery occlusion induces

endogenous opioid transport to the myocardium, providing a

cardioprotective effect against acute cardiac ischemic events

(Patel et al., 2002). Using an acute myocardial infarction (MI)

model in the rabbit, Pell’s group found that renal IPC had a

significant protective effect against persistent myocardial

ischemia. Mechanically, activation of adenosine receptors and

KATP channels is involved in the myocardial protection process

(Pell et al., 1998; Liem et al., 2002). Redington’s team was the first

to clinically demonstrate the protective effect of remote IPC. The

study included 37 children who were about to undergo surgery to

repair congenital heart defects. A total of 17 children received a

blood pressure cuff for four 5 min cycles of lower limb

noninvasive I/R to induce IPC before surgery. The level of

troponin I in the experimental group was significantly lower

than that in the control group, suggesting that IPC is

cardioprotective (Cheung et al., 2006).

Different from IPC, IPostC is a process of several short I/R in

the early stage of continuous coronary artery reperfusion, which

can reduce the area of MI caused by myocardial I/R injury

(Rezkalla and Kloner, 2004; Staat et al., 2005; Mewton et al.,

2013; Barsukevich et al., 2015; Hausenloy et al., 2017; Heusch,

2020). Previous studies demonstrate that IPostC reduces the

production of reactive oxygen species and reduces oxidation-

mediated myocardial injury (Tullio et al., 2013; Hao et al., 2017).

IPostC has been demonstrated to induce similar myocardial

protective effects as IPC (Heusch, 2015). Most importantly,

IPostC can be applied to clinical surgical revascularization
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(Zhao et al., 2003). Staat et al. demonstrated the beneficial effect

of IPostC during coronary angioplasty in acute MI. In this study,

30 patients who underwent coronary angioplasty for acute MI

were included. All patients received coronary artery stent

reperfusion. Patients in the IPostC group underwent

angioplasty balloon therapy of 1-minute dilation and 1-minute

contraction within 1 min reperfusion. The release of creatine

kinase was significantly reduced in the IPostC group, indicating

that the infarct size decreased in the postconditioning group

(Staat et al., 2005). Moreover, clinical trials and meta-analyses of

Touboul showed that IPost significantly reduced infarct size in

patients with acute ST-segment elevation myocardial infarction

(STEMI) (Touboul et al., 2015).

3.2 Remote preconditioning of trauma
alleviates myocardial I/R injury

At present, in addition to IPostC, RPCT and distal pain

stimulation have also been shown to alleviate myocardial I/R

injury (Figure 1). The myocardial protective effects of nociceptive

stimulation are described in detail later (Przyklenk et al., 1993;

Takaoka et al., 1999; Tapuria et al., 2008; Robbins et al., 2013;

Heusch, 2015).

A few studies showed that distal nonischemic stimulation

possessed protective effects on the progression of myocardial

ischemia. Gross et al. (Gross et al., 2011) performed abdominal

incision preconditioning in dogs to investigate the protective

effect of RPCT on persistent myocardial ischemia. The left

anterior descending coronary artery (LAD) was occluded

15 min later for 60 min and re-perfused for 3 h. There was a

significant reduction of infarct size in MI that received the

surgical incision. Further studies found that HOE140, a

bradykinin receptor antagonist, eliminated the beneficial

effects of RPCT on myocardial I/R injury (Gross et al., 2011).

In 2012, another study by Redington et al. found that direct

femoral nerve stimulation and topical capsaicin in the rabbit

resulted in the release of cardioprotective substances into the

bloodstream to induce remote cardiac protection and reduce the

infarct size (Redington et al., 2012).

FIGURE 1
The signaling pathways involved in myocardial IPC and RPCT. This diagram depicts the protective effect of ischemic and non-ischemic
preconditioning on acute myocardial ischemia. Transient I/R prior to ischemia attenuated subsequent sustained I/R injury. Remote IPC refers to the
ischemic preconditioning of other organs and tissues, such as kidney, mesenteric artery and limbs that besides the heart, that can also protect the
myocardium from I/R injury. IPC is mainly involved in myocardial protection through the Reperfusion Injury Salvage Kinase (RISK) pathway,
PI3K-Akt and Mek1/2-Erk1/2 pathways, and Survivor Activator Factor Enhancement (SAFE), TNF and JAK-STAT signaling pathways. Distal
nonischemic stimuli, including electrical stimulation, skin incisions, and acute pain, improve myocardial I/R injury by stimulating peripheral nerves to
release cardioprotective factors into the bloodstream of the myocardium. (RISK, Reperfusion Injury Salvage Kinase; SAFE, Survivor Activator Factor
Enhancement; mPTP, mitochondrial permeability transition pore).
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It has also been demonstrated that electrical stimulation can

be used as a method of RIPC to alleviate cardiac I/R injury.

Birnbaum’s study found that electrical stimulation of the

gastrocnemius muscle combined with the reduced flow of the

femoral artery significantly reduced myocardial I/R injury in

rabbits (Birnbaum et al., 1997). Infarct size was reduced by 65%

for both preconditioning combinations compared with sham.

However, preconditioning using electrical stimulation of skeletal

muscle alone or reduction of femoral artery flow alone does not

provide myocardial protection (Birnbaum et al., 1997). To

investigate whether electroacupuncture can induce cardiac

protection through body fluids, Redington and his colleagues

collected plasma after stimulating the Neiguan Point with

electroacupuncture in rabbits. The plasma was infused into

the heart of another untreated rabbit on the Langendorff

perfusion system. After that, the heart was subjected to

ischemia for 30 min and reperfusion for 2 h. The infarct size

was significantly reduced and myocardial function was

improved. It is concluded that electroacupuncture stimulation

promoted the release of dialysable cardioprotective factors into

the blood to reduce the infarct size caused by myocardial I/R

injury, and improve the function of the heart like other remote

conditional stimuli (Redington et al., 2013). Merlocco et al.

further showed that electrical stimulation of peripheral nerves

in rabbits and healthy human volunteers resulted in the release of

cardioprotective factors into blood. Similarly, perfusion of

isolated hearts improved cardiac function after ischemia

(Merlocco et al., 2014).

3.3 Acute pain reverses myocardial injury

Non-ischemic surgical stimuli, such as pain from abdominal

incisions, activates neurogenic signaling, which ultimately

activates cardiac sympathetic nerves to induce cardioprotective

subtype PKCε and inhibits the expression of PKCδ, thereby
reducing myocardial ischemia injury (Redington et al., 2012;

Robbins et al., 2013). As a sympathetic and parasympathetic

system blocker, hexamethonium impairs the protective effect of

RPCT on MI, while topical capsaicin inducing peripheral pain

exerts the protective effect of RPCT on MI by activating

C-sensory fibers in the skin.

This study was the first to demonstrate the protective effect of

distal nonischemic surgical stimulation against cardiac I/R injury

(Jones et al., 2009; Basalay et al., 2012). In conclusion, peripheral

nociceptor stimulation has great clinical potential in the

treatment of myocardial I/R injury.

To investigate the protective role of neuropathic pain in the

myocardium, Cheng et al. (Cheng et al., 2017) established the SNI

neuropathic pain mouse model. Then the Left anterior

descending coronary artery (LAD) was ligated to achieve

myocardial ischemia, and the infarct size in SNI mice was

reduced 24 h after reperfusion. Moreover, the expression of

creatine kinase muscle and brain isozymes (CKMB) in the

SNI group were significantly lower than those in the control

and sham group. These results indicated that the I/R injury in the

SNI group was less compared with sham groups. In addition, SNI

reduced myocardial I/R injury by activating the paraventricular

thalamus (PVA) dependent parasympathetic pathways. Further

studies showed that pain is not an essential factor for

cardioprotection, but PVA plays an irreplaceable role in

cardioprotection elicited by neuropathic pain (Cheng et al.,

2017). This study was the first to demonstrate that chronic

long-distance nonischemic stimulation can provide myocardial

protection against I/R injury.

Many clinical studies demonstrated that patients with

angina pectoris before acute MI have a better prognosis

(Muller et al., 1990; Nakagawa et al., 1995; Ottani et al.,

1995; Heusch, 2001; Mladenovic et al., 2008). Retrospective

analyses of thrombolytic patients with angina pectoris before

MI have shown that patients with angina had smaller infarcts

and better outcomes (Heusch, 2001). Interestingly, it has been

shown that angina did not affect the area at risk for acute MI,

but reduced and slowed down the process of cell death

(Yamagishi et al., 2000). The possible mechanism by which

angina pectoris improved the prognosis of patients with MI

could be the development of collateral vessels caused by

chronic angina pectoris (Pérez-Castellano et al., 1998;

Fujita et al., 1999; Yamagishi et al., 2000; Rezkalla and

Kloner, 2004). However, angina pectoris within 24 h before

infarction acted as a preconditioning role to improve cardiac

function (Rezkalla and Kloner, 2004). A clinical study found

that angina pectoris before infarction in 78 patients with acute

MI improved contractile function. Angina pectoris had

protective effects on the myocardium of patients with MI

before reperfusion (Iglesias-Garriz et al., 2005).

4 Chronic pain aggravates myocardial
I/R injury

A number of previous clinical and epidemiological studies

reported a higher cardiovascular mortality rate in patients

with chronic pain, and pain is a risk factor for cardiovascular

disease (McBeth et al., 2009; Torrance et al., 2010; Goodson

et al., 2013; Fayaz et al., 2016; Tesarz et al., 2019). Jonas Tesarz

et al. analyzed data from the Longitudinal Multi-Generation

Framingham Heart Study cohort and found an approximately

16% increase in all-cause mortality among widespread pain

patients, mainly due to cardiovascular events. Moreover, the

number of pain areas was also associated with cardiovascular

mortality (Tesarz et al., 2019). In 2016, the results of Fayaz’s

meta-analysis showed a dose-response association between

chronic pain and cardiovascular mortality (Fayaz et al., 2016).

However, the effects of chronic pain on cardiovascular disease

have been little studied.
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To verify the effect of chronic neuralgia on myocardial I/R

injury, our group established the mouse chronic compression of

the dorsal root ganglion (CCD) model to simulate chronic pain

stimulation (Li et al., 2018). In the CCD model, it was confirmed

that chronic pain amplifies myocardial I/R injury. The specific

mechanism is that chronic pain leads to long-term malignant

stress in the body, which inactivated the carbonyl of SIRT1, and

eliminated the LKB1-AMPK interaction to promote myocardial

ischemia intolerance (Figure 2). In further studies, it was found

that myocardium-specific ALDH2 overexpression alleviated

chronic pain-induced aldehyde accumulation, thereby

alleviating myocardial I/R injury (Li et al., 2018). Later, Yang

et al. (Yang et al., 2018) used spared SNI to induce chronic

neuropathic pain, and further elaborated that chronic

neuropathic pain induced myocardial necrotizing apoptosis by

inhibiting the RIP3-MLKL/CaMKII signaling pathway, leading

to myocardial ischemia vulnerability. In addition, chronic pain

enhanced RIP3-dependent MLKL and CaMKII phosphorylation

during myocardial I/R injury. RIP3 knockout inhibited

I/R-induced ROS production and myocardial necrosis in SNI

mice. Therefore, RIP3-inducedmyocardial necrosis is a necessary

condition for chronic pain resulting in myocardial ischemia

vulnerability. Surprisingly, a low dose of melatonin

significantly reduced myocardial necrosis in mice with SNI

suffering I/R injury, while a high dose of melatonin acted as

an analgesic (Yang et al., 2018). These results suggested that

chronic nerve pain aggravated myocardial ischemia-reperfusion

injury by inhibiting the LKB1-AMPK interaction and the

RIP3-MLKL/CaMKII signaling pathway (Figure 1). It provides

a possible comorbidities mechanism for exploring chronic pain

and myocardial injury, and provides a potential treatment option

for intervening myocardial ischemia vulnerability caused by

chronic neuralgia pain.

5 The effect of pain on myocardial
ischemia-reperfusion is related to
changes in the cardiac autonomic
nervous system

Innervation of the heart plays an important role in regulating

cardiac function (Figure 3). It is a complex feedback system that

controls the electrical and mechanical functions of the heart.

Cardiac innervation consists of intrinsic cardiac ganglion,

extracardiac thoracic ganglion, spinal cord, and central

nervous region (Ardell and Armour, 2016; Shivkumar and

Ardell, 2016). Both intrinsic cardiac ganglion and extracardiac

thoracic ganglion include afferent and local circuit neurons and

sympathetic post-ganglion efferent nerves, while the intracardial

ganglion plexus also contains parasympathetic post-ganglion

FIGURE 2
The role of pain in myocardial injury. Acute pain triggered by capsaicin and skin incisions activate C-sensory fibers in the skin, resulting in
peripheral pain that activates cardiac sympathetic nerves, further activating PKCε and inhibiting PKCδ to protect themyocardium from I/R injury. Pain
activates PVA neurons, which activate cardiac parasympathetic nerves to release Ach(acetylcholine). PKCε is then activated to protect the heart. On
the other hand, Chronic pain promotes myocardial ischemia tolerance through SIRT1 carbonyl inactivation and inhibition of LKB1-AMPK
interaction. TNF-α overproduction and RIP1-RIP3 interaction were enhanced in chronic pain state, inducing necrosis and further increasing
myocardial I/R injury. (NE, norepinephrine; BK, bradykinin; SNI, spared nerve injury model; ERK, the extracellular signal-regulated kinase; Ach,
acetylcholine; PVA, the paraventricular thalamus).
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efferent nerves (Bencsik et al., 2020). The cardiac afferent nerve is

connected with the sympathetic nerve and parasympathetic

nerve, and can be separated from the autonomic nervous

system (Ardell and Armour, 2016; Bencsik et al., 2020).

Normally, the autonomic nervous system is in a state of

dynamic balance to maintain healthy cardiac function. During

myocardial ischemia and reperfusion, the autonomic nervous

system is unbalanced, often manifested as excessive sympathetic

stimulation and parasympathetic activity block (Rovere et al.,

1998; Thayer and Lane, 2007; Chen et al., 2020). Hypovagal nerve

function increases mortality during myocardial ischemia-

reperfusion. Myocardial ischemia-reperfusion injury can

induce the release of reactive oxygen species, inflammatory

factors and bradykinin, which can stimulate the sensory

endings of the vagus and sympathetic afferent fibers

(Hausenloy, 2003; Thayer and Lane, 2007; Heusch, 2015;

Chen et al., 2020). As a non-selective cation channel, TRPA1

(The transient receptor potential ankyrin subtype 1 protein)

allows Ca2+ and Na+ to pass through. TRPA1 plays a role in a

range of pathophysiologic processes such as pain, inflammation,

and tissue damage and repair (Zygmunt and Hogestatt, 2014;

Wang et al., 2019). Activation of TRPA1 on primary sensory

neurons generates both afferent and efferent signals. Na+ and

Ca2+ pass through the TRPA1 channel to trigger action potential

discharges in cell membranes and neurotransmitter releases in

peripheral and central neurites (Zygmunt and Hogestatt, 2014).

The central nervous system integrates information from the

incoming heart, subsequently increasing cardiac sympathetic

activity and suppressing cardiac vagal efferent activity (Chen

et al., 2020). Thus, strengthening parasympathetic activity and

blocking the sympathetic nerve may be a good strategy to enable

the autonomic nervous system to play a beneficial role in

myocardial ischemia-reperfusion.

Electrical stimulation of the vagus nerve is known to relieve

chronic pain, for example, migraine and cluster headaches

(electronic devices to stimulate the vagus are currently used in

clinics) (Zeng et al., 2015; López-Álvarez et al., 2019). In addition,

the vagus nerve stimulation is known to alleviate myocardial I/R

injury (Heusch, 2017). Furthermore, parasympathetic activation

is known to mediate the infarct-limiting effect of remote

ischaemic preconditioning (Mastitskaya et al., 2012).

Abdominal incisions induce cardiac protection against

myocardial infarction by stimulating peripheral nociception.

Nociception triggers neurogenic signaling through the spinal

nerve, which activates the sympathetic nervous system in the

heart to protect the heart (Jones et al., 2009). Cheng et al. found

that chronic neuropathic pain mediated myocardial protection.

Nerve injury activates the afferent nociceptive signal pathway

through the spinal cord and activates PVA neurons in the brain.

PVA neurons then participate in cardiac protection in a vagus

dependent manner (Cheng et al., 2017; Cheng and Chen, 2018).

Whether the cardiac autonomic nervous system changes in the

state of pain, and the consequent changes of the autonomic

nervous system’s impact on cardiac function are the issues we pay

attention to. Previous studies have confirmed that within 2 weeks

after CCI, sympathetic nerve increased cardiovascular function,

and then parasympathetic tension dominated (Cheng and Chen,

2018). However, the changes of autonomic nervous system under

longer chronic pain need to be further verified. Previous studies

by our research group found that chronic pain can aggravate

FIGURE 3
Cardiac neuroregulation associated with myocardial I/R injury. The occurrence of myocardial I/R injury often accompanied by intracellular
calcium overload, reactive oxygen species production, inflammatory cytokines and bradykinin, as well as the imbalance of cardiac autonomic nerves,
characterized by excessive sympathetic activation and decreased vagal activity, thus impairs cardiac function. (TRPA1, transient receptor potential
ankyrin 1; TRPV1, transient receptor potential vanilloid-1; β1R, β1adrenoceptor; M2R, M2 receptor).
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myocardial ischemia-reperfusion injury (Li et al., 2018).

However, how pain affects cardiac function is still unknown.

Therefore, we speculated that cardiac autonomic nervous system

imbalance in chronic pain can lead to impaired cardiac function,

and the specific mechanism needs further exploration.

6 The challenges in pain-related
myocardial ischemia-reperfusion
injury

Studies have shown that chronic pain (including chronic

localized pain and chronic widespread pain) is a significant risk

factor for cardiovascular disease (Winsvold et al., 2015b;

Rönnegård et al., 2022). Our research group previously found

that chronic pain can aggravate myocardial ischemia-reperfusion

injury, but the comorbid mechanism of chronic pain and

cardiovascular disease is still being explored (Li et al., 2018;

Yang et al., 2018). However, much evidence have proved that

acute pain before myocardial ischemia such as angina pectoris,

abdominal incision pain, and other non-ischemic stimuli can

alleviate myocardial ischemia-reperfusion injury (Jones et al.,

2009; Redington et al., 2012). Acute pain and chronic pain play

opposite roles in myocardial ischemia-reperfusion injury. At

present, we need to solve the following problems: first, how to

distinguish and define acute and chronic pain in animal models,

such as the specific modeling time and pain scoring criteria. In

addition, how to balance the role of acute and chronic pain in

myocardial ischemia-reperfusion injury, acute pain plays a

dominant protective role or chronic pain plays a more

prominent malignant role on the heart (Table 2).

Clinically, the etiology and mechanism of pain are

complicated. We need to study the comorbidities of pain and

cardiovascular disease through animal models and develop

analgesic drugs without cardiovascular toxicity. However, the

existing pain models are not enough to represent the complex

pathologic state of pain (Burma et al., 2017). Some studies have

shown that translating the results of animal models into clinical

practice has been difficult. Therefore, it is important to construct

multiple animal models that correspond to different clinical

manifestations of pain. Establishing different animal pain

models can explore the relationship between pain and

cardiovascular disease from different perspectives.

In addition, Other studies have shown pain-related

cardiovascular disease have been carried out in male pain

animal models. In epidemiological surveys, women have a

higher prevalence of chronic pain (Mogil, 2012). Therefore,

the inclusion of female animals in pain studies needs to be

considered carefully. The relationship between pain and age is

controversial. Studies have shown that pain is more prominent in

elderly patients (Helme and Gibson, 2001; Tsang et al., 2008;

Macfarlane, 2016; Geltmeier and Fuchs, 2021). In preclinical

trials, the aged rats showed more obvious hyperalgesia to knee

osteoarthritis (OA) pain. There was no significant correlation

between acute pain and age, but there was age and gender

difference in chronic pain (Ro et al., 2020). In contrast,

studies have shown that pain sensitivity decreases with age

(Harkins et al., 1986; Riley et al., 2014; Tinnirello et al., 2021).

Due to the lack of clinical data, the influence of age on pain needs

to be further explored. However, we should fully consider the

relationship between pain and cardiac function at different ages

in the study of pain-related cardiovascular disease. Another

important question is: how does pain behave in cell

experiments? It is also necessary to develop a universal

cellular pain model to study the relationship between pain

and myocardial ischemia-reperfusion injury.

7 Discussion

At present, substantial clinical investigation reveals that

chronic pain is associated with cardiovascular disease, but the

underlying mechanism remains unclear. Chronic pain leads to an

unhealthy lifestyle that increases risk factors associated with

cardiovascular disease. The all-cause mortality of patients with

chronic pain is increased due to cardiovascular events. While

other studies showed that the development of collateral vessels

caused by chronic angina pectoris improved the prognosis of

patients with MI. The relationship between pain and

cardiovascular disease deserves attention.

The endogenous protective measures of myocardial

ischemia-reperfusion injury are ischemic preconditioning and

TABLE 2 Opportunities and challenges of pain-related myocardial ischemia-reperfusion injury.

Opportunities Challenges

➢Diversity of pain models • Pathological complexity of clinical pain and limitations of animal models

➢Acute pain reduces myocardial ischemia-reperfusion injury • The contradiction between the sexual dimorphism of pain and the current research
focusing on male animal models

➢Chronic pain aggravates myocardial ischemia-reperfusion injury • The difference of pain in different ages and the lack of research on aging individuals

➢Changes of myocardial function caused by imbalance of cardiac autonomic
innervation in pain state

• How to balance the effects of acute pain and chronic pain on myocardial ischemia-
reperfusion injury?

• Lack of pain model in cell experiment
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ischemic post-conditioning. Cheng et al. (Cheng et al., 2017)

found that acute pain can alleviate myocardial ischemia-

reperfusion injury in a different way from ischemic

preconditioning and post-conditioning. Pain caused by

abdominal incisions activates neurogenic signals that

ultimately activate the cardiac sympathetic nerve to reduce

myocardial ischemia-reperfusion injury. In addition,

myocardial I/R injury is mitigated by activation of

paraventricular thalamus (PVA) dependent parasympathetic

pathways. In conclusion, the autonomic nervous system plays

an irreplaceable role in pain-mediated myocardial protection.

The different roles of pain in myocardial I/R injury have been

studied. Cheng et al. (Cheng et al., 2017) found that myocardial

injury was reduced after 5 days of pain, and pain exerted

protective effects on injury heart. However, our previous

studies found that chronic rational neuralgia aggravated

myocardial I/R injury, further impaired cardiac function. A

possible explanation is that the chronic pain model we studied

was 3 weeks after the pain, whereas Cheng et al. studied changes

in heart function after 5 days of pain. The two studies defined

chronic pain differently. Different duration and severity of pain

may have different pathophysiological effects on cardiac

function. The possible explanation is that activation of the

PVA prokaryon-dependent parasympathetic pathway during

the early stages of pain reduce myocardial I/R injury, whereas

prolonged persistent pain has opposite effects. After prolonged in

vivo malignant stress, the protective signaling pathways in the

myocardium were inhibited and the myocardial I/R injury was

aggravated, as the consequence, myocardium further damaged.

However, the mechanism of chronic pain leading to myocardial

I/R vulnerability remains to be further investigated.

Since the autonomic nervous systemmediates pain to protect

myocardial ischemia-reperfusion injury, whether the myocardial

ischemia vulnerability caused by chronic pain is related to the

autonomic nervous system imbalance? Whether pain can affect

cardiac function by upsetting the balance of the heart’s

autonomic nervous system (sympathetic hyperactivity or

reduced vagal nerve activity) is a major question for future

research. We speculate that chronic pain leads to cardiac

sympathetic overactivation and thus affects cardiac function.

The specific mechanism is still being explored. Furthermore,

the construction of different pain models closer to pathological

state would be particularly important for the further study of

pain-related CVD.
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