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Diagnostic tests are approaches used in clinical practice to identify with high accuracy the disease of a particular patient and thus
to provide early and proper treatment. Reporting high-quality results of diagnostic tests, for both basic and advanced methods, is
solely the responsibility of the authors. Despite the existence of recommendation and standards regarding the content or format of
statistical aspects, the quality of what and how the statistic is reported when a diagnostic test is assessed varied from excellent to
very poor. .is article briefly reviews the steps in the evaluation of a diagnostic test from the anatomy, to the role in clinical
practice, and to the statistical methods used to show their performances. .e statistical approaches are linked with the phase,
clinical question, and objective and are accompanied by examples. More details are provided for phase I and II studies while the
statistical treatment of phase III and IV is just briefly presented. Several free online resources useful in the calculation of some
statistics are also given.

1. Introduction

An accurate and timely diagnostic with the smallest prob-
ability of misdiagnosis, missed diagnosis, or delayed di-
agnosis is crucial in the management of any disease [1, 2].
.e diagnostic is an evolving process since both disease (the
likelihood and the severity of the disease) and diagnostic
approaches evolve [3]. In clinical practice, it is essential to
correctly identify the diagnostic test that is useful to a specific
patient with a specific condition [4–6]. .e over- or
underdiagnostic closely reflects on unnecessary or no
treatment and harms both the subjects and the health-care
systems [3].

Statistical methods used to assess a sign or a symptom in
medicine depend on the phase of the study and are directly
related to the research question and the design of the ex-
periment (Table 1) [7].

A significant effort was made to develop the standards in
reporting clinical studies, both for primary (e.g., case-
control studies, cohort studies, and clinical trials) and

secondary (e.g., systematic review and meta-analysis) re-
search. .e effort led to the publication of four hundred
twelve guidelines available on the EQUATOR Network on
April 20, 2019 [8]. Each guideline is accompanied by a short
checklist describing the information needed to be present in
each section and also include some requirements on the
presentation of statistical results (information about what,
e.g., mean (SD) where SD is the standard deviation, and how
to report, e.g., the number of decimals). .ese guidelines are
also used as support in the critical evaluation of an article in
evidence-based clinical practice. However, insufficient at-
tention has been granted to the minimum set of items or
methods and their quality in reporting the results. Different
designs of experiments received more attention, and several
statistical guidelines, especially for clinical trials, were de-
veloped to standardize the content of the statistical analysis
plan [9], for phase III clinical trials in myeloid leukemia [10],
pharmaceutical industry-sponsored clinical trials [11],
subgroup analysis [12], or graphics and statistics for car-
diology [13]. .e SAMPL Guidelines provide general
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principles for reporting statistical methods and results [14].
SAMPL recommends to provide numbers with the appro-
priate degree of precision, the sample size, numerator and
denominator for percentages, and mean (SD) (where
SD� standard deviation) for data approximately normally
distributed; otherwise medians and interpercentile ranges,
verification of the assumption of statistical tests, name of the
test and the tailed (one- or two-tailed), significance level (α),
P values even statistically significant or not, adjustment(s) (if
any) for multivariate analysis, statistical package used in the
analysis, missing data, regression equation with regression
coefficients for each explanatory variable, associated confi-
dence intervals and P values, and models’ goodness of fit
(coefficient of determination) [14]. In regard to diagnostic
tests, standards are available for reporting accuracy
(QUADAS [15], QUADAS-2 [16], STARD [17, 18], and
STARD 2015 [19]), diagnostic predictive models (TRIPOD
[20]), systematic reviews and meta-analysis (AMSTAR [21]
and AMSTAR 2 [22]), and recommendations and guidelines
(AGREE [23], AGREE II [24], and RIGHT [25]). .e re-
quirements highlight what and how to report (by examples),
with an emphasis on the design of experiment which is
mandatory to assure the validity and reliability of the reported
results. Several studies have been conducted to evaluate if the
available standards in reporting results are followed. .e
number of articles that adequately report the accuracy is
reported from low [26–28] to satisfactory [29], but not ex-
cellent, still leaving much room for improvements [30–32].

.e diagnostic tests are frequently reported in the sci-
entific literature, and the clinicians must know how a good
report looks like to apply just the higher-quality information
collected from the scientific literature to decision related to a
particular patient. .is review aimed to present the most
frequent statistical methods used in the evaluation of a
diagnostic test by linking the statistical treatment of data
with the phase of the evaluation and clinical questions.

2. Anatomy of a Diagnostic Test

A diagnostic test could be used in clinical settings for
confirmation/exclusion, triage, monitoring, prognosis, or
screening (Table 2) [19, 38]. Table 2 presents the role of a
diagnostic test, its aim, and a real-life example.

Different statistical methods are used to support the
results of a diagnostic test according to the question, phase,
and study design. .e statistical analysis depends on the test
outcome type. Table 3 presents the most common types of
diagnostic test outcome and provides some examples.

.e result of an excellent diagnostic test must be accurate
(the measured value is as closest as possible by the true value)
and precise (repeatability and reproducibility of the mea-
surement) [65]. An accurate and precise measurement is the
primary characteristic of a valid diagnostic test.

.e reference range or reference interval and ranges of
normal values determined in healthy persons are also es-
sential to classify a measurement as a positive or negative
result and generally refer to continuous measurements.
Under the assumption of a normal distribution, the refer-
ence value of a diagnostic measurement had a lower ref-
erence limit/lower limit of normal (LRL) and an upper
reference limit/upper limit of normal (URL) [66–71]. Fre-
quently, the reference interval takes the central 95% of a
reference population, but exceptions from this rule are
observed (e.g., cTn-cardiac troponins [72] and glucose levels
[73] with <5% deviation from reference intervals) [74, 75].
.e reference ranges could be different among laboratories
[76, 77], genders and/or ages [78], populations [79] (with
variations inclusive within the same population [80, 81]),
and to physiological conditions (e.g., pregnancy [82], time of
sample collection, or posture). Within-subject biological
variation is smaller than the between-subject variation, so
reference change values could better reflect the changes in
measurements for an individual as compared to reference

Table 1: Anatomy on phases of a diagnostic test.

Phase What? Design

I Determination of normal ranges (pharmacokinetics,
pharmacodynamics, and safe doses) Observational studies on healthy subjects

II Evaluation of diagnosis accuracy

Case-control studies on healthy subjects and subjects
with the known (by a gold standard test) and

suspected disease of interest
(i) Phase IIa: healthy subjects and subjects with the
known disease of interest, all diagnosed by a gold

standard method
(ii) Phase IIb: testing the relevance of the disease

severity (evaluate how a test works in ideal
conditions)

(iii) Phase IIc: assess the predictive values among
subjects with suspected disease

III Evaluation of clinical consequences (benefic and
harmful effects) of introducing a diagnostic test

Randomized control trials, randomization determine
whether a subject receive or not the diagnosis test

IV
Determination of the long-term consequences of
introducing a new diagnostic test into clinical

practice

Cohort studies of consecutive participants to evaluate
if the diagnostic accuracy of a test in practice

corresponds to predictions from systematic reviews
of phase III trials

Adapted from [7].
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ranges [83]. Furthermore, a call for establishing the clinical
decision limits (CDLs) with the involvement of laboratory
professionals had also been emphasized [84].

.e Z-score (standardized value, standardized score, or
Z-value, Z-score� (measurement− μ)/σ)) is a dimensionless
metric used to evaluate how many standard deviations (σ) a
measurement is far from the population mean (μ) [85]. A Z-
score of 3 refers to 3 standard deviations that would mean
that more than 99% of the population was covered by the Z-
score [86]. .e Z-score is properly used under the as-
sumption of normal distribution and when the parameters
of the population are known [87]. It has the advantage that
allows comparing different methods of measurements [87].
.e Z-scores are used on measurements on pediatric pop-
ulation [88, 89] or fetuses [90], but not exclusively (e.g., bone
density tests [91]).

3. Diagnostic Tests and Statistical Methods

.e usefulness of a diagnostic test is directly related with its
reproducibility (the result is the same when two different
medical staff apply the test), accuracy (the same result is
obtained if the diagnostic test is used more than once),
feasibility (the diagnosticmethod is accessible and affordable),
and the effect of the diagnostic test result on the clinical
decision [92]. Specific statistical methods are used to sustain
the utility of a diagnostic test, and several examples linking the
phase of a diagnostic test with clinical question, design, and
statistical analysis methods are provided in Table 4 [101].

3.1. Descriptive Metrics. A cohort cross-sectional study is
frequently used to establish the normal range of values.
Whenever data follow the normal distribution (normality

Table 2: Anatomy of the role of a diagnostic test.

Role What? Example (ref.)

Confirmation/exclusion Confirm (rule-in) or exclude (rule-out) the disease Brain natriuretic peptide: diagnostic for left
ventricular dysfunction [33]

Triage An initial test that could be rapidly applied and have a
small number of false-positive results

Renal Doppler resistive index: hemorrhagic shock in
polytrauma patients [34]

Monitoring A repeated test that allows assessing the efficacy of an
intervention

Glycohemoglobin (A1c Hb): overall glycemic control
of patients with diabetes [35]

Prognosis Assessment of an outcome or the disease progression PET/CT scan in the identification of distant
metastasis in cervical and endometrial cancer [36]

Screening Presence of the disease in apparently asymptomatic
persons

Cytology test: screening of cervical uterine cancer
[37]

Table 3: Diagnosis test result: type of data.

Data Example (ref.)

Qualitative dichotomial
Positive/negative or abnormal/normal

(i) Endovaginal ultrasound in the diagnosis of normal intrauterine pregnancy [39]
(ii) QuantiFERON-TB test for the determination of tubercular infection [40]

Qualitative ordinal

(i) Prostate bed after radiation therapy: definitely normal/probably normal/uncertain/
probably abnormal/definitely abnormal [41]

(ii) Scores: Apgar score (assessment of infants after delivery): 0 (no activity, pulse absent,
floppy grimace, skin blue or pale, and respiration is absent) to 10 (active baby, pulse over
100 bps, prompt response to stimulation, pink skin, and vigorous cry) [42]; Glasgow coma
score: eye opening (from 1� no eye opening to 4� spontaneously), verbal response (from

1� none to 5� patient oriented), and motor response (from 1� none to 6� obeys
commands) [43]; Alvarado score (the risk of appendicitis) evaluates 6 clinical items and 2
laboratory measurements and had an overall score from 0 (no appendicitis) to 10 (“very
probable” appendicitis) [44]; and sonoelastographic scoring systems in evaluation of

lymph nodes [45]
(iii) Scales: quality-of-life scales (SF-36 [46], EQ-5D [47, 48], VascuQoL [49, 50], and

CIVIQ [51]) and pain scale (e.g., 0 (no pain) to 10 (the worst pain)) [52]

Qualitative nominal

(i) Apolipoprotein E gene (ApoE) genotypes: E2/E2, E2/E3, E2/E4, E3/E3, E3/E4, and E4/
E4 [53, 54]

(ii) SNP (single-nucleotide polymorphism) of IL-6: at position −174 (rs1800795), −572
(rs1800796), −596 (rs1800797), and T15A (rs13306435) [55]

Quantitative discrete

(i) Number of bacteria in urine or other fluids [56]
(ii) Number of contaminated products with different bacteria [57]

(iii) Glasgow aneurysm score (� age in years + 17 for shock + 7 for myocardial disease + 10
for cerebrovascular disease + 14 for renal disease) [58]

Quantitative continuous

(i) Biomarkers: chitotriosidase [59], neopterin [60], urinary cotinine [61], and urinary
cadmium levels [61]

(ii) Measurements: resistivity index [62], ultrasound thickness [63], and interventricular
septal thickness [64]
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Table 4: Statistical methods in the assessment of the utility of a diagnostic test.

Phase Clinical question Objective(s) Statistics for results Example (ref.)

I Which are the normal ranges of
values of a diagnostic test?

Determination of the range of
values on healthy subjects

Centrality and dispersion
(descriptive) metrics:
(i) mean (SD), where

SD� standard deviation, if data
follow the normal distribution;

(ii) otherwise, median
(Q1−Q3), where Q1� 25th

percentile and Q3� 75th

percentiles

(i) Levels of hepcidin and
prohepcidin in healthy subjects

[93]
(ii) plasma pro-gastrin-

releasing peptide (ProGRP)
levels in healthy adults [94]

I Is the test reproducible?
Variability:

(i) Intra- and interobserver
(ii) Intra- and interlaboratory

(i) Agreement analysis: % (95%
confidence interval) and
agreement coefficients

(dichotomial data: Cohen,
ordinal data: weighted kappa,
numerical: Lin’s concordance
correlation coefficient, and
Bland and Altman diagram)

(ii) Variability analysis:
Coefficient of variation,
distribution of differences

(i) Intra- and interobserver
variability of uterine
measurements [95]

(ii) Interlaboratory variability
of cervical cytopathology [96]
(iii) Concordance between
tuberculin skin test and

QuantiFERON in children [40]

II
Is the test accurate? Which are
performances of the diagnostic

test?

Determine the accuracy as
compared to a gold standard

test

(i) Metrics (dichotomial
outcome): Se (sensitivity), Sp
(specificity), PPV (predictive
positive value), NPV (negative
predictive value), and DOR
(diagnostic odds ratio)

(ii) Clinical performances
(dichotomial outcome): PLR
(positive likelihood ratio) and
NLR (negative likelihood ratio)
(iii) .reshold identification
(numerical or ordinal with a
minimum of five classes
outcome): ROC (receiver

operating characteristic curve)
analysis

(i) Digital breast tomosynthesis
for benign and malignant
lesions in breasts [97]

(ii) Chitotriosidase as a marker
of inflammatory status in
critical limb ischemia [59]

(iii) Sonoelastographic scores
to discriminate between benign
and malignant cervical lymph

nodes [45]

III
Which are the costs, risk, and
acceptability of a diagnostic

test?

(i) Evaluation of beneficial and
harmful effects

(ii) Cost-effective analysis

Retrospective or prospective
studies:

(i) beneficial (e.g.,
improvement of clinical

outcome) or harmful effects
(e.g., morbidity and mortality)
by proportions, risk ratio, odds
ratio, hazard ratio, the number
needed to treat, and rates and

ratios of desirable or
undesirable outcomes

(ii) cost-effective analysis
(mean cost and quality-

adjusted life years (QALYs))

(i) .e computed tomography
in children, the associated
radiation exposure, and the

risk of cancer [98]
(ii) Healthcare benefit and
cost-effectiveness of a
screening strategy for
colorectal cancer [99]

IV
Which are the consequences of
introducing a new diagnostic
test into clinical practice?

(i) Does the test result affect the
clinical decision?

(i) Studies of pre- and posttest
clinical decision-making

(ii) %: abnormal, of discrepant
results, of tests leading to

change the clinical decisions
(iii) Costs: per abnormal result,

decision change

(i) Does the interferon-gamma
release assays (IGRAs) change
the clinical management of

patients with latent
tuberculosis infection (LTBI)?

[100]
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tests such as Shapiro–Wilk [102] or Kolmogorov–Smirnov
test [103, 104] provide valid results whenever the sample
sizes exceed 29), the mean and standard deviations are
reported [105], and the comparison between groups is tested
with parametric tests such as Student’s t-test (2 groups) or
ANOVA test (more than 2 groups). Median and quartiles
(Q1−Q3) are expected to be reported, and the comparison is
made with nonparametric tests if experimental data did not
follow the normal distribution or the sample size is less than
30 [105]. .e continuous data are reported with one or two
decimals (sufficient to assure the accuracy of the result),
while the P values are reported with four decimals even if the
significance threshold was or not reached [106].

.e norms and good practice are not always seen in the
scientific literature while the studies are frequently more
complex (e.g., investigation of changes in the values of
biomarkers with age or comparison of healthy subjects with
subjects with a specific disease). One example is given by
Koch and Singer [107], which aimed to determine the range
of normal values of the plasma B-type natriuretic peptide
(BNP) from infancy to adolescence. One hundred ninety-
five healthy subjects, infants, children, and adolescents were
evaluated. Even that the values of BNP varied considerably,
the results were improper reported as mean (standard de-
viation) on the investigated subgroups, but correctly com-
pared subgroups using nonparametric tests [107, 108].
Taheri et al. compared the serum levels of hepcidin (a low
molecular weight protein role in the iron metabolism) and
prohepcidin in hemodialysis patients (44 patients) and
healthy subjects (44 subjects) [93]. Taheri et al. reported the
values of hepcidin and prohepcidin as a mean and standard
deviation, suggesting the normal distribution of data, and
compared using nonparametric tests, inducing the absence of
normal distribution of experimental data [93]. Furthermore,
they correlated these two biomarkers while no reason exists
for this analysis since one is derived from the other [93].

Zhang et al. [94] determined the reference values for
plasma pro-gastrin-releasing peptide (ProGrP) levels in
healthy Han Chinese adults. .ey tested the distribution
of ProGrP, identified that is not normally distributed, and
correctly reported the medians, ranges, and 2.5th, 5th, 50th,
95th, and 97.5th percentiles on two subgroups by ages.
Spearman’s correlation coefficient was correctly used to
test the relation between ProGrP and age, but the symbol
of this correlation coefficient was r (symbol attributed to
Pearson’s correlation coefficient) instead of ρ. .e dif-
ferences in the ProGrP among groups were accurately
tested with the Mann–Whitney test (two groups) and the
Kruskal–Wallis test (more than two groups). .e authors
reported the age-dependent reference interval on this
specific population without significant differences be-
tween genders [94].

.e influence of the toner particles on seven biomarkers
(serum C-reactive protein (CRP), IgE, interleukin (IL-4, IL-
6, and IL-8), serum interferon-c (IFN-c), and urine 8-hy-
droxy-2′-deoxyguanosine (8OHdG)) was investigated by
Murase et al. [109]. .ey conducted a prospective cohort
study (toner exposed and unexposed) with a five-year
follow-up and measured annually the biomarkers. .e

reference values of the studied biomarkers were correctly
reported as median and 27th–75th percentiles as well as the
2.5th–97.5th percentiles (as recommended by the Clinical and
Laboratory Standards Institute [108]).

3.2. Variability Analysis. Two different approaches are used
whenever variability of quantitative data is tested in phase I
studies, both reflecting the repeated measurements (the
same or different device or examiner), namely, variation
analysis (coefficient of variation, CV) or the agreement
analysis (agreement coefficients).

3.2.1. Variation Analysis. Coefficient of variation (CV), also
known as relative standard deviation (RSD), is a stan-
dardized measure of dispersion used to express the precision
(intra-assay (the same sample assayed in duplicate)
CV< 10% is considered acceptable; interassay (comparison
of results across assay runs) CV< 15% is deemed to be
acceptable) of an assay [110–112]..e coefficient of variation
was introduced by Karl Pearson in 1896 [113] and could also
be used to test the reliability of a method (the smaller the CV
values, the higher the reliability is) [114], to compare
methods (the smallest CV belongs to the better method) or
variables expressed with different units [115]. .e CV is
defined as the ratio of the standard deviation to the mean
expressed as percentage [116] and is correctly calculated on
quantitative data measured on the ratio scale [117]. .e
coefficient of quartile variation/dispersion (CQV/CQD) was
introduced as a preferred measure of dispersion when data
did not follow the normal distribution [118] and was defined
based on the third and first quartile as (Q3 –Q1)/(Q3 +Q1)∗
100 [119]. In a survey analysis, the CQV is used as a measure
of convergence in experts’ opinions [120].

.e confidence interval associated with CV is expected
to be reported for providing the readers with sufficient
information for a correct interpretation of the reported
results, and several online implementations are available
(Table 5).

.e inference on CVs can be made using specific sta-
tistical tests according to the distribution of data. For normal
distributions, tests are available to compare two [121] or
more than two CVs (Feltz and Miller test [122] or Krish-
namoorthy and Lee test [123], the last one also implemented
in R [124]).

Reporting the CVs with associated 95% confidence in-
tervals allows a proper interpretation of its point estimator
value (CV). Schafer et al. [125] investigated laboratory re-
producibility of urine N-telopeptide (NTX) and serum
bone-specific alkaline phosphatase (BAP) measurements
with six labs over eight months and correctly reported the
CVs with associated 95% confidence intervals. Furthermore,
they also compared the CVs between two assays and between
labs and highlighted the need for improvements in the
analytical precision of both NTX and BAP biomarkers [125].
.ey concluded with the importance of the availability of
laboratory performance reports to clinicians and institutions
along with the need for proficiency testing and standardized
guidelines to improve market reproducibility [125].
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However, good practice in reporting CVs is not always
observed. Inter- and intra-assay CVs within laboratories
reported by Calvi et al. [126] on measurements of cortisol in
saliva are reported as point estimators, and neither confi-
dence intervals nor statistical test is provided. Reed et al.
[127] reported the variability of measurements (thirty-three
laboratories with fifteen repeatedmeasurements on each lab)
of human serum antibodies against Bordetella pertussis
antigens by ELISA method using just the CVs (no associated
95% confidence intervals) in relation with the expected
fraction of pairs of those measurements that differ by at least
a given factor (k).

3.2.2. Agreement Analysis. Percentage agreement (po), the
number of agreements divided into the number of cases, is
the easiest agreement coefficient that could be calculated but
may be misleading. Several agreement coefficients that ad-
just the proportional agreement by the agreement expected
by chance were introduced:

(i) Nominal or ordinal scale: Cohen’s kappa coefficient
(nominal scale, inclusive dichotomial such as
positive/negative test result), symbol κ [128], and its
derivatives (Fleiss’ generalized kappa [129], Conger’s
generalized kappa [130], and weighted kappa (or-
dinal scale test result)) [131]

(ii) Numerical scale: intraclass (Pearson’s correlation
coefficient (r)) [132] and interclass correlation co-
efficient (ICC) [133] (Lin’s concordance correlation
coefficient (ρc) [134, 135] and Bland and Altman
diagram (B&A plot [136, 137]))

.e Cohen’s kappa coefficient has three assumptions: (i)
the units are independent, (ii) the categories on the nominal
scale are independent and mutually exclusive, and (iii) the
readers/raters are independent [128]. Cohen’s kappa co-
efficient takes a value between −1 (perfect disagreement) and
1 (complete agreement). .e empirical rules used to in-
terpret the Cohen’s kappa coefficient [138] are as follows: no
agreement for κ≤ 0.20, minimal agreement for
0.21< κ≤ 0.39, week agreement for 0.40≤ κ≤ 0.59, moderate
agreement for 0.60≤ κ≤ 0.79, strong agreement for
0.80≤ κ≤ 0.90, and almost perfect agreement for κ> 0.90.
.e minimum acceptable interrater agreement for clinical
laboratory measurements is 0.80. .e 95% CI must ac-
company the value of κ for a proper interpretation, and the

empirical interpretation rules must apply to the lower bound
of the confidence interval.

.e significance of κ could also be calculated, but in
many cases, it is implemented to test if the value of κ is
significantly different by zero (H0 (null hypothesis): κ� 0).
.e clinical significance value is 0.80, and a test using the
null hypothesis as H0: κ� 0.79 vs. H1(one-sided alternative
hypothesis): κ> 0.79 should be applied.

Weighted kappa is used to discriminate between dif-
ferent readings on ordinal diagnostic test results (different
grade of disagreement exists between good and excellent
compared to poor and excellent). Different weights reflecting
the importance of agreement and the weights (linear, pro-
portional to the number of categories apart or quadratic,
proportional to the square of the number of classes apart)
must be established by the researcher [131].

Intra- and interclass correlation coefficients (ICCs) are
used as a measure of reliability of measurements and had
their utility in the evaluation of a diagnostic test. Interrater
reliability (defined as two or more raters who measure the
same group of individuals), test-retest reliability (defined as
the variation in measurements by the same instrument on
the same subject by the same conditions), and intrarater
reliability (defined as variation of data measured by one rater
across two or more trials) are common used [139]. McGraw
and Wong [140] defined in 1996 the ten forms of ICC based
on the model (1-way random effects, 2-way random effects,
or 2-way fixed effects), the number of rates/measurements
(single rater/measurement or the mean of k raters/
measurements), and hypothesis (consistency or absolute
agreement). McGraw and Wong also discuss how to cor-
rectly select the correct ICC and recommend to report the
ICC values along with their 95% CI [140].

Lin’s concordance correlation coefficient (ρc) measures
the concordance between two observations, one measure-
ment as the gold standard. .e ranges of values of Lin’s
concordance correlation coefficient are the same as for
Cohen’s kappa coefficient. .e interpretation of ρc takes into
account the scale of measurements, with more strictness for
continuous measurements (Table 6) [141, 142]. For intra-
and interobserver agreement, Martins and Nastri [142] in-
troduced the metric called limits of agreement (LoA) and
proposed a cutoff< 5% for very good reliability/agreement.

Reporting the ICC and/or CCC along with associated
95% confidence intervals is good practice for agreement

Table 5: Online resources for confidence intervals calculation: coefficient of variation.

What? URL (accessed on August 26, 2018)

Two-sided confidence interval (CI) for s CVa

https://www1.fpl.fs.fed.us/covnorm.dcd.html
https://community.jmp.com/kvoqx44227/

attachments/kvoqx44227/scripts/77/1/CI%20for%
20CV%202.jsl

One-sided CIa

Lower bound
Upper bound

https://www1.fpl.fs.fed.us/covlow.html
https://www1.fpl.fs.fed.us/covup.html

Two-sided CI for s CVb https://www1.fpl.fs.fed.us/covln.html
Ratio of two CVsa https://www1.fpl.fs.fed.us/covratio.html
aNormal distribution and blognormal distribution.
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analysis. .e results are reported in both primary (such as
reliability analysis of the Microbleed Anatomical Rating
Scale in the evaluation of microbleeds [143], automatic
analysis of relaxation parameters of the upper esophageal
sphincter [144], and the use of signal intensity weighted
centroid in magnetic resonance images of patients with discs
degeneration [145]) and secondary research studies (sys-
tematic review and/or meta-analysis: evaluation of the
functional movement screen [146], evaluation of the
Manchester triage scale on an emergency department [147],
reliability of the specific physical examination tests for the
diagnosis of shoulder pathologies [148], etc.).

Altman and Bland criticized the used of correlation (this
is a measure of association, and it is not correct to infer that
the two methods can be used interchangeably), linear re-
gression analysis (the method has several assumptions that
need to be checked before application, and the assessment of
residuals is mandatory for a proper interpretation), and the
differences between means as comparison methods aimed to
measure the same quantity [136, 149, 150]. .ey proposed a
graphical method called the B&A plot to analyze the
agreement between two quantitative measurements by
studying the mean difference and constructing limits of
agreement [136, 137]. Whenever a gold standard method
exists, the difference between the two methods is plotted
against the reference values [151]. Besides the fact that the
B&A plot provides the limits of agreements, no information
regarding the acceptability of the boundaries is supplied, and
the acceptable limits must be a priori defined based on
clinical significance [150]. .e B&A plot is informally
interpreted in terms of bias (How big the average discrepancy
between the investigated methods is? Is the difference large
enough to be clinically relevant?), equivalence (How wide are
the limits of agreement?, limits wider than those defined
clinically indicate ambiguous results while narrow and small
bias suggests that the twomethods are equivalent), and trend
and variability (Are the dots homogenous?).

Implementation of the 95% confidence intervals associated
to ICC, CCC, or kappa statistics and the test of significance are
implemented in commercial or free access statistical programs
(such as SPSS, MedCalc, SAS, STATA, R, and PASS-NCSS) or
could be found freely available online (e.g. vassarstats-
©Richard Lowry 2001–2018, http://vassarstats.net/kappa.html;
KappaCalculator ©Statistics Solutions 2018, http://www.
statisticssolutions.com/KappaCalculator.html; and KappaAcc-
Bakeman’s Programs, http://bakeman.gsucreate.org/kappaacc/;
all accessed August 27, 2018)).

3.3. Accuracy Analysis. .e accuracy of a diagnostic test is
related to the extent that the test gives the right answer, and
the evaluations are done relative to the best available test (also
known as gold standard test or reference test and hypothetical
ideal test with sensitivity (Se)� 100% and specificity (Sp)�

100%) able to reveal the right answer. Microscopic exami-
nations are considered the gold standard in the diagnosis
process but could not be applied to any disease (e.g., stable
coronary artery disease [152], rheumatologic diseases [153],
psychiatric disorders [154], and rare diseases with not yet fully
developed histological assessment [155]).

.e factors that could affect the accuracy of the di-
agnostic test can be summarized as follows [156, 157]:
sampling bias, imperfect gold standard test, artefactual
variability (e.g., changes in prevalence due to inappropriate
design) or clinical variability (e.g., patient spectrum and
“gold-standard” threshold), subgroups differences, or reader
expectations.

Several metrics calculated based on the 2× 2 contingency
table are frequently used to assess the accuracy of a di-
agnostic test. A gold standard or reference test is used to
classify the subject either in the group with the disease or in
the group without the disease of interest. Whatever the type
of data for the diagnostic test is, a 2× 2 contingency table can
be created and used to compute the accuracy metrics. .e
generic structure of a 2× 2 contingency table is presented in
Table 7, and if the diagnostic test is with high accuracy, a
significant association with the reference test is observed
(significant Chi-square test or equivalent (for details, see
[158])).

Several standard indicators and three additional metrics
useful in the assessment of the accuracy of a diagnostic test
are briefly presented in Tables 8 and 9.

.e reflection of a positive or negative diagnosis on the
probability that a patient has/not a particular disease could
be investigated using Fagan’s diagram [165]. .e Fagan’s
nomogram is frequently referring in the context of evidence-
based medicine, reflecting the decision-making for a par-
ticular patient [166]. .e Bayes’ theorem nomogram was
published in 2011, the method incorporating in the pre-
diction of the posttest probability the following metrics:
pretest probability, pretest odds (for and against), PLR or
NLR, posttest odds (for and against), and posttest proba-
bility [167]. .e latest form of Fagan’s nomogram, called
two-step Fagan’s nomogram, considered pretest probability,
Se (Se of test for PLR), LRs, and Sp (Sp of test for NLR), in
predicting the posttest probability [166].

Table 6: Intra- and interclass correlation coefficients and concordance correlation coefficient: an empirical assessment of the strength of
agreement.

Agreement Continuous measurement Ultrasound fetal measurements Semiautomated measurements
Very good ρc> 0.99 ρc> 0.998 ρc> 0.90
Good 0.95< ρc≤ 0.99 0.99< ρc≤ 0.998 0.80< ρc≤ 0.90
Moderate 0.90< ρc≤ 0.95 0.98< ρc≤ 0.99 0.65ρc≤ 0.80
Poor 0.70< ρc≤ 0.90 0.95< ρc≤ 0.98 ρc< 0.65
Very poor ρc< 0.70 ρc< 0.95
Source [141, 142].

Computational and Mathematical Methods in Medicine 7

http://vassarstats.net/kappa.html
http://www.statisticssolutions.com/KappaCalculator.html
http://www.statisticssolutions.com/KappaCalculator.html
http://bakeman.gsucreate.org/kappaacc/


Table 7: 2× 2 contingency generic table.

Diagnostic test result Disease present Disease absent Total
Positive TP (true positive) FP (false positive) TP + FP
Negative FN (false negative) TN (true negative) FN+TN
Total TP + FN FP+TN n�TP+FP+ FN+TN
Total on the rows represents the number of subjects with positive and respectively negative test results; total on the columns represents the number of subjects
with (disease present) and respectively without (disease absent) the disease of interest; and the classification as test positive/test negative is done using the
cutoff value for ordinal and continuous data.

Table 8: Standard statistic indicators used to evaluate diagnostic accuracy.

Statistic (Abb) Formula Remarks

Sensitivity (Se) TP/(TP + FN)

(i) .e highest the Se, the smallest the number of
false negative results

(ii) High Se:
(a) a negative result rules-out (SnNOUT)
(b) suitable for screening (ruling-out)

Specificity (Sp) TN/(TN+FP)

(i) .e highest the Se, the smallest the number of
false-positive results

(ii) High Sp:
(a) a positive result rules-in (SpPIN)

(b) It is suitable for diagnosis (ruling-in)

Accuracy index (AI) (TP+TN)/(TP + FP+ FN+TN)

(i) Give information regarding the cases with the
right diagnosis

(ii) It is difficult to convert its value to a tangible
clinical concept

(iii) It is affected by the prevalence of the disease

Youden’s index (J) [159] Se + Sp− 1

(i) Sums the cases wrongly classified by the
diagnostic test

(ii) Assess the overall performance of the test. J� 0,
if the proportion of positive tests is the same in the
group with/without the disease. J� 1, if no FPs or

FNs exist
(iii) Misleading interpretation in comparison of the

effectiveness of two tests
(iv) Used to identify the best cutoff on ROC

analysis: its maximum value corresponds to the
highest distance from diagonal

Positive predictive value (PPV)∗ TP/(TP+ FP)

(i) Answer the question “what is the chance that a
person with a positive test truly has the disease?”
(ii) Clinical applicability for a particular subject

with a positive test result
(iii) It is affected by the prevalence of the disease

Negative predictive value (NPV)∗ TN/(TN+ FN)

(i) Answer the question “what is the chance that a
person with a negative test truly not to have the

disease?”
(ii) Clinical applicability for a particular subject

with a negative test result
(iii) It is affected by the prevalence of the disease

Positive likelihood ratio (PLR/LR+)∗ Se/(1− Sp)

(i) Indicates how much the odds of the disease
increase when a test is positive (indicator to rule-in)

(ii) PLR (the higher, the better)
(a) > 10⟶ convincing diagnostic evidence

(b) 5<PLR< 10⟶ strong diagnostic evidence

Negative likelihood ratio (NLR/
LR−)∗ (1− Se)/Sp

(i) Indicates how much the odds of the disease
decrease when a test is negative (indicator to

rule-out)
(ii) NLR (the lower, the better)

(a) < 0.1⟶ convincing diagnostic evidence
(b) 0.2<PLR< 0.1⟶ strong diagnostic

evidence
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.e receiver operating characteristic (ROC) analysis is
conducted to investigate the accuracy of a diagnostic test
when the outcome is quantitative or ordinal with at least five
classes [168, 169]. ROC analysis evaluates the ability of a
diagnostic test to discriminate positive from negative cases.
Several metrics are reported related to the ROC analysis in
the evaluation of a diagnostic test, and the most frequently
used metrics are described in Table 10 [170, 171]. .e closest
the left-upper corner of the graph, the better the test. Dif-
ferent metrics are used to choose the cutoff for the optimum
Se and Sp, such as Youden’s index (J, maximum), d2 ((1− Se)2
+ (1− Sp)2, minimum), the weighted number needed to
misdiagnose (maximum, considered the pretest probability
and the cost of a misdiagnosis) [172], and Euclidean index
[173]. .e metrics used to identify the best cutoff value are a
matter of methodology and are not expected to be reported as
a result (reporting a J index of 0.670 for discrimination in
small invasive lobular carcinoma [174] is not informative
because the same J could be obtained for different values of Se
and Sp: 0.97/0.77, 0.7/0.97, 0.83/0.84, etc.). Youden’s index
has been reported as the best metric in choosing the cutoff
value [173] but is not able to differentiate between differences
in sensitivity and specificity [175]. Furthermore, Youden’s
index can be used as an indicator of quality when reported

with associated 95% confidence intervals, and a poor quality
being associated with the presence of 0.5 is the confidence
interval [175].

3.4. Performances of aDiagnostic Test by Examples. .e body
mass index (BMI) was identified as a predictor marker of
breast cancer risk on Iranian population [176], with an AUC
0.79 (95% CI: 0.74 to 0.84).

A simulation dataset was used to illustrate how the
performances of a diagnostic test could be evaluated,
evaluating the BMI as a marker for breast cancer. .e
simulation was done with respect to the normal distribution
for 100 cases with malign breast tumor and 200 cases with
benign breast tumors with BMImean difference of 5.7 kg/m2

(Student’s t-test assuming unequal variance: t-stat� 9.98,
p< 0.001). .e body mass index (BMI) expressed in kg/m2

varied from 20 to 44 kg/m2, and the ROC curve with as-
sociated AUC is presented in Figure 1.

.e ROC curve graphically represents the pairs of Se and
(1− Sp) for different cutoff values. .e AUC of 0.825 proved
significantly different by 0.5 (p< 0.001), and the point es-
timator indicates a good accuracy, but if the evaluation is
done based on the interpretation of the 95% lower bound, we

Table 8: Continued.

Statistic (Abb) Formula Remarks

Diagnostic odds ratio (DOR)∗∗ [160]

(TP/FN)/(FP/TN)
[Se/(1− Se)]/[(1− Sp)/Sp]

[PPV/(1−PPV)]/[(1−NPV)/NPV]
PLR/NLR

(i) High DOR indicates a better diagnostic test
performance (ranges from 0 to infinite). A value of
1 indicates a test not able to discriminate between

those with and those without the disease
(ii) Combines the strengths of Se and Sp

(iii) Useful to compare different diagnostic tests
(iv) Not so useful when the aim is to rules-in or

rules-out
(v) Convenient indicator in the meta-analysis

Posttest odds (PTO)∗
Posttest probability (PTP)∗

Pretest odds (prevalence/(1− prevalence))×

LR
PTO/(PTO+ 1)

(i) Gives the odds that the patient has to the target
disorder after the test is carried out

(ii) Gives the proportion of patients with that
particular test result who have the target disorder

All indicators excepting J are reported with associated 95% confidence intervals; ROC� receiver-operating characteristic; ∗patient-centered indicator;
TP� true positive; FP� false positive; FN� false negative; TN� true negative; and PPV and NPV depend on the prevalence (to be used only if (no. of subjects
with disease)/(no. of patients without disease) is equivalent with the prevalence of the disease in the studied population).

Table 9: Other metrics used to evaluate diagnosis accuracy.

Statistic (Abb) Formula Remarks

Number needed to diagnose (NND) [161] 1/[Se− (1− Sp)]1/J
(i) .e number of patients that need to be tested to

give one correct positive test result
(ii) Used to compare the costs of different tests

Number needed to misdiagnose (NNM) [162] 1/[1− (TP +TN)/n] (i).e highest the NNM, the better the diagnostic test

Clinical utility index (CUI) [163, 164] CUI+� Se×PPV
CUI−� Sp×NPV

(i) Gives the degree to which a diagnostic test is useful
in clinical practice

(ii) Interpretation: CUI> 0.81⟶ excellent utility;
0.64≤CUI< 0.81⟶ good utility;
0.49≤CUI< 0.64⟶ fair utility;

0.36≤CUI< 0.49⟶ poor utility; and
CUI< 0.36⟶ very poor utility

Abb� abbreviation; all indicators excepting J are reported with associated 95% confidence intervals; TP� true positive; FP� false positive; FN� false negative;
and TN� true negative.
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found the BMI as a worthless test for breast cancer..e J had
its maximum value at a cutoff equal to 29.5 kg/m2 and
corresponded to a Se of 0.67, a Sp of 0.88, and an AI of 0.81.
.e PLR of 5.58 indicates that the BMI is strong diagnostic
evidence, but this classification is not supported by the value
of NLR which exceed the value of 0.2 (Table 10). A BMI
>29.5 kg/m2 usually occurs in those with breast cancer while
a BMI≤ 29.5 kg/m2 often occurs in those without breast
cancer. At a cutoff of 29.5 kg/m2, the marker is very poor for
finding those with breast cancer but is good for screening.

.e performance metrics varied according to the cutoff
values (Table 11). A cutoff with a low value is chosen
whenever the aim is to minimize the number of false
negatives, assuring a Se of 1 (19.5 kg/m2, TP� 100, Table 10).
If a test able to correctly classify the true negatives is desired,
the value of the cutoff must be high (38.5 kg/m2, TN� 200,
Table 11) assuring a Sp of 1.

.e analysis of the performance metrics for our simu-
lation dataset showed that the maximum CUI+ and CUI−
values are obtained for the cutoff value identified by the J
index, supporting the usefulness of the BMI for screening
not for case finding.

.e accuracy analysis is reported frequently in the sci-
entific literature both in primary and secondary studies.
Different actors such as the authors, reviewers, and editors
could contribute to the quality of the statistics reported. .e
evaluation of plasma chitotriosidase as a biomarker in critical

Table 10: Metrics for global test accuracy evaluation or comparisons of performances of two tests.

Statistic (Abb) Method Remarks

Area under the ROC curve (AUC)

(i) Nonparametric (no assumptions): empirical
method (estimated AUC is biased if only a few
points are in the curve) and smoothed-curve
methods such as kernel density method (not
reliable near the extremes of the ROC curve)
(ii) Parametric (the distributions of the cases
and controls are normal): binomial method
(tighter asymptotic confidence bounds for

samples less than 100)

(i) AUC� 1⟶ perfect diagnostic test (perfect
accuracy)

(ii) AUC∼ 0.5⟶ random classification
(iii) 0.9<AUC≤ 1⟶ excellent accuracy

classification
(iv) 0.8<AUC≤ 0.9⟶ good accuracy

(v) 0.7<AUC≤ 0.8⟶worthless

Partial area under the curve (pAUC) (i) Nonparametric (no assumptions)
(ii) Parametric: using the binomial assumption

(i) Looks to a portion AUC for a predefined
range of interest

(ii) Depends on the scale of possible values on
the range of interest

(iii) Has less statistical precision compared to
AUC

Diagnostic odds ratio (DOR)
(i) Must use the same fixed cutoff

(ii) Most useful in a meta-analysis when two or
more tests are compared

(i) DOR� 1⟶ test
(ii) DOR increases as ROC is closer to the top

left-hand corner of the ROC plot
(iii) .e same DOR could be obtained for

different combinations of Se and Sp

TP fraction for a given FP fraction
(TPFFPF)

(i) Need the same false-positive fraction

(i) Useful to compare two different tests at a
specific FPF (decided based on clinical

reasoning), especially when the ROC curves
cross

Comparison of two tests

(i) Comparison of AUC of two different tests
(ii) Absolute difference (SeA− SeB) or ratio

(SeA/SeB), where A is one diagnostic test and B
is another diagnostic test

(i) Apply the proper statistical test; each AUC
must be done relative to the “gold-standard” test
(ii) Test A better than B if absolute difference

is> 0; ratio> 1
Abb� abbreviation; all indicators are reported with associated 95% confidence intervals; ∗patient-centered indicator; TP� true positive; FP� false positive;
FN� false negative; and TN� true negative.

AUC = 0.825, 95% CI: 0.768 to 0.883; p < 0.001

J = max
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Figure 1: Summary receiver operating characteristic (ROC) curve
for BMI as an anthropometric marker to distinguish benign from
malign breast tumors. .e red line shows an equal proportion of
correctly classified breast cancer sample and incorrectly classifies
samples without breast cancer (random classification). .e J max
(max (Se + Sp− 1)) corresponds to a Se� 0.67 and a Sp� 0.88 for a
cutoff> 29.5 kg/m2 (BMI) for the breast cancer sample.
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limb ischemia reported the AUC with associated 95% con-
fidence intervals, cutoff values [59], but no information on
patient-centered metrics or utility indications are provided.
Similar parameters as reported by Ciocan et al. [59] have also
been reported in the evaluation of sonoelastographic scores in
the differentiation of benign by malign cervical lymph nodes
[45]. Lei et al. conducted a secondary study to evaluate the
accuracy of the digital breast tomosynthesis versus digital
mammography to discriminate between malign and benign
breast lesions and correctly reported Se, Sp, PLR, NLR, and
DOR for both the studies included in the analysis and the
pooled value [97]. However, insufficient details are provided
in regard to ROC analysis (e.g., no AUCs confidence intervals
are reported) or any utility index [97]. Furthermore, Lei et al.
reported the Q∗ index which reflect the point on the SROC
(summary receiver operating characteristic curve) at which
the Se is equal with Sp that could be useful in specific clinical
situations [97].

.e number needed to diagnose (NND) and number
needed to misdiagnose (NNM) are currently used in the
identification of the cutoff value on continuous diagnostic
test results [172, 177], in methodological articles, or teaching
materials [161, 178, 179]. .e NND and NNM are less
frequently reported in the evaluation of the accuracy of a
diagnostic test. Several examples identified in the available
scientific literature are as follows: color duplex ultrasound in
the diagnosis of carotid stenosis [180], culture-based di-
agnosis of tuberculosis [181], prostate-specific antigen
[182, 183], endoscopic ultrasound-guided fine needle biopsy
with 19-gauge flexible needle [184], number needed to
screen-prostate cancer [185, 186], the integrated positron
emission tomography/magnetic resonance imaging (PET/
MRI) for segmental detection/localization of prostate cancer
[187], serum malondialdehyde in the evaluation of exposure
to chromium [188], the performances of the matrix
metalloproteinase-7 (MMP-7) in the diagnosis of epithelial
injury and of biliary atresia [189], lactate as a diagnostic
marker of pleural and abdominal exudate [190], the Gram
stain from a joint aspiration in the diagnosis of pediatric
septic arthritis [191], and performances of a sepsis algorithm
in an emergency department [192]. Unfortunately, the NND

or NNM point estimators are not all the time reported with
the associated 95% confidence intervals [161, 180, 181,
186, 187, 190, 191].

.e reporting of the clinical utility index (CUI) is more
frequently seen in the evaluation of a questionnaire. .e
grades not the values of CUIs were reported by Michell et al.
[193] in the assessment of a semistructured diagnostic in-
terview as a diagnostic tool for the major depressive dis-
order. Johansson et al. [194] reported both the CUI + value
and its interpretation in cognitive evaluation using Cogni-
stat. .e CUI+/CUI− reported by Michell et al. [195] on the
patient health questionnaire for depression in primary care
(PHQ-9 and PHQ-2) is reported as a value with associated
95% confidence interval as well as interpretation. .e CUI+
and CUI− values and associated confidence intervals were
also reported by Fereshtehnejad et al. [196] in the evaluation
of the screening questionnaire for Parkinsonism but just for
the significant items. Fereshtehnejad et al. [196] also used the
values of CUI+ and CUI− to select the optimal screening
items whenever the value of point estimator was higher than
0.63. Bartoli et al. [197] represented the values of CUI
graphically as column bars (not necessarily correct since the
CUI is a single value, and a column could induce that is a
range of values) in the evaluation of a questionnaire for
alcohol use disorder on different subgroups. .e accurate
reporting of CUIs as values and associated confidence in-
tervals could also be seen in some articles [198, 199], but is
not a common practice [200–207].

Besides the commercial statistical programs able to assist
researchers in conducting an accuracy analysis for a di-
agnostic test, several free online (Table 12) or offline ap-
plications exist (CATmaker [208] and CIcalculator [209]).

Smartphone applications have also been developed to
assist in daily clinical practice. .e DocNomo application for
iPhone/iPad free application [210] allows calculation of
posttest probability using the two-step Fagan nomogram.
Other available applications are Bayes’ posttest probability
calculator, EBM Tools app, and EBM Stats Calc. Allen et al.
[211] and Power et al. [212] implemented two online tools
for the visual examination of the effect of Se, Sp, and
prevalence on TP, FP, FN, and TN values and the evaluation

Table 11: Performances metrics for body mass index (BMI) as an anthropometric marker for breast cancer.

Indicator
Cutoff–BMI (kg/m2)

19.5 22.5 25.5 29.5 32.5 35.5 38.5
TP (true positives) 100 96 87 67 43 25 13
FP (false positives) 200 176 117 24 3 1 0
TN (true negatives) off 0 24 83 176 197 199 200
FN (false negatives) 0 4 13 33 57 75 87
Se (sensitivity) 1 1 0.87 0.67 0.43 0.25 0.13
Sp (specificity) 0 0.10 0.42 0.88 0.99 0.99 1
PPV (positive predictive value) 0.33 0.40 0.43 0.74 0.94 0.96 1
NPV (negative predictive value) n.a. 0.90 0.87 0.84 0.78 0.73 0.70
PLR (positive likelihood ratio) 1.00 1.10 1.49 5.58 28.7 50.0 n.a.
NLR (negative likelihood ratio) n.a. 0.30 0.31 0.38 0.58 0.75 0.84
AI (accuracy index) 0.33 0.40 0.57 0.81 0.80 0.75 0.71
CUI+ (clinical utility index positive) 0.33 0.30 0.37 0.47 0.40 0.24 0.13
CUI− (clinical utility index negative) n.a. 10 0.36 0.74 0.76 0.72 0.70
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of clinical accuracy and utility of a diagnostic test [213].
Furthermore, they have underconstructed the evaluation of
the uncertainties in assessing test accuracy when the ref-
erence standard is not perfect as support for the evidence-
based practice.

4. Cost-Benefit Analysis

.e studies conducted in phase III and IV in the in-
vestigation of a diagnostic test could be covered under the
generic name of cost-benefit analysis. Different aspects of the
benefit could be investigated such as societal impact (the
impact on the society), cost-effectiveness (affordability),
clinical efficacy or effectiveness (effects on the outcome),
cost-consequence analysis, cost-utility analysis, sensitivity
analysis (probability of disease and/or recurrence, cost of
tests, impact on QALY (quality-adjusted life-year), and
impact of treatment), and analytical performances (pre-
cision, linearity, and cost-effectiveness ratio) [214]. .us, the

evaluation of diagnostic tests benefits could be investigated
from different perspectives (e.g., societal, health-care system,
and health-care provider) and considering different items
(e.g., productivity, patient and family time, medication, and
physician time) [215]. Furthermore, an accurate comparison
of two diagnostic tests must consider both the accuracy and
benefit/harm in the assessment of the clinical utility
[216, 217]. Generally, then cost-benefit analysis employs
multivariate and multifactorial analysis using different de-
signs of the experiment, including survival analysis, and the
statistical approach is selected according to the aim of the
study. Analysis of relationships is done using correlation
method (Person’s correlation (r) when the variables (two)
are quantitative and normal distributed, and a linear re-
lation is assuming between them; Spearman’s (ρ) or
Kendall’s (τ) correlation coefficient otherwise; it is rec-
ommended to use Kendall’s tau instead of Spearman’s rho
when data have ties [218]) or regression analysis when the
nature of the relationship is of interest and an outcome

Table 12: Online applications for diagnostic tests: characteristics.

Name Input Output

Diagnostic test calculatora

TP, FP, TN, FN
OR

Prevalence AND Se AND Sp AND
sample size

OR
Prevalence AND PLR AND NLR AND

sample size

Prevalence AND Se AND SpANDPLRAND
NLR

Fagan diagram

Diagnostic test calculator evidence-based
medicine toolkitb TP, FP, TN, FN

Se, Sp, PPV, NPV, PLR, NLR with associated
95% confidence intervals
Posttest probability graph

MedCalc: Bayesian analysis modelc
Prevalence AND Se AND Sp

OR
TP, FP, TN, FN

PPV, NPV, LPR, NLR, posttest probability

MedCalcd TP, FP, TN, FN Se, Sp, PPV, NPV, PLR, NLR, prevalence, AI
with associated 95% confidence intervals

Clinical calculator 1e TP, FP, TN, FN Se, Sp, PPV, NPV, PLR, NLR, prevalence, AI
with associated 95% confidence intervals

Clinical utility index calculatorf TP, TN, total number of cases, the total
number of noncases

Se, Sp, PPV, NPV, PLR, NLR, prevalence, AI
with associated 95% confidence intervals

DiagnosticTestg
Number of positive and negative gold

standard results for each level of the new
diagnostic test

Se, Sp, PPV, NPV, PLR, NLR, AI, DOR,
Cohen’s kappa, entropy reduction, and a bias
Index ROC curve if> 2 levels for all possible

cutoff

Simple ROC curve analysish
Absolute frequencies for false positive and
the true positive for up to ten diagnostic

levels

Cumulative rates (false positive and true
positive) and ROC curve (equation, R2, and

AUC)

ROC analysisi Five different type of input data: an
example for each type is provided

Se, Sp, AI, positive cases missed, negative
cases missed, AUC, ROC curve

AUSVET: EpiToolsj TP, FP, TN, FN
Different tools from basic accuracy to

comparison of two diagnostic tests to ROC
analysis

All URLs were retrieved on April 20, 2019. TP� true positive; FP� false positive; FN� false negative; TN� true negative; Se� sensitivity; Sp� specificity;
AI� accuracy index; PPV� positive predictive value; NPV�negative predictive value; PLR� positive likelihood ratio; NLR�negative likelihood ratio;
DOR� diagnostic odds ratio; ROC� receiver operating characteristic; AUC� area under the ROC curve; ahttp://araw.mede.uic.edu/cgi-bin/testcalc.pl;
bhttps://ebm-tools.knowledgetranslation.net/calculator/diagnostic/; chttp://www.medcalc.com/bayes.html; dhttps://www.medcalc.org/calc/diagnostic_test.
php; ehttp://vassarstats.net/clin1.html; fhttp://www.psycho-oncology.info/cui.html; ghttp://www.openepi.com/DiagnosticTest/DiagnosticTest.htm; hhttp://
vassarstats.net/roc1.html; ihttp://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html; and jhttp://epitools.ausvet.com.au/content.php?page�TestsHome.
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variable exists [219]. .e statistical methods applied when
cost-benefit analysis is of interest are not discussed in detail
here, but the basic requirements in reporting results are as
follows [220–225]:

(i) Correlation analysis: give summary statistic
according to the distribution of data (with associated
95% confidence intervals when appropriate, for both
baseline data and outcome data), graphical repre-
sentation as scatter plot, use correct symbol of the
correlation coefficient and associate the P value
along with the sample size, report missing data, and
report the check for influential/outliers.

(ii) Multivariate or multifactorial analysis: summary of
the check of assumptions (plots, tests, and in-
dicators), provide the plot of the model, give the
model with coefficients, standard error of the co-
efficients and associated P values or 95% confidence
intervals, determination coefficient of the mode,
standard error of the model, statistic and P value of
the model, provide the sample size, give the number
of missing data for each predictor, and adjusted and
unadjusted metrics (e.g., OR in logistic regression
and HR (hazard ratio) in survival analysis).

Miglioretti et al. [98] investigated the link between ra-
diation exposure of children through the CT examination
and the risk of cancer..ey reported a trend of the use in the
CT which increased from 1996 to 2005, a plateau between
2005 and 2007 followed by a decrease till 2010. .e number
of CT scans was reported per 1,000 children. Regardless of
the anatomical CT scan, the average effective doses were
expressed as mean and percentiles (25th, 50th, 75th, and 95th),
while the dose exceeding 20mSv was reported as percent-
ages..emean organ dose was also reported and the lifetime
attributable risk of solid cancer or leukemia, as well as some
CTscans leading to one case of cancer per 10,000 scans [98].
.e reported numbers and risks were not accompanied by
the 95% confidence intervals [98] excepting the estimated
value of the total number of future radiation-induced
cancers related to pediatric CT use (they named it as un-
certainty limit).

Dinh et al. [99] evaluated the effectiveness of a combined
screening test (fecal immunological test and colonoscopy)
for colorectal cancer using the Archimedes model (human
physiology, diseases, interventions, and health-care systems
[226]). .e reported results, besides frequently used de-
scriptive metrics, are the health utility score [227], cost per
person, quality-adjusted life-years (QALYs) gained per
person, and cost/QALYs gain as numerical point estimators
not accompanied by the 95% confidence interval.

Westwood et al. [228] conducted a secondary study to
evaluate the performances of the high-sensitivity cardiac
troponin (hs-cTn) assays in ruling-out the patients with
acute myocardial infarction (AMI). Clinical effectiveness
using metrics such as Se, Sp, NLR, and PLR (for both any
threshold and 99th percentile threshold) was reported with
associated 95% confidence intervals. As the cost-
effectiveness metrics the long-term costs, cost per life-year

(LY) gained, quality-adjusted life-years (QALYs), and costs/
QALYs were reported with associated 95% confidence in-
tervals for different Tn testing methods. Furthermore, the
incremental cost-effectiveness ratio (ICER) was used to
compare the mean costs of two Tn testing methods along
with the multivariate analysis (reported as estimates, stan-
dard error of the estimate, and the distribution of data).

Tiernan et al. [100] reported the changes in the clinical
practice for the diagnosis of latent tuberculosis infection
(LTBI) with interferon-gamma release assay, namely,
QuantiFERON-TB Gold In-Tube (QFT, Cellestis, Australia).
Unfortunately, the reported outcome was limited to the
number of changes in practice due to QFT as absolute
frequency and percentages [100].

5. Limitations and Perspectives

.e current paper did not present either detail regarding the
research methodology for diagnostic studies nor the critical
appraisal of a paper presenting the performances of a di-
agnostic test because these are beyond the aim. Extensive
scientific literature exists regarding both the design of ex-
periments for diagnostic studies [4, 15, 92, 229, 230] and the
critical evaluation of a diagnostic paper [231–234]. As a
consequence, neither the effect of the sample size on the
accuracy parameters, or the a priori computation of the
sample size needed to reach the level of significance for a
specific research question, nor the a posteriori calculation of
the power of the diagnostic test is discussed. .e scientific
literature presenting the sample size calculation for di-
agnostic studies is presented in the scientific literature
[235–238], but these approaches must be used with caution
because the calculations are sensitive and the input data
from one population are not a reliable solution for another
population, so the input data for sample size calculation are
recommended to come from a pilot study. .is paper does
not treat how to select a diagnostic test in clinical practice,
the topic being treated by the evidence-based medicine and
clinical decision [239–241].

Health-care practice is a dynamic field and records rapid
changes due to changes in the evolution of known diseases,
the apparition of new pathologies, the life expectancy of the
population, progress in information theory, communication
and computer sciences, development of new materials, and
approaches as solutions for medical problems. .e concept
of personalized medicine changes the way of health care, the
patient becomes the core of the decisional process, and the
applied diagnostic methods and/or treatment closely fit the
needs and particularities of the patient [242]. Different di-
agnostic or monitoring devices such as wearable health
monitoring systems [243, 244], liquid biopsy or associated
approaches [245, 246], wireless ultrasound transducer [247],
or other point-of-care testing (POCT) methods [248, 249]
are introduced and need proper analysis and validation.
Furthermore, the availability of big data opens a new
pathway in analyzing medical data, and artificial intelligence
approaches will probably change the way of imaging di-
agnostic and monitoring [250, 251]..e ethical aspects must
be considered [252, 253] along with valid and reliable
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methods for the assessment of old and new diagnostic ap-
proaches that are required. Space for methodological im-
provements exists, from designing the experiments to
analyzing of the experimental data for both observational
and interventional approaches.

6. Concluding Remarks

Any diagnostic test falls between perfect and useless test, and
no diagnostic test can tell us with certainty if a patient has or
not a particular disease. No ideal diagnostic tests exist, so any
test has false-positive and false-negative results.

.e metric reported in the assessment of the precision
(variability analysis) or accuracy of a diagnostic test must be
presented as point indicators and associated 95% confidence
interval, and the thresholds for interpretation are applied to
the confidence intervals.

.e correct evaluation of performances of two methods
measuring the same outcome is done with the Bland and
Altman plot (evaluate the bias of the difference between two
methods) not correlation or agreement (assess the associ-
ation between two measurements) analysis.

A gold standard test is mandatory in the evaluation of the
accuracy of a test. Both sensitivity and specificity with 95%
confidence intervals are reported together to allow a proper
interpretation of the accuracy. Based on these values, the
clinical utility index is used to support the rule-in and/or
rule-out and thus respectively the usefulness of a diagnostic
test as identification of the disease or in screening.

.e correct interpretation of positive and negative
predictive values is just made if the prevalence of the disease
is known.

.e sensitivity and specificity must be reported any time
when Youden’s index is given. Report the ROC analysis by
providing AUC with associated 95% confidence interval, the
threshold according to Youden’s index, sensitivity, and
specificity with 95% confidence intervals.

Report full descriptive and inferential statistics associ-
ated with the benefits analysis. Multivariate or multifactorial
analysis could be used to test the cost-benefit of a diagnostic
test, and the good practice in reporting such analysis must be
strictly followed by providing the full model with the values
of coefficients associated to the predictors and measures of
variability, significance of both models and each coefficient,
and risk metrics with associated 95% confidence intervals
when appropriate (e.g., relative risk and hazard ratio).
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year follow-up of the Göteborg randomized population-
based prostate cancer screening trial: effect of sociodemo-
graphic variables on participation, prostate cancer incidence
and mortality,” Scandinavian Journal of Urology, vol. 52,
no. 1, pp. 27–37, 2018.

[184] F. Attili, C. Fabbri, I. Yasuda et al., “Low diagnostic yield of
transduodenal endoscopic ultrasound-guided fine needle

Computational and Mathematical Methods in Medicine 19

http://www.bandolier.org.uk/band27/b27-2.html


biopsy using the 19-gauge flex needle: a large multicenter
prospective study,” Endoscopic Ultrasound, vol. 6, no. 6,
pp. 402–408, 2017.

[185] R. Gulati, A. B. Mariotto, S. Chen, J. L. Gore, and R. Etzioni,
“Long-term projections of the number needed to screen and
additional number needed to treat in prostate cancer
screening,” Journal of Clinical Epidemiology, vol. 64, no. 12,
pp. 1412–1417, 2011.

[186] J. Hugosson, S. Carlsson, G. Aus et al., “Mortality results
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