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-thermodynamic model for
capturing size-dependent surface segregation in
multi-metal alloy nanoparticles†

Srikanth Divi and Abhijit Chatterjee *

Multi-metal alloy nanoparticles (NPs) offer new avenues for exploration and design of nanoscale-

properties, e.g., catalytic, electronic and optical properties, by virtue of their tunable composition. A

method that can aid such exploration by accurately predicting the size-, shape- and composition-

dependent elemental distribution associated with nanomaterials is crucially missing. A nano-

thermodynamic model based on distribution coefficients D is introduced to fill this gap. D is employed to

predict surface segregation in NPs as a function of the NP size and composition. Interestingly, we find D

to be independent of size for NPs beyond 2 nm. This key finding motivates the construction of

thermodynamic tables for distribution coefficients using segregation observed with one or more NP

sizes. The tables can enable accurate prediction of phase diagrams for nanomaterials across a wide-

range of sizes. Key concepts of this new theory are demonstrated with Au–Pt–Pd, Ag–Au–Pd and Ni–

Pt–Pd, which are found to exhibit complex size-dependent segregation behavior for 2–6 nm NPs and

relatively weaker size-dependence beyond 6 nm. Numerically well-converged values of D are calculated

for small NPs using Monte Carlo simulations in the canonical ensemble. Simulations are based on an

embedded atom method (EAM) potential for metal alloys.
1. Introduction

Metal alloy nanoparticles (NPs) are used extensively in fuel
cells,1,2 catalysis3–6 and energy7,8 applications due to their
tunable electronic, magnetic, optical and catalytic properties.
For example, Pt-based nanoparticles synthesized via alloying
with one or more metals can possess higher activity and selec-
tivity at lower cost than pure Pt.9,10 It is well known that surface
segregation, i.e., the tendency of one of the metals to enrich the
surface, is ubiquitous in alloy NPs and greatly determines the
nanoscale properties.3,6,11,12 However, predicting size-, shape-
and composition-dependent segregation in metal alloy NPs is
another matter. Experimental determination of the phase
diagram in terms of the elemental distribution within alloy NPs
is difficult even with ultra-high vacuum (UHV) characterization
techniques. Recent applications of ternary metal nanoparticles
in fuel cells,13 formic acid production,14 methanol oxidation,15

oxygen reduction reaction,16 hydrogen storage,17 hydrogen
generation18 and electrochemical biosensors,19 highlight the
need for a nano-thermodynamic model that can accurately
predict segregation in binary and multi-metal alloy nano-
materials alike.
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Over the years, theoretical approaches have provided
important insights into segregation phenomena in bulk mate-
rials. The simplest segregation model is the Langmuir–McLean
theory20 where the surface composition is related to the bulk
composition of the A–B binary alloy through the expression

xsurface
A

.
xsurface
B ¼ �xbulk

A

�
xbulk
B

�
exp

�
� DEseg

kBT

�
: (1)

Here x denotes the mole fraction, kB is the Boltzmann constant
and T is the absolute temperature. The excess partial molar
segregation free energy DEseg, i.e., the free energy change in
moving an atom from bulk to surface, is a crucial parameter
that determines segregation. DEseg can be trivially calculated for
extended surfaces in the dilute limit.21 Various statistical
mechanics approximations in combination with linear elastic
theory are used for non-dilute systems.22 Alternatively, Monte
Carlo (MC) simulations can also be employed.23 In the absence
of segregation energies, heats of formation, surface energies
and lattice constants24–26 are indicators for alloy mixing
patterns. Other approaches such as the empirical Miedema
theory27,28 are also approximate but have been extensively
applied to bulk materials.

A recent review on theories of surface segregation and issues
related to the nanoscale is provided in ref. 29. Segregation in
alloy NPs can oen be perplexing compared to their bulk
counterparts for the following reasons. Nanomaterials possess
a large surface-to-volume ratio. The diverse local atomic
RSC Adv., 2018, 8, 10409–10424 | 10409
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environments encountered in nanomaterials are far richer than
the ones in bulk materials. Accounting for the multiple types of
surfaces in eqn (1) or for that matter other segregation models is
not straight-forward. Using MC simulations to directly sample the
equilibrium congurations of NPs23,30–33 with accurate interatomic
potentials may enable numerical estimation of DEseg. Since
segregation is dependent on NP size, shape and overall alloy
composition, DEseg is expected to retain this dependence thereby
rendering eqn (1) unwieldy. It is important to realize that in bulk
materials the bulk composition xbulks equals the overall mole
fraction for species s in the NP xs, therefore DEseg can be written
as a function of xs. In nanomaterials the surface composition
xsurfaces s xbulks s xs, where xsurfaces and xbulks are unknown. Like
experiments, MC studies are plagued by the combinatorial
complexity associated with the underlying parameter space (size,
shape, composition, etc.). MC simulations are generally employed
with NPs less than 4–6 nm in size due to the tremendous amount
of computer time required for these calculations. There are many
situations that demand prediction capabilities beyond the ones
offered by current segregation models.

Recently, we developed a thermodynamic model based on
distribution coefficients D to elucidate the elemental distribu-
tion in bimetallic NPs.33 The distribution coefficient for an
equilibrated A–B alloy particle

Da�b
A�B ¼ xa

A

�
xa
B

xb
A

�
xb
B

: (2)

is expressed in terms of compositions of A and B in two regions
a and b of the NP. Regions a and bmay correspond to the {111}
and {100} facet, edge/vertices and bulk sites (see Fig. 1 showing
a truncated octahedron nanoparticle), which possess distinct
local atomic environments. D estimated using MC calculations
captures the relative tendency of A and B species to segregate
between the regions. We extend these concepts generally to
multi-metal alloy systems by considering NPs of Au–Pt–Pd, Ag–
Au–Pd and Ni–Pt–Pd to demonstrate the model. An essential
feature of the generalized nano-thermodynamic model is the
Fig. 1 (a) A typical equilibrated truncated octahedron nanoparticle.
Top-view showing the local environment (up to second nearest
neighbors) for any (b) {111} and (c) {100} surface atom. Blue and grey
atoms are the center and NN atoms. Solid and dashed lines are surface
and sub-surface atoms.
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explicit inclusion of surface-to-volume effect for each region.
The characteristics of the distribution coefficients are probed
for these distinct ternary alloys in an attempt to elucidate the
observed size-dependent segregation.

2. Nano-thermodynamic model

We consider a A–B–C truncated octahedron NP consisting of N
atoms. Monte Carlo simulations are performed in the canonical
(NVT) ensemble. More details are provided in the Method
Section. The truncated octahedron shape is studied because of
its low surface energy per unit volume. Given xs (overall mole
fraction of species s), the number of s atoms in the NP is Ns ¼
Nxs, s ¼ A, B, C. Atoms can reside at specic sites in the NP.
Each truncated octahedron NP possesses 8 {111} facets, 6 {100}
facets, 12 {111}-{111} edges, 24 {111}-{100} edges, and 24
vertices (see Fig. 1). We focus on four regions, namely, {111}
facet, {100} facet, bulk and edge/vertex sites denoted as 111, 100,
Bu and EV, respectively. Na is the number of sites in region a,
a ¼ 111, 100, Bu, EV. Na determines the NP shape, surface area
and volume. Extension to alloy NPs with more than 3 metal
species and/or other shapes is trivial. We assume that N equals

the total number of sites in the NP N ¼
X
a

Na for the purpose

of writing material balances later. The mole fraction of species s
in region a is xaA ¼ Na

A/N
a where Na

A is the average number of s
atoms of region a. Typically, xaA or Na

A needs to be determined
given xs and Na.

Metal atoms distribute themselves within the NP to lower the
free energy. The Monte Carlo (MC) technique provides a useful
means of sampling equilibrium congurations of the NP in the
canonical ensemble. In MC one can perform trial moves con-
sisting of exchange of positions of randomly-selected pairs of
atoms in the NP among other types of moves. At equilibrium,
the net probability ux for exchange of two metal species
between two regions is zero. For the forward direction of the
move

A(a) + B(b) # A(b) + B(a), (3)

where A(a) implies A in region a the probability ux is given by
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b
B

�
min

�
1; exp

�
� DUa�b

kBT

���
. The term xaAx

b
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the probability of selecting a pair of atoms. The fraction of trial
moves accepted is given by the Metropolis acceptance criterion�
min

�
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kBT
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, which ensures the correct

canonical distribution. Angular brackets denote ensemble-
averaged value and DUa–b denotes the energy change associ-
ated with the forward direction. Writing a similar expression for
the probability ux for the reverse move in eqn (3) and equating
the forward and reverse probability uxes we obtain
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Table 1 Pseudo-code for calculating NP ternary phase diagram from
distribution coefficients

Input:
(1) Thermodynamic tables for six distribution coefficients typically of
the form Da–Bu

s–s0 (x
Bu
A , xBuB )

(2) Number of atoms in each region Na, a ¼ 111, 100, EV, Bu
(3) Overall composition {xA, xB, xC}

Output:
Compositions xaA, x

a
B and xaC for the regions Bu, 111, 100 and EV

Pseudo-code:
Step 1. Choose an initial guess for xBuA , xBuB and xBuC
Step 2. Find xBuA , xBuB and xBuC that minimize the residual R2. The residual
is calculated in the following steps:
(a) Estimate x111A , x111B and x111C using interpolated values of D111–Bu

A–B and
D111–Bu
A–C

(b) Estimate x100A , x100B and x100C using interpolated values of D100–Bu
A–B and

D100–Bu
A–C

(c) Estimate xEVA , xEVB and xEVC using interpolated values of DEV–Bu
A–B and

DEV–Bu
A–C

(d) Calculate the residual (eqn (13))

Fig. 2 Heats of mixing for bulk A–B alloys. Symbols are experiments
and lines are predictions from the EAM potential.
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The distribution coefficient provides a thermodynamic relation
between the elemental compositions in various regions of the
NP. Dening the distribution coefficient Da–b

A–B for eqn (3) in
terms of the mole ratios in the same way as eqn (2), we obtain
from eqn (4)

D
a�b
A�B ¼ hminð1; expð�DUb�a=kBTÞÞi

hminð1; expð�DUa�b=kBTÞÞi : (5)

Eqn (5) provides the theoretical basis for dening distribu-
tion coefficients for multi-metal alloys. In the context of ternary
systems, the distribution coefficient Da–b

A–B describes the relative
preference of both species A and B for the region a over b in the
presence of a third metal species.

Although we restrict ourselves to the use of eqn (2) for esti-
mating the distribution coefficients from known compositions
and vice versa, eqn (5) does provide some important insights.
Since the energy change associated with exchanging positions
of A and B depends on the local atomic environment, beyond
a certain NP size nite size effects cease to be important to the
right hand side of eqn (5). A careful analysis of the embedded
atommethod (EAM) potential commonly used with metal alloys
shows that the interactions up to the second nearest neighbor
(2NN) atom position are important towards the calculation of
Table 2 Value of the parameter q used in the cross-potential fAB(r)

Metal A Metal B q

Au Pt 0.707
Au Pd 0.693
Pt Pd 0.541
Ag Pd 0.663
Ag Au 0.545
Pt Ni 0.509
Au Ni 0.705
Ni Pd 0.637

This journal is © The Royal Society of Chemistry 2018
DUa–b. Fig. 1b and c show the local environment up to 2NN
positions for any {111} and {100} atom in the NP. Atoms lying at
the facet boundary possess as many neighbors as the atom lying
at the facet center. Similar observations are made for bulk
atoms independent of size. This motivates the main point of
Fig. 3 Bulk heat of mixing for random (a) Au–Pt–Pd, (b) Ag–Au–Pd, (c)
Ni–Pt–Pd alloys.

RSC Adv., 2018, 8, 10409–10424 | 10411
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this work: can distribution coefficients be assumed to be inde-
pendent of the NP size and shape? If this assumption is valid,
numerically accurate values of D for a few NPs can be extended
to nanostructures with a wide range of size, shape and
composition.

MC calculations can provide equilibrium compositions in
regions for specied values of xA, xB, xC and Na. A table of
distribution coefficients typically of the form Da�Bu

s�s0 (x
Bu
A , xBuB ), s

s s is constructed directly from equilibrium compositions
using eqn (2). Next, we focus on the inverse problem, namely,
using a distribution coefficient table to solve for the unknown
compositions in a¼ 111, 100, EV and Bu with values of xA, xB, xC
and Na being different from the ones used to construct the
tables. There are 18 distribution coefficients for a ternary alloy
NP with 4 regions. However, only 6 distribution coefficients are
independent. The other distribution coefficients are related
through the following identities:

Da–b
A–B ¼ Da–g

A–BD
g–b
A–B, (6)

Da–b
A–B ¼ Da–b

A–CD
a–b
C–B, (7)

Da–b
A–B ¼ (Db–a

A–B)
�1, (8)

and

Da–b
A–B ¼ (Da–b

B–A)
�1. (9)

The distribution coefficients are used alongside material
balance equations for region a:
Fig. 4 Segregation energy for binary metal alloys in the dilute limit as a fu
(b) {100} facet, (c) {111}-{111} edge (d) {111}-{100} edge and (e) vertex. Le

10412 | RSC Adv., 2018, 8, 10409–10424
xaA + xaB + xaC ¼ 1. (10)

The overall balance for species sX
a¼111; 100; Bu; EV

Na
s ¼ Ns; s ¼ A; B; C (11)

species an additional constraint. The 12 unknown
compositions {xij for i ¼ 111, 100, Bu, EV; j ¼ A, B, C} for
a ternary alloy NP are determined solving 12 inde-
pendent equations. These include equations involving 6
distribution coefficients, 4 equations of type eqn (10) and (2)
equations of type eqn (11). Explicit inclusion of size and
shape effects in the governing equations is unique to our
approach.
3. Self-consistent procedure for
estimating elemental distribution from
tabulated distribution coefficients

The main challenge is that Da–b
A–B is a function of the composi-

tions in a and b and cannot be determined until the elemental
distributions are known. Thus, eqn (2), (10) and (11) form
a system of implicit nonlinear equations with constraints. The
distribution coefficients and compositions are determined
simultaneously using a self-consistent procedure. In this
procedure, an initial guess for the bulk composition
{xBuA , xBuB , xBuC } is made. Typically, this guess involves initializing
the bulk composition to given values of {xA, xB, xC}. Estimating
nction of the NP size. Segregation energy is calculated for (a) {111} facet
gend shows host–impurity pairs.

This journal is © The Royal Society of Chemistry 2018
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D111–Bu
A–B (xBuA , xBuB ) and D111–Bu

A–C (xBuA , xBuB ) requires interpolating the
tabulated distribution coefficients. Using the denition of the

distribution coefficients with
X

s¼A; B; C

x111s ¼ 1 (eqn (10)) we solve

for x111s , s ¼ A, B, C from

xBu
s

x111
s

¼ xBu
A

D111�Bu
s�A

þ xBu
B

D111�Bu
s�B

þ xBu
C

D111�Bu
s�C

; s ¼ A; B; C: (12)

Note that D111–Bu
s–s ¼ 1 in eqn (12). Similarly, the compositions

xs
100 and xEVs , s ¼ A, B, C are solved for using expressions

analogous to eqn (12). The residual is calculated in terms of the
compositions in each regions as

R2 ¼
X

s¼A; B; C

 
Nxs �

X
a¼Bu; 111; 100; EV

Naxa
s

!2

: (13)
Fig. 5 Cross-sectional views of Au–Pt–Pd NPs containing 711, 2735
and 6895 atoms. Yellow, brown and blue colors denote Au, Pt and Pd,
respectively.

This journal is © The Royal Society of Chemistry 2018
The value of {xBuA , xBuB , xBuC } that minimizes the residual is
deemed to be the solution. The optimization steps are per-
formed while moving on the D� xBuA � xBuB surface. This scheme
is termed as self-consistent because the calculated composi-
tions are consistent with thermodynamics while satisfying the
constraints given by eqn (10) and (11). The pseudo-code is
provided in Table 1.
4. Computational details
4.1 Interatomic potentials for ternary metal alloys

Embedded atom method (EAM) interatomic potentials devel-
oped for bimetallic alloys with tunable mixing parameter of ref.
34 are employed here. The potential energy Et is calculated as

Et ¼
X
i

FðriÞ þ
1

2

X
i;j

f
�
rij
�
: (14)

where F(ri) is the embedding energy for atom i, ri is the electron
density term at atom i and f(rij) is pair potential between i–j.
The mixing parameter, which is based on scaling invariance
arguments,34 enables one to write the cross-potential fAB(r) for
A–B system in terms of the pure metal pair potentials fAA(r) and

fBB(r) as fABðrÞ ¼
1
2

�
qfAAðrÞ þ

1
q
fBBðrÞ

�
. The value of the

parameter qwas obtained for each binary metal system (Table 2)
by performing numerical ts to the experimental heats of mix-
ing shown in Fig. 2. The predicted segregation behavior for NPs
was found to be in good agreement one observed in previous
literature.34
4.2 Segregation energies and heats of mixing

The heat of mixing and segregation energies are two important
parameters used in rules of thumb to determine phase sepa-
ration and surface segregation. Fig. 3 shows the heats of mixing
for bulk Au–Pt–Pd, Ag–Au–Pd and Ni–Pt–Pd alloys from EAM,
i.e., when surfaces are absent. A positive heat of mixing implies
that segregation is favored, whereas negative heat of mixing
implies alloying. Black curve in Fig. 3 denotes the composition
where zero heat of mixing is observed. The symbols (+) and (�)
highlight the compositions with positive and negative heat of
mixing, respectively.

Experimentally, a miscibility gap is known to exist for Au–Pt
at low temperatures whereas Au–Pd and Pd–Pt are miscible in
the solid phase. The heats of mixing predicted using EAM for
Au–Pt–Pd are in good agreement with the experimental ones35

(white lines in Fig. 3a). The heat of mixing is positive at low Pd
compositions similar to the one observed with Au–Pt in Fig. 2.
Other parts of the diagram are associated with a negative heat of
mixing as Au–Pd and Pd–Pt are completely miscible. In contrast,
negative heats of mixing are obtained with all compositions of
Ag–Au–Pd and Ni–Pt–Pd alloys (Fig. 3b and c, respectively) and
the corresponding binary pairs (see Fig. 2).

The relative tendency for the metal species to enrich
a surface is captured by segregation energies. Segregation
energy is calculated for dilute alloys in terms of the energy
required to bring an impurity atom from a bulk site to a surface
RSC Adv., 2018, 8, 10409–10424 | 10413



Fig. 6 Compositions measured using Monte Carlo calculations of 711 atom Au–Pt–Pd NPs are shown in points.
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site. One impurity atom in an otherwise pure host is considered.
The L-BFGS optimization method was used to obtain the fully
relaxed structures. Segregation energies are usually calculated
for extended surfaces. Here the impurity atom is allowed to
occupy ve surface sites marked in blue circle in Fig. 1a. Thus,
the segregation energy for {111} facet, {100} facet, {111}–{111}
edge, {100}–{111} edge and vertex sites are obtained. The
impurity atom is placed at the center of the NP when it is
present in the bulk region.

Fig. 4 shows the segregation energy as a function of the NP
size. NPs of size 711, 2735, 6895 and 13959 atoms (symbols in
Fig. 4) are considered. For various host–impurity pairs (see
legend in Fig. 4), the main observations are that the segregation
10414 | RSC Adv., 2018, 8, 10409–10424
energies can be positive or negative. Negative segregation
energies imply the impurity atoms prefer residing in the
surface. The observed surface segregation tendencies are Ag >
Au > Pd > Ni, Pt. Another important observation is that the
segregation energy varies with the type of surface site high-
lighting the need for distribution coefficients Da–b

A–B for pair of
regions a–b.

Segregation energies for the {111} and {100} facets are more
or less independent of size for NPs containing 711 or more
atoms. However, EV segregation energies for the 711 atom NP
are different from ones for the larger NPs. This behavior is ex-
pected since the EAM interactions tend to be signicant up to
2NN, which is comparable to the edge length for the 711 atom
This journal is © The Royal Society of Chemistry 2018



Fig. 7 Distribution coefficients for 711 atom Au–Pt–Pd NP (in log10) as a function of the Au and Pt composition of the bulk.

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 10409–10424 | 10415
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Fig. 8 Cross-sectional views of Ag–Au–Pd NPs. Yellow, dark blue and
grayish blue colors denote Au, Ag and Pd, respectively.
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NP shown in Fig. 4. Based on this observation and the depen-
dence of the distribution coefficient on the energy differences in
eqn (5) we might expect distribution coefficients involving EV to
be a function of size. Other regions could be affected because of
the coupling through eqn (10) and (11). Later, we shall
demonstrate that this is not the case.

5. Results and discussion

MC simulations of Au–Pt–Pd, Ag–Au–Pd and Ni–Pt–Pd NPs are
performed to demonstrate (i) complex segregation patterns
such as compositional heterogeneity, compositional oscilla-
tions, phase separation and ordered structures within the NPs,
(ii) the inability of standard rules of thumb to quantitatively
predict segregation patterns in NPs, (iii) size-independence of
the distribution coefficients and (iv) features of the nano-
thermodynamic model. More details on the MC simulations
are provided in the Methods Section.
10416 | RSC Adv., 2018, 8, 10409–10424
5.1 Au–Pt–Pd

From the segregation energies and heats of mixing we expect Pt
and Pd to reside in bulk while Au prefers the surface. Cross-
sectional views of Au–Pt–Pd NP shown in Fig. 5 are largely in
line with these expectations. In bulk, good mixing between Au
and Pd, moderate mixing between Pd and Pt, and no mixing
between Au and Pt is observed. However, Au can also be present
in bulk while mixing with Pd (Fig. 5a and d) and Pd can reside in
the {111}/{100} facets (Fig. 5d). Pt atoms accumulate in the sub-
surface layer below the {111} facet with xPt ¼ 0.1 (Fig. 5a and c).
This behavior is identical to the one observed in binary Au–Pt
NPs at low Pt concentration. Au atoms decorate the EV region.
At high Pt compositions (Fig. 5b), Pt completely occupies the
bulk and is also present at the {111}/{100} facets. An onion-like
structure is observed in Fig. 5d where the outermost shell is
composed mainly of Au, Pt forms the sub-surface layer, and Au
and Pd form the core.

The cross-sectional views in Fig. 5 indicate that the local
compositions are size-dependent. Surface compositions of
{111} facets vary with size in Fig. 5b. In Fig. 5c, the Pt sub-
surface layer is 1 and 2 atoms thick for 711 and 2735 atom
NPs, respectively. The NP core in Fig. 5d contains Au–Pd for 711
and 2735 atom NP whereas the 6895 atom NP contains Pt as
well. The richness in the phase behavior and the compositional
heterogeneity within a region is important to the calculation of
the distribution coefficients (eqn (5)). Starting structures oen
used for the calculation of segregation energies and heats of
mixing do not account for this complex phase behavior.

Fig. 6 shows the elemental distribution between the regions
as a function of the alloy composition {xAu, xPt} for the 711 atom
NP. Compositions from MC simulations are shown in blue dots
in Fig. 6. These compositions directly provide the table of
distribution coefficients. The green surfaces were generated
using Delaunay triangulation of the data for the purpose of
interpolating the distribution coefficients. In an ideal situation
where no preferential enrichment of a region occurs, the
elemental composition would be identical in each region, i.e.,
xas ¼ xbs. Instead, a complex nonlinear behavior is observed.
Although the distribution coefficients do not capture the rich
compositional heterogeneity within the NP, as shown later they
can correctly provide compositions in each region (like Fig. 6) as
a function of size. Heats of mixing and segregation energies in
the dilute regime cannot provide such quantitative information.

Six independent distribution coefficients are calculated from
the compositions measured for the 711 atom NPs (Fig. 7). These
distribution coefficients can vary over 3–5 orders of magnitude
highlighting a strong compositional-dependence. The variation
inD at the intermediate compositions cannot be captured using
the dilute-regime segregation energies. Note that log10 D is
plotted against xBus as required by the nano-thermodynamic
model and not in terms of the xs. log10 D

111–Bu
Pt–Au is always less

than 1, i.e., x111Pt /x111Au < xbulkPt /xbulkAu . In other words, Pt has a low-
er preference for {111} facet than Au (Fig. 7a). Similarly,
log10 D

111–Bu
Pd–Au is always less than 1. In Au-rich phases, D111–Bu

Pd–Au <
D111–Bu
Pt–Au (Fig. 7b) that implies x111Pd /x111Pt < xbulkPd /xbulkPt contrary to

our previous understanding from binary segregation energies at
This journal is © The Royal Society of Chemistry 2018



Fig. 9 Compositions measured using Monte Carlo simulations of 711 atom Ag–Au–Pd NPs are shown in points. Surface was generated using
Delaunay triangulation of the data.

Paper RSC Advances
the dilute-regime that Pd is more likely to be present at the {111}
surface in comparison to Pt. Trends for 100 and EV regions are
similar to the ones for 111.
5.2 Ag–Au–Pd

Ag–Au–Pd is completely miscible in the solid phase. Fig. 8
shows cross-sectional views of the NPs at selected compositions.
Most trends are consistent with the surface segregation
tendencies at the dilute-regime, namely, Pd has a stronger
preference for the bulk than Ag and Au, and Au and Ag atoms
have nearly equal preference for the surface. Generally Ag would
enrich the surface, however, it may be present in the bulk as
This journal is © The Royal Society of Chemistry 2018
well (Fig. 8b and d). Au prefers sub-surface at high Ag compo-
sitions (Fig. 8c). Random alloy formation is observed in Fig. 8d.

The size effect is most clearly evident in Fig. 8a where Ag
atoms are present in greater concentration at the edges of the
6895 atom NP in comparison to the smaller NPs. In addition, Ag
is more visible at the {111} and bulk sites of the 6895 atom NP.
In Fig. 8b the density of Pd–Ag clusters dispersed within bulk Au
is lower for large NP sizes. Thus, the bulk Au composition
increases with size. Other examples can be seen by visual
inspection of Fig. 8. Fig. 9 shows Au, Ag and Pd compositions in
various regions of 711 atom NP as a function of alloy compo-
sition. The strong tendency of Ag to saturate the surface sites is
RSC Adv., 2018, 8, 10409–10424 | 10417



Fig. 10 Cross-sectional views of Ni–Pt–Pd NPs. White, brown and
blue colors denote Ni, Pt and Pd, respectively.

RSC Advances Paper
seen. The alloy composition where all surface sites will be
occupied by Ag atoms is given by Na/N, which is related to the
surface to volume ratio of the NP. Thus, the transition from an
alloyed surface to a complete Ag surface is a size-dependent
property. Fig. S9 in ESI† shows six independent distribution
coefficients calculated for the 711 atomNP. As in the case of Au–
Pt–Pd NP the distribution coefficients vary over several orders of
magnitude.
5.3 Ni–Pt–Pd

Cross-sectional views of the Ni–Pt–Pd NPs are shown in Fig. 10.
Ordering observed in bulk at low Pd compositions (Fig. 10c) is
consistent with L12 structures that are known to be present in
the binary Ni–Pt system. The ordered regions are seen as 3 rows
of Ni atoms followed by a row of Pt atoms in the cross-sectional
views of 711 and 2735 atom NPs. Partially ordered structures are
observed with the 6895 atom NP. Ordered structures are also
10418 | RSC Adv., 2018, 8, 10409–10424
witnessed in Fig. 10d. Unlike the 711 atom NP, onion structures
form within 2735 and 6895 atom NP, which consist of a Pd-rich
outer shell, a Pd-rich core and Ni–Pt inner shell (Fig. 10).
Fig. S10 of the ESI† shows the elemental compositions in each
region as a function of the overall alloy composition.
5.4 Size-independence of the distribution coefficients

The three examples discussed so far exhibit distinct heats of
mixing and segregation properties. Au–Pt–Pd is characterized
by phase separation, Ag–Au–Pd by mixing and Ni–Pt–Pd by
ordering in the bulk. Size-dependent effects were clearly
observed but whether the distribution coefficients are size-
dependent is veried next. We employ the distribution coeffi-
cients calculated with the 711 atom NPs with the nano-
thermodynamic model to predict the compositions in larger
NPs as a function of {xA, xB, xC} using the self-consistent
procedure. Compositions in larger NPs are measured using
MC calculations for the same {xA, xB, xC}. The predicted
compositions are compared to the measured ones.

Fig. 11a–c shows a parity plot comparing the region-wise
compositions measured in the MC calculations for 711 and
larger 2375 and 6895 atom NPs. The symbols deviate from the
diagonal line in the parity plot. Plus symbols belonging to the
6895 atom NP deviate more than the circles (2735 atom NP)
clearly demonstrating the size effect. Similar to previous studies
on segregation in alloy NPs this size effect appears quite per-
plexing. When the distribution coefficients for the 711 atom NP
are employed with the self-consistent procedure to predict
compositions for the larger NPs, we nd that the predictions are
in good agreement with the measured compositions (Fig. 11d–
f). D calculated from the measured compositions for the 711
and 2375 atom NPs are shown in Fig. 12. This conrms the
main outcome of this study that D is independent of size for the
ternary alloys investigated here.

Several important implications follow. First, the composi-
tions {xA, xB, xC} do not provide a useful measure to understand
elemental distribution with the NP. Instead equilibrium at the
nanoscales is determined by {xbulkA , xbulkB , xbulkC }. The phase
behavior (ordering/random ordering/phase separation) within
the NP bulk is also determined by {xbulkA , xbulkB , xbulkC } as long as
the NP size is reasonably large. Differences observed in the
cross-sections in Fig. 5, 8 and 10 as a function NP size originates
from the fact that {xA, xB, xC} was kept xed like most studies on
segregation. Second, D involving different regions (111, 100, EV,
Bu, etc.) can be estimated using MC simulations of NPs. Size-
independence is ascertained using simulations of two or more
size. Previous experimental/theoretical studies where the local
compositions have been measured can be used to construct
tables of distribution coefficients. The MC technique is not
amenable to 10 nm and larger NPs, which are frequently
encountered in experiments. In such cases, well-converged
values of distribution coefficients calculated with smaller NPs
provide a useful starting ground for understanding the
elemental distribution in other nanostructures.

Since the segregation energy for the EV region was found to
be size-dependent (Fig. 4c–e) we probe the effect of uncertainty
This journal is © The Royal Society of Chemistry 2018



Fig. 11 (a–c) Compositions measured using MC for 711 atom NPs are plotted against the ones for 2735 and 6895 atomNPs at selected values of
{xA, xB, xC}. (d–f) Compositions predicted using the nano-thermodynamic model versus compositions measured using MC for 2735 and 6895
atom NPs at selected values of {xA, xB, xC}. The nano-thermodynamic model employs distribution coefficients D from 711 atom NPs.
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in DEV–Bu
A–B on the nano-thermodynamic model. The sensitivity of

the nano-thermodynamic model to the distribution coefficients
is calculated as

SlogD ¼ xa
s ðlog10 Dþ dÞ � xa

s ðlog10 D� dÞ
2d

: (15)

SlogD provides the change in composition as a distribution
coefficient D (e.g., DEV–Bu

Pt–Au ) is altered by a decade while keeping
other coefficients xed. The model sensitivity towards DEV–Bu

A–B is
calculated region-wise for each metal in the 2735 atom NP (Au–
Pt–Pd, Au–Ag–Pd and Ni–Pt–Pd in panels a–c of Fig. 13). The
sensitivity is studied for 36 ternary alloy compositions of Fig. 9,
i.e., there are 432 data points in each panel of Fig. 13. Fig. 13
shows that the model is moderately sensitive to the distribution
This journal is © The Royal Society of Chemistry 2018
coefficients. A factor of 10 change in D (which corresponds to
approximately 0.08 eV change in segregation energy at 400 K)
can cause one or more compositions to shi by as much as 0.05.
Based on this understanding the gray bands in Fig. 11d–f show
the deviation in compositions when the distribution coeffi-
cients are allowed to vary by as much as two orders of magni-
tude. This suggests that even when DEV–Bu

A–B possesses a weak
dependence on the NP size the nano-thermodynamic model
may not be sensitive to the size. This may explain why there are
many examples in literature where different EAM parameteri-
zations report qualitatively similar segregation behavior.

Finally, we investigate size effect in larger NPs not included
so far in our study. For instance, keeping {xA, xB, xC} xed xbulkPt is
calculated as a function of the Au–Pt–Pd NP size. In Fig. 14a we
see that initially xbulkPt decreases rapidly with increasing size but
RSC Adv., 2018, 8, 10409–10424 | 10419



Fig. 12 Comparison of D for 711 and 2735 atom NPs measured directly from MC simulations of Au–Pt–Pd (left column), Au–Ag–Pd (center
column) and Ni–Pt–Pd (right column). D is interpolated at selected values of {xBuA , xBuB , xBuC }.

RSC Advances Paper
the variation becomes smaller beyond 6895 atoms (see blue,
yellow, red and black edges for 711, 2735, 6895 and 13 959 atom
NPs in Fig. 14). The maximum change in xbulkPt for 711 atom to
10420 | RSC Adv., 2018, 8, 10409–10424
13 959 atom NP is 0.25. Compositions in other regions are also
sensitive to NP size for N < 6895 atoms. Similar size effect is also
observed with Ag–Au–Pd and Ni–Pt–Pd NPs in Fig. 14b and c.
This journal is © The Royal Society of Chemistry 2018



Fig. 13 (a–c) Sensitivity of the nano-thermodynamic model to
distribution coefficients.
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The reason for this observation is provided in Fig. 14d. As N
increases the fraction Nbulk/N begins to approach 1. The change
in Nbulk/N is rapid for N¼ 711–6895 atoms but becomes gradual
beyond 6895 atoms. As a result, for a signicantly wide range of
NP sizes, e.g., 10–40 nm NPs (size of Au NPs as a function of N is
shown in Fig. 14d) the compositions xbulks possess a weak N-
dependence (Nbulk/N z 0.89–0.96 for 10–36 nm). In the limit of
innitely large NP, Nbulk/N z 1 and xbulks z xs. It is only in this
limit that the alloy composition {xA, xB, xC} becomes a relevant
thermodynamic variable for understanding segregation.

We end our discussion by commenting on the distribution
coefficient calculated in this work. The EAM parameters used
here were originally tted to material properties such as lattice
constants, elastic constants, heats of mixing, vacancy formation
energies and sublimation energies. The trends for segregation
energy from the EAM model are in agreement with density
functional theory (DFT) calculations.34 However, site prefer-
ences and segregation energies were not included in the tting
procedure. Therefore, the calculated values of distribution
coefficients could be prone to errors resulting from the EAM
parameterization. The accuracy of the distribution coefficients
can be assessed by comparing with interatomic potentials that
capture site preference and segregation energy more realisti-
cally. Since the goal here is to establish the nano-
thermodynamic model we have chosen to focus only on
This journal is © The Royal Society of Chemistry 2018
capturing the segregation behaviour from an existing EAM
model.

In our earlier work, we have shown the distribution coeffi-
cients are temperature-dependent. This was conrmed using
MC simulations performed at temperatures 400 and 600 K. It
will be interesting to study the temperature effect on the L12
ordering in the Ni–Pt–Pd system or the miscibility gap in the
Au–Pt–Pd system and the consequent effect on the distribution
coefficient.

6. Conclusions

A general nano-thermodynamic model for understanding
segregation, i.e., preferential enrichment of a region by one or
more metal species, in a multi-alloy nanoparticle (NP) has been
introduced. The importance of this model can be gauged from
the fact that knowledge of elemental distribution within an
alloy NP is crucial for the calculation of the NP properties. The
unique features of the model are:

(i) Systematically capturing composition-dependent ther-
modynamic preference of the metal species for different regions
of the NP using distribution coefficients D,

(ii) Accounting for size effects explicitly in terms of material
balances for each region,

(iii) A self-consistent procedure needed to account the
composition-dependence of D and size effects while predicting
segregation is introduced,

(iv) Applicable to multi-alloy (2 or more species) NPs, and
(v) The ability to accurately quantify the elemental distribu-

tion which is not possible with many of the existing techniques,
As demonstrated using Au–Pt–Pd, Ag–Au–Pd and Ni–Pt–Pd

NPs, the nano-thermodynamic model is capable of handling
complex phase behavior, e.g., ordered structures, phase sepa-
ration and alloying within the NP, even though it does not
explicitly account for ordered structures or phase separation.
The new understanding from this work, namely, that D might
be independent of size and shape, which is not apparent from
eqn (2) or (5), makes our approach particularly attractive. This
crucial nding paves the way for development of distribution
coefficient tables to describe the phase behavior at the nano-
scales over a wide range of sizes. When tables are generated
using MC simulations the reliability of the distribution coeffi-
cients would depend on the accurateness of the interatomic
potentials. One can employ the tables to predict segregation
more realistically in single or a collection of NPs with a broad
size distribution for static and dynamical property measure-
ment.37–41 Extension of the main concepts to experiments could
signicantly reduce the need to expensive characterization.
From our investigations we also conclude that compositions are
sensitive to size for NPs between 2–6 nm and comparatively less
sensitive beyond 6 nm.

7. Methods

Metropolis Monte Carlo (MC) simulations36 are performed to
study surface segregation in equilibrated alloy NPs at 400 K.
711, 2735 and 6895 atom (approximately 2–6 nm in size)
RSC Adv., 2018, 8, 10409–10424 | 10421



Fig. 14 Effect of NP size on the overall bulk composition in (a) Au–Pt–Pd, (b) Ag–Au–Pd, and (c) Ni–Pt–Pd NPs. (d) Fraction of sites in a region as
a function of number of atoms in a truncated octahedron NP. The size of Au NP in terms of the number of atoms is shown in dashed line.
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truncated octahedron NPs in vacuum are considered. The NP
was placed in a periodic box with the box being sufficiently large
to avoid interactions with periodic images. Size of the periodic
box is provided in Table S1 of the ESI.† NPs were created by
randomly placing the requisite number of A, B, and C atoms for
given {xA, xB, xC}. 3 ternary and 7 binary alloy materials were
studied. Step size of 0.1 in the compositional range for xA, xB
and xC resulted in 63 alloy compositions for each A–B–C system.
60% of the MC moves involved random atomic displacement of
while the remaining 40% were swap moves, which entail
exchanging positions of two randomly-chosen pairs of unlike
atoms. In addition, a short molecular dynamics (MD) calcula-
tion involving 100MD steps with time step of 4 fs was performed
in the canonical ensemble aer every 1000 MC moves to ensure
that the system remains at the set-point temperature.

1.25 million MC steps were rst performed to equilibrate the
system.The potential energy as a function of the MC steps is
typically used to determine whether equilibration is attained
(Fig. S1–S8 of the ESI†). Thereaer, longer MC calculations of 10
million steps were performed to sample composition in each
region. NPs with 6895 or more atoms did not converge properly
but were used to qualitatively verify the predicted segregation
behavior predicted using 2.7 nm NP. Typical time required for
10422 | RSC Adv., 2018, 8, 10409–10424
performing 10 million MC trial moves with 711, 2735 and 6895
atom NPs are 1.3, 5.7 and 14.7 CPU days, respectively.
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