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Abstract: Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic
hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of
stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms
driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of
negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes
and in its complications. In this review, we aim to shed light on the most important miRNAs
regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs
involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2
diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular
mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as
therapeutic targets, employing innovative molecules.

Keywords: microRNAs; β cell identity; β cell function; β cell dedifferentiation; disallowed genes; β
cell protection

1. Introduction

The etiopathogenesis of type 1 (T1D) and type 2 (T2D) diabetes mellitus is charac-
terized by different mechanisms [1]; nevertheless, both are characterized by a consistent
loss of functional β cell mass due to β cell destruction or dysfunction, leading to chronic
hyperglycaemia. Until recently, the loss of β cell mass was almost exclusively attributed to
apoptosis, while recent studies have shown that during metabolic and/or inflammatory
stresses, β cells can undergo a loss of the mature phenotype, regressing to a progenitor-like
state [2]. This process, known as dedifferentiation, represents a potential pathogenic mech-
anism, as the loss of the mature and differentiated phenotype of β cells negatively affects
insulin synthesis and secretion. Although it is not yet completely clear how this mecha-
nism affects β cell function, survival and proliferation, a series of studies have shown that
dedifferentiated β cells are protected from apoptosis induced by both metabolic and/or
inflammatory insults and by the attack of the immune system. Notably, based on this
novel pathogenetic mechanism, it is possible to distinguish two types of loss of functional
β cell mass: 1. caused by apoptosis and other mechanisms of cell death; 2. caused by
dedifferentiation and/or other processes leading to β cell dysfunction.

In the interest of elucidating such mechanisms, several studies explored the role of mi-
croRNAs (miRNAs) in β cell function and plasticity. miRNAs are endogenous non-coding
small RNAs, 19 to 24 nucleotides long, which negatively regulate gene expression through
their specific binding to the 3’UTR region of messenger RNAs [3]. MiRNAs have been
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reported to regulate many cellular processes through the modulation of several signaling
pathways components. Consequently, the alteration of miRNAs expression, reported in
numerous diseases, contributes to defining a disease phenotype. Of note, several miRNAs
have been reported to be involved in β cell differentiation, as well as in the maintenance
of mature β cells phenotype and function [4–6]. Furthermore, specific miRNAs also play
pivotal roles in compensatory mechanisms activated by β cells and triggered by several
stress conditions such as glucotoxicity, lipotoxicity and/or inflammation, or by increased
insulin demand due to insulin resistance phenomena [7,8].

In this review, we aim to report the latest advancements in the role of a set of miRNAs
consistently demonstrated to be involved both in β cells’ phenotype maintenance and in
the protection from typical diabetogenic stressors.

2. β Cell Identity and Function in Health and Disease
2.1. What Does Define the Path to βCell Identity?

Cell identity is determined by the expression of a set of genes that defines the cell-
specific fingerprint. Such a set of genes represents the core identity of the cells and allows
their peculiar functions within a tissue/organ.

For example, β cell function is guaranteed by the expression of key genes that promote:
(i) the correct terminal cell differentiation program from pancreatic endocrine progenitors;
(ii) the maintenance of signaling pathways and processes related to glucose-sensing machin-
ery, insulin synthesis and secretion. Therefore, the loss of these genes during embryonic
differentiation as well as in adulthood can lead to β cell dysfunction and a consequent
impaired glucose metabolism.

During early and terminal β cell maturation programs, a cascade of molecular mecha-
nisms regulated by several transcription factors (TFs) and signaling pathways leads to β
cell maturation, thus directing the acquisition of a functional phenotype and promoting an
accurate insulin release depending on peripheral demand [9,10].

β cell differentiation starts from a multipotent progenitor cell (MPC), whose special-
ization process is finely modulated by different TFs such as GATA 4/6 (GATA Binding
Protein 4/6), FOXA2 (Forkhead Box A2), PDX1 (Pancreatic And Duodenal Homeobox 1),
PTF1a (Pancreas Associated Transcription Factor 1a), MNX1 (Motor Neuron And Pancreas
Homeobox 1), SOX9 (SRY-Box Transcription Factor 9) and NKX6.1 (Homeobox protein
NKX6.1) that, depending on their expression levels, can induce MPCs to differentiate into
a specific cell type belonging to one of the three major pancreatic compartments: exocrine,
endocrine or ductal [11,12]. Further differentiation of endocrine progenitors occurs with
the initial expression of NGN3 (Neurogenin 3), followed by other TFs such as ISL1 (ISL
LIM Homeobox 1), NEUROD1 (Neurogenic differentiation 1), PAX6 (Paired Box 6), MAFB
(MAFB ZIP Transcription Factor B), NKX2.2 (NK2 Homeobox 2) and RFX6 (Regulatory
Factor X6). These TFs are directly activated by NGN3 and are involved in the differentiation
into several endocrine-pancreatic cell types (α, β, γ, and ε) [13].

The differentiation towards a more specific pancreatic endocrine cell identity is pro-
moted by the controlled expression of two genes: PAX4 (Paired Box 4) and ARX (Aristaless
Related Homeobox). Indeed, the specific cross-talk among them results in the specific
expression or inhibitory events that finally lead to the differentiation of islet progenitors
into β/δ or α/γ identity [14]. Finally, the terminal definitive differentiation into mature
β cell identity is achieved by the final activation of pivotal transcription factors, such as
NKX6.1, NKX2.2, PAX4/6, PDX1, MafA [15], FOXA2, NEUROD1 and MNX1 [16].

2.2. How Do β Cells Maintain Their Identity?

In fully mature endocrine pancreatic cells, the presence of a defined set of TFs strongly
contributes to the maintenance of the phenotype. Such a task is achieved both by promoting
specific cellular functions and by repressing alternative transcriptional programs belonging
to other cell types. This phenomenon is evident by ectopically activating α cell-specific
TFs in a β cell context or vice versa; for instance, ectopic expression of ARX in adult β
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cells leads to the loss of β cell phenotype and acquisition of glucagon expression [17]. On
the contrary, inactivation of ARX in mature α cells promotes their conversion into β-like
cells. PDX1 is a master transcriptional regulator that plays a key role both in pancreatic
development and in adult β cell function. Indeed, in mature β cells, PDX1 deletion leads
to the loss of β cell identity. Intriguingly, upon PDX1 deletion, an increase in α cell-specific
genes was observed. As a matter of fact, in β cell context, PDX1 specifically binds to MafB
and glucagon genes promoters to suppress their activation, thus inhibiting a specific α cell
transcriptional program [18]. In addition, PDX1 represents a master regulator of multiple
mature β cell functions, including the direct transcriptional activation of the insulin gene
as well as of MafA. The latter controls additional downstream transcriptional factors and
β cell functional effectors such as GLUT2, NKX6.1, GLP-1R, pro-hormone convertase-1/3
(PC-1/3) and pyruvate carboxylase [19].

Among TFs that strictly control β cell identity, Forkhead box protein O1 (FoxO1)
certainly plays an important role. In mature β cells, FoxO1 is localized in the cytoplasm,
then shuttling to the nucleus depending on the metabolic status of the cell, in order to
maintain the expression of specific transcription factors such as PDX1, NKX6.1 and MafA.
However, chronic hyperglycaemia causes FoxO1 degradation, leading to decreased insulin
content and upregulation of genes associated to the endocrine progenitor phenotype, such
as Vimentin (mesenchymal marker), Ngn3 (endocrine progenitor marker), OCT4, Nanog or
L-MYC (stem cell markers) [20].

2.3. β Cell Phenotype Loss in Diabetes Mellitus

Recent studies demonstrated a high level ofβ cell plasticity during prolonged metabolic
and/or inflammatory stress [21]. Such stressors can induce a loss of the mature β cell
phenotype, leading to a regression to a progenitor stage (dedifferentiation) or to a transition
toward another pancreatic endocrine cell type (transdifferentiation). Specifically, β cell phe-
notype loss in diabetes mellitus is characterized by (i) reduced expression of β cell-specific
genes as well as of genes that regulate glucose-sensing machinery; (ii) hyperexpression of
disallowed genes and of progenitor cell-enriched genes.

The first evidence of β cell phenotype loss was reported in rat models, in which
prolonged exposure of pancreatic islets to hyperglycaemia caused a decrease in genes asso-
ciated with glucose-induced insulin release as well as a reduction of several TFs involved
in β cell development, differentiation and identity maintenance [22]. In 2012, Talchai et al.
reported that β cell-specific FoxO1-KO mice subjected to metabolic stress showed a sig-
nificant reduction in insulin-containing β cells while maintaining expression of specific
markers of the endocrine lineage such as Chromogranin-A (ChgA) and Synaptophysin
(Syp). Of note, FoxO1-deficient insulin-depleted β cells were Sox9-negative, Ngn3-negative,
Pdx1-negative, Mafa-negative and ChgA-positive, thus indicating that they resembled
endocrine pre-β-cells [20]. Furthermore, FoxO1 cytoplasm-to-nucleus translocation in β
cells, previously observed in insulin resistance and in T2D animal models (i.e., GIRKO and
db/db mice), was demonstrated to induce the expression of mesenchymal and stem-cell-
associated genes (Vimentin, Ngn3, Oct4, Nanog, L-Myc), alongside loss of glucose-sensing
ability and insulin secretion [23].

Importantly, increasing evidence of β cell dedifferentiation has also been reported in
human islets in T2D context, thus resembling the molecular scenario previously observed
in animal models. In 2013, Butler AE and colleagues analyzed pancreas sections from T2D
donors and identified a population of dedifferentiated β cells defined by the positivity for
the endocrine markers Syp or ChgA, but negative for insulin or for any other endocrine
pancreatic hormone [24]. In addition, in pancreatic islets of T2D donors, Cinti et al. ob-
served that dedifferentiated β cells (defined as insulin-/other hormones-negative and
ChgA+/Syp+) showed the reduction and mislocalization of FOXO1 and NKX6.1 TFs and
were enriched in ALDH1A3 (Aldehyde Dehydrogenase 1a3), previously demonstrated to
be a marker of β cell dedifferentiation in T2D animal models [24–26]. Of interest, FOXO1
was ectopically found in glucagon-positive cells of T2D patients, thus potentially indicating



Int. J. Mol. Sci. 2021, 22, 803 4 of 18

that, in such a context, β cells become dedifferentiated and may undergo conversion to
glucagon-positive cells [27].

Although dedifferentiation has been shown to be mainly triggered by gluco- and
lipotoxicity, inflammatory conditions can also contribute to its induction. As a matter of
fact, it has been observed that human pancreatic islets exposed to a prolonged low-grade
inflammation (IL-1β, 1ng/mL) showed a reduction of β cell identity gene expression (e.g.,
NKX6.1, GLUT2, FOXO1 and MafA), as well as an increase in OCT4 and NGN3 expression,
indicating that inflammatory stress can also induce β cell dedifferentiation [28].

Indeed, in Non-Obese Diabetic (NOD) T1D animal model, Rui and colleagues ob-
served potential clues of β cell dedifferentiation during the progression of the disease.
In this study, authors identified a β cell subpopulation (defined “bottom β cells”) in the
islets of NOD mice, characterized by reduced levels of genes associated to β cell function
and increased levels of endocrine progenitor markers (e.g., Ngn3) and of stem cells factors
(Oct4, Sox2, Sox9 and L-Myc). Of major importance, dedifferentiated bottom β cells showed
elevated levels of two factors associated with protection from immune system attack—
Pd-l1 (Programmed cell death-ligand 1) and Qa2 (Qa lymphocyte Antigen 2)—resulting
in a higher resistance of dedifferentiated bottom β cells to stress-induced inflammation
(cytokines or lymphocytic infiltrates). These results suggest that dedifferentiation leads, on
one hand, to β cell loss of function through the reduction of specific genes, while, on the
other, to the presence of an inflammation-resistant phenotype [29]. As a matter of fact, it has
been shown that in the NOD mouse, the specific deletion of the unfolded protein response
(UPR) sensor IRE1-α prior to insulitis establishment led to the loss of β cell phenotype
and was associated to a reduction of islet inflammation alongside with a relief of immune
cells infiltration. Of importance, Ire1-α-deficient β cells were characterized by (i) reduced
levels of typical β cell autoantigens; (ii) lower expression of MHC class I components; (iii)
higher levels of immune inhibitory markers [30]. Collectively, these data indicate that β
cell dedifferentiation may represent an escaping mechanism from the inflammatory insults
during T1D progression.

Additional evidence of β cell dedifferentiation was reported based on the analysis
of pancreata of donors with T1D, showing an increased frequency of ChgA+/hormone-
negative cells, characterized by low levels of β-cell TFs [31,32]. Wasserfall et al. demon-
strated that pancreatic islets of donors with recent-onset and long-standing T1D were
characterized by low levels of insulin (protein), even though proinsulin mRNA was still
clearly evident. The same islets were also characterized by a reduced expression of the
enzyme PC1/3, with subsequent loss of β-cell function. These data suggest that the typical
scenario of reduced functional β cell mass observed during T1D progression may be due,
at least in part, to dedifferentiation phenomena [33].

As previously suggested, β cell phenotype loss in diabetes mellitus can also be the
result of a transdifferentiation mechanism. During this process, fully mature endocrine
cells are converted into another pancreatic endocrine cell type. As a matter of fact, in vitro
primary human β cells can spontaneously undergo conversion into glucagon-producing
α cells, putatively caused by the disruption of the islet architecture and loss of typical
cell–cell and/or cell-matrix interactions [34]. Importantly, lentiviral-mediated knockdown
of α cell-specific TF ARX in β cells inhibited β-to-α cell conversion, highlighting the critical
role of a key transcription factor in the modulation of cell-specific phenotypes [34]. Of
note, the maintenance of low expression levels of ARX (or other α cell-specific TFs) in β
cells is pivotal in the retention of their identity. This concept is reinforced by additional
data demonstrating that deletion of DNA methyltransferase 1 (Dnmt1) in β cells leads
to de-repression of Arx, causing a consequent and progressive conversion of β cells into
an α cell-like phenotype [35]. Of note, transdifferentiation events have been previously
reported both in T1D and T2D [36–38], as well as in diabetic rodent models [39,40], in
which prolonged hyperglycaemia could be responsible for β cell transdifferentiation [9].
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Collectively, such evidence highlights the pronounced plasticity of the β cell phe-
notype, suggesting that dedifferentiated or transdifferentiated β cells can be induced to
re-differentiate in order to restore the functional β cell mass.

3. microRNAs, β Cells and Disallowed Genes

As stated above, matureβ cell identity is a tightly controlled status, whose homeostasis
is guaranteed at multiple levels by the expression of transcriptional activators and/or
repressors, modulation of epigenetic mechanisms and/or negative post-transcriptional
regulation controlled by miRNAs.

Several studies focused on the role of miRNAs as potential modulators of glucose
metabolism. Indeed, at present, several miRNAs have been clearly associated with the
regulation of early and late stages of pancreas development, as well as of mature β cell
identity and function.

MicroRNAs role in the pancreas and β cell differentiation and function was initially
demonstrated through the inhibition of miRNAs maturation process in the pancreas or in β
cells by specifically deleting the pre-miRNA processing enzyme Dicer1 using Pdx1-CreER
or RIP-CreER mouse models [41–43]. Conditional deletion of Dicer1 in early pancreas
development induced severe alterations in all endocrine pancreatic lineages, mostly due
to the significant reduction of endocrine progenitors; these data indicate that miRNAs
expression is required during endocrine pancreas organogenesis [43]. Furthermore, β cell-
specific Dicer1-KO mouse models showed marked hyperglycaemia and glucose intolerance
alongside a reduction of β cell mass and substantial alterations of islet architecture, thus
demonstrating the crucial role of miRNAs in β cell maturation, identity and function [41].
Interestingly, it has been reported that specific deletion of Dicer1 in β cells of 7- to 8-
week-old mice (using Tamoxifen-induced conditional Pdx1-CreER mouse model) resulted
in the upregulation of several disallowed genes [44]. In this study, Martinez-Sanchez
and colleagues evaluated the expression of 14 selected disallowed genes (C1qbp, Cd302,
Cxcl12, Igfbp4, Lmo4, Maf, Oat, Pdgfra, Slc16a1, Smad3, Acot7, Ldha, Fcgrt and Ndgr2) [45,46]
in β cells derived from pancreatic islets of Dicer-KO mice. Among these 14 disallowed
genes, six were significantly upregulated (Fcgrt, Igfbp4, Maf, Oat, Pdgfra and Slc16a1) and
further shown to be directly affected by overall miRNAs reduction in Dicer-KO β cells.
Interestingly, upregulation of these six disallowed genes correlated with the loss of insulin
secretion at early stages of Dicer ablation and preceded β cell mass reduction. Since the
loss of β cell identity is also characterized by increased expression of normally repressed or
disallowed genes, it is possible to speculate that miRNAs dysregulation may significantly
affect β cell phenotype by controlling the expression of those genes whose levels in β
cells should be low or tightly monitored. As a matter of fact, during β cell phenotype
loss in an in vitro model of human pancreatic islet cell dedifferentiation, we observed
a general downregulation of β cell-expressed miRNAs, thus suggesting that the main
alteration during β cell dedifferentiation is the loss of repression of a large set of target
genes, which should be tightly controlled or repressed [47]. On the contrary, during β cell
in vitro differentiation of human-induced pluripotent stem cells, the majority of miRNAs
were upregulated, while only a small fraction was downregulated during the endocrine
differentiation stages [48].

More specifically, inhibition of β cell-enriched miRNAs miR-200c, miR-182 and miR-
125b has been demonstrated to increase the expression of c-Maf (c-Musculoaponeurotic
fibrosarcoma oncogene homolog), which is involved in the regulation of glucagon synthesis
in α cells and is considered a disallowed gene in β cells. In line with this, overexpression
of the same miRNAs set in the αTC1 murine α cell line leads to a reduction in c-Maf, thus
affecting α cell phenotype and function and demonstrating that multiple miRNAs may act
in concert to control the expression of genes, which should be selectively repressed in β
cells [49] (Figure 1). Another example derives from an additional set of β cell disallowed
genes that encode for mitochondrial enzymes, co-factors and transporters. In fact, aberrant
activation of these genes in β cells may lead to the induction of alternative metabolic
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pathways, thus interfering with glucose sensitivity and homeostasis. Among them, MCT1
(MonoCarboxylate Transporter 1), which encodes for a lactate/pyruvate transporter, is
of relevance. Indeed, low MCT1 levels in β cells ensure that glucose-derived pyruvate
is efficiently metabolized by mitochondria. It has been demonstrated that low levels of
MCT1 in β cells are maintained through the post-transcriptional repression exerted by
miR-29a and miR-29b previously reported to be highly expressed in insulin-producing β
cells [50–52], and by miR-124a, fundamental for pancreas development [53–55] (Figure 1).

Figure 1. MicroRNAs and disallowed genes. The inhibition of disallowed genes exerted by several
microRNAs (miRNAs) is essential in order to maintain functional β cell identity. (Left panel) Indeed,
for instance, physiological expression of three miRNAs (miR-200c, miR-182 and miR-125b) is able to
inhibit expression of c-Maf, a gene usually absent in mature β cells but enriched in α cells (green half
of cell). On the contrary, downregulation of miR-200c, miR-182 and miR-125b leads to pathological
hyperexpression of c-Maf in β cells, leading to a reduction of essential β cell genes and transcription
factors, thus inducing β cells to switch to an α cell-like phenotype (pink half of cell). Importantly, loss
of β cell identity also leads to β cell dysfunction and metabolic alterations. (Right panel) A particular
disallowed gene, MCT1, physiologically inhibited by miR-29a/b and miR-124a, is involved in the
regulation of insulin secretion through the modulation of pyruvate metabolism (green half of cell). In
addition, reduction of the previously cited miRNAs leads to MCT1 hyperexpression in β cell, thus
inducing pyruvate oxidation and uncontrolled insulin secretion (pink half of the cell).

4. microRNAs that Confer Robustness to β Cell Identity: Focus on miR-375, miR-7
and miR-204

Growth/survival- and proliferation-related genes represent an additional group of
factors that should be tightly controlled in order to maintain a functional β cell pheno-
type [56,57]. As a matter of fact, cell cycle exit during endocrine progenitor differentiation
facilitates terminal β cell fate specification. Among β cell-specific/enriched miRNAs,
miR-375, miR-7 and miR-204 have been demonstrated as pivotal regulators of multiple β
cell functions (Figure 2). Of importance, these miRNAs have been reported to be major
determinants of the balance between β cell differentiation/phenotype maintenance and
growth/proliferation.
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Figure 2. MicroRNAs in β cell identity and function. Several miRNAs regulate β cell identity and
function. Hyperexpression of miR-204 induced by TXNIP causes suppression of insulin production
by directly targeting and downregulating MafA; on the other hand, reduction of miR-204 induces
GLP1R upregulation, thus resulting in an improvement in insulin secretion. Genetic deletion of
miR-204 protects β cells from ER stress-induced apoptosis, thus leading to improved insulin secretion.
Importantly, miR-375 hyperexpression is able to stimulate β cell proliferation, mainly by inhibiting
anti-proliferative genes such as Smarca2 and Aifm1, while selective inhibition of miR-375 leads
to upregulation of MTPN, thus improving glucose-stimulated insulin secretion. Another miRNA
involved in β cell proliferation is miR-7. Indeed, its downregulation is able to induce hyperexpression
and the subsequent activation of mTOR pathway, leading to β cell replication. On the contrary,
transgenic hyperexpression of miR-7 in murine pancreatic islets leads to loss of β cell identity by
inhibiting the expression of Ins1, Ins2, Pdx1 and other genes involved in the maintenance of β
cell identity.

4.1. miR-375

miR-375 is a pancreatic islet enriched miRNA. Indeed, it is prominently expressed in
islet endocrine cells [54] and markedly involved in the maintenance of islet architecture
by regulating β-to-α cell mass ratio [58]. Transcriptomic analysis of miR-375-KO mouse
pancreatic islets showed that miR-375 regulates the expression of transcriptional repres-
sors involved in the downregulation of growth genes. These data suggest that miR-375
regulates a cluster of genes involved in the repression of those factors that promote β cell
growth/survival and proliferation. Indeed, Poy and colleagues showed that pancreatic
β cell mass is decreased in miR-375-KO mice as a result of impaired proliferation; in con-
trast, pancreatic islets of obese mice (ob/ob) exhibited increased expression of miR-375, in
consequence of a compensatory phenomenon occurring in pancreatic islets of this mouse
model. Of note, genetic deletion of miR-375 in ob/ob mice (375/ob) profoundly reduced
the proliferative/compensatory capacity of endocrine pancreas and resulted in a severe
diabetic state.

In order to verify whether the overexpression of miR-375 may affect islet function and
β cell proliferation also in a physiological context, Latreille and colleagues developed a
non-obese/non-diabetic transgenic mouse model with selective miR-375 overexpression
in β cells (resulting in a 2-fold overexpression vs. wild type β cells); however, no major
change in β cell mass or function was observed, possibly due to the already elevated
expression of miR-375 in β cells. However, an additional explanation may reside in the
presence of redundant mechanisms selectively activated upon adaptation of the β cell to
chronic overexpression of miR-375 in pancreatic islets of transgenic mice. Indeed, it has
been shown that in vitro overexpression of miR-375 in primary β cells and in cell lines
resulted in impaired insulin secretion, while its selective inhibition led to increased GSIS
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(Glucose Stimulated Insulin Secretion) through the modulation of multiple genes directly
regulating insulin release (e.g., myotrophin (MTPN)) [58–61].

miR-375 expression is also of pivotal importance in pancreas organogenesis [62] as
well as during β cell in vitro differentiation of human-induced pluripotent stem cells [48]
and of embryonic stem cells. Indeed, when overexpressed in human embryonic stem cell-
derived pancreatic progenitors, miR-375 induced cell cycle exit and promoted endocrine cell
differentiation; of note, such an effect was mainly observed in combination with additional
β cell enriched miRNAs (let-7g, let-7a, miR-200a and miR-127), demonstrating the role of
multiple miRNAs network in the resulting phenotype [63]. Collectively, these data provide
evidence that miR-375 is essential for normal glucose homeostasis, β cell differentiation and
turnover, as well as for adaptive β cell expansion in response to increasing insulin demand.

4.2. miR-7

miR-7 is an evolutionarily highly conserved miRNA. miR-7 gene family is composed of
three miRNAs, namely miR-7a-1, miR-7a-2 and miR-7b, whose transcription is particularly
active and selective in β cells, thus resulting in elevated expression levels of this set
of miRNAs. Latreille and colleagues showed that miR-7a negatively regulates GSIS by
targeting regulators of insulin exocytosis. In addition, transgenic overexpression of miR-7a
in murine pancreatic islets induced the reduction of Ins1 and Ins2 as well as of Pdx1, Nkx6.1,
MafA, Pax6, Gata6 and Neurod1, thus being involved in dedifferentiation mechanisms.
In pancreatic islets of insulin-resistant mouse models (High-Fat Diet and ob/ob) and in
pancreatic islets of mild/moderate T2D donors, characterized by increased β cell mass
due to compensatory phenomena, miR-7 expression was reduced. On the contrary, in
T2D rodent models characterized by severe hyperglycaemia and β cell alterations (db/db;
non-obese Goto Kakizaki, GK diabetic rats) miR-7 was significantly hyperexpressed and
linked to β cell phenotype loss [64,65].

The functional role of miR-7 has also been linked to the regulation of β cell prolif-
eration, through targeting mTOR signaling pathway components [66]. Indeed, ex vivo
inhibition of miR-7 in human and mouse pancreatic islets resulted in the activation of the
mTOR pathway, thus inducing β cell replication [66].

Of relevance, miR-7 is also differentially expressed in hIPSCs [63] and in human
embryonic stem cells (hESCs) during differentiation toward β cell fate [67]. Importantly,
induced overexpression of miR-7 during hESCs differentiation improved generation of
mature pancreatic insulin-producing cells and revealed the critical role of miR-7 in the
modulation of β cell differentiation. In this context, induced miR-7 expression is paralleled
by increased levels of typical endocrine pancreatic markers such as PDX1 and FOXA2 [67].
Overall, we can speculate that increased expression of miR-7 during β cell differentiation
process may lead to a reduction in stem cell proliferation potential, alongside cell cycle exit
and improved cell fate specification, thus remarkably phenocopying the effects of miR-375
in the same context.

4.3. miR-204

miR-204 is the most enriched miRNA in human β cells [68].Of note, this miRNA has
been demonstrated to control the expression of MafA and of GLP1R. Xu et al. showed
that miR-204 expression is regulated by thioredoxin-interacting protein (TXNIP), a cellular
redox regulator involved in β cell physiology whose expression is increased in pancre-
atic islets in T2D. Indeed, TXNIP induces miR-204 expression, which in turn suppresses
insulin production by directly targeting and downregulating MafA. This study suggests
a TXNIP/miR-204/MafA/insulin pathway that could potentially contribute to diabetes
progression [69]. Recently, Marzinotto et al. reported that miR-204 is also linked to in vitro
hIPSC differentiation into insulin-producing cells. Indeed, it was demonstrated that miR-
204 was progressively upregulated during hIPSCs maturation stages; however, authors
did not find significant changes in MafA or INS mRNA levels upon up- or downregulation
of miR-204 in both human islets and in the β cell line EndoC-βH1 [70].
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Importantly, miR-204 has been shown to target GLP1R both in rodents and in humans.
The reduction of miR-204 in β cells, both in miR-204-KO mice and in vitro antagomiR-204-
treated cells, significantly induced GLP1R expression, resulting in the improvement of
insulin secretion in response to exendin-4 and a better glucose control in streptozotocin-
treated miR-204-KO vs. wild type mice [71]. Several studies in different contexts (e.g.,
cancer) suggested that miR-204 may be involved in the regulation of cell proliferation.
Indeed, increased expression of miR-204 has been shown to inhibit proliferation in mul-
tiple cell lines, while its expression was significantly reduced in several tumoral tissues
(showing a high proliferative capacity). In particular, a recent study demonstrated the
anti-proliferative effects of miR-204 in db/db mouse islets, which were characterized by an
increased cell proliferation upon genetic deletion of this miRNA, as well as by a reduced
apoptosis induced by ER stress, consequently leading to an improvement of insulin secre-
tion [72]. These data suggest that miR-204, in line with miR-7 and miR-375, may serve as a
switch between proliferation and regulation of multiple β cell functions [72].

5. microRNAs in the Maintenance of β Cell Function: Protective and Compensatory
Mechanisms in T2D
5.1. miR-24

The first study demonstrating a pivotal role of miRNAs in β cell protective mecha-
nisms against lipotoxic or inflammatory stress in T2D was reported by Zhu and colleagues
in 2013 [73], who demonstrated that miR-24, a miRNA highly expressed in pancreatic islets
and enriched in β cells, was hyperexpressed in pancreatic islets isolated from db/db diabetic
mice, as well as in MIN6 murine β cell line and in human pancreatic islets subjected to
lipotoxic stress. Moreover, they demonstrated that miR-24 upregulation is able to induce
XBP1 and ATF4 inhibition, both considered ER stress effectors, thus indicating a protective
role of miR-24 by controlling the expression of a series of ER-related molecules.

More recently, upregulation of miR-24 in murine pancreatic islets was demonstrated
to trigger a protective mechanism against thapsigargin-induced ER stress apoptosis, along-
side the induction of β cell dedifferentiation [74]. Specifically, miR-24 upregulation was
associated with increased expression of those genes linked to dedifferentiated β cells, such
as Ngn3, Oct4 and Sox2. In parallel, a specific downregulation of Ins1 and Ins2, MafA,
NeuroD1 and Pdx1 was observed as well. Of note, authors showed that miR-24 was able
to protect MIN6 cells by directly targeting Ire1α, Xbp1 and Atf6 ER-stress effectors, thus
protecting β cells from apoptosis while contributing to the loss of their identity. Collectively,
these data demonstrate that miR-24 hyperexpression is able to prevent ER stress-induced β
cell apoptosis while promoting β cell dedifferentiation and loss of identity, thus leading to
β cell dysfunction.

The loss of β cell phenotype, along with reduction of ER stress, is of interest since it
potentially indicates the need to alleviate ER workload by lowering insulin synthesis and
processing. MiR-24 may represent a central node to coordinate β cells between survival
(protection from apoptosis) and maintenance of a functional phenotype (dedifferentiation)
(Figure 3).
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Figure 3. MicroRNAs as regulators of β cell compensation and protection. Metabolic (glucotoxicity
and lipotoxicity) and inflammatory stress modulates miR-184, miR-375 and miR-24 expression in
β cells. Specifically, miR-184 downregulation induces Ago2 upregulation, leading to expansion
of β cell mass. MiR-184-mediated Ago2 upregulation indirectly enhances miR-375 effects on its
target genes, which include factors that repress activation of proliferative genes in β cells. miR-184
downregulation leads to enhanced activation of miR-375, which, in turn, activates cell survival
and proliferation. Nutrients and factors that modulate AMPK activity (including glucose) can
modulate miR-184 expression. Inhibition of miR-184 in human islets increases proliferation and
reduces apoptosis following lipotoxic and inflammatory stress. NKX6.1 directly regulates miR-184
promoter; consequently, the reduced expression of NKX6.1 leads to downregulation of miR-184,
which in turn causes overexpression of CRTC1 with subsequent β cell protection from apoptosis.
MiR-24 upregulation inhibits ER stress-related target genes (IRE1α, XBP1 and ATF6). Upregulation
of miR-24 induces genes typically expressed in dedifferentiated β cells, such as Ngn3, Oct4 and Sox2
together with a downregulation of Ins1 and Ins2, MafA, NeuroD1 and Pdx1, thus leading to the loss
of β cell identity and function and to increased protection from apoptosis. The red arrow indicates
upregulation/activation, and the blue arrow indicates downregulation/inhibition.

5.2. miR-184

miR-184 is enriched in pancreatic islet β cells, where it is mainly involved in the
regulation of compensatory processes in consequence of insulin resistance occurring in
T2D. MiR-184 has been demonstrated to be downregulated both in T2D animal models
and in human pancreatic islets from T2D donors [75–77].

In β cells, miR-184 negatively regulates the expression of its direct target gene Ago2,
a pivotal component of RISC complex involved in the interaction between miRNAs and
their specific target mRNAs. Indeed, in obese and in insulin-resistant mouse models,
reduction of miR-184 induced Ago2 upregulation leading to expansion of β cell mass. On
the contrary, miR-184 overexpression downregulates Ago2 expression [78]. Interestingly,
Ago2 upregulation secondary to miR-184 inhibition indirectly induces the enhancement of
miR-375 effects on its target genes, which include those factors that repress proliferative
genes in β cells. Overall, miR-184 downregulation leads to enhanced activation of miR-375,
which, in turn, activates survival and proliferative cues.

Upstream signals that regulate miR-184 expression have been described by Martinez-
Sanchez and colleagues, showing that nutrients and factors that modulate AMPK activity
(including glucose) can modulate miR-184 expression in mice [79]. Indeed, they generated a
β cell-specific AMPK-KO model and then evaluated miRNAs expression in pancreatic islets.
Interestingly, miR-184 was the most downregulated miRNA, thus indicating a relationship
with AMPK function. Interestingly, we recently demonstrated that miR-184 is also directly
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regulated by NKX6.1, previously shown to be altered in dedifferentiated β cells in T2D.
Of note, we also demonstrated that reduced expression as well as nucleus-to-cytoplasm
translocation of NKX6.1, typically observed in dedifferentiated β cells in T2D, leads to
downregulation of miR-184. Furthermore, miR-184 reduction induced the upregulation
of its target gene CRTC1, leading to β cells protection both from pro-inflammatory and
lipotoxic stress-induced apoptosis [77]. Collectively, these results suggest that the observed
reduction of miR-184-3p and the consequent upregulation of its target gene CRTC1 in
pancreatic islets of T2D donors is subsequent to the reduction/translocation of NKX6.1
occurring in dedifferentiating and/or dysfunctional β-cells in T2D, thus representing a
link between protection and dedifferentiation [77]. Of note, the protective effect exerted by
miR-184 against gluco-/lipotoxic and inflammatory stress was previously reported. Indeed,
in 2013, Nesca and colleagues provided evidence that in vitro miR-184 inhibition in human
islet cells induced (i) increased proliferation in response to prolactin exposure, (ii) reduced
apoptosis rate following palmitate stress or exposure to pro-inflammatory cytokines [75].
Altogether, these data demonstrate the role of miR-184 in β cell response to compensatory
cues and in β cell protection against lipotoxic and inflammatory stress (Figure 3).

5.3. miR-200 Family

MiR-200s is a highly conserved miRNAs family composed of five mature miRNAs, sub-
divided into two distinct gene clusters: miR-200c/miR-141 and miR-200a/miR-200b/miR-
429. They are highly expressed in epithelial cells, where they prevent phenotypic transitions,
such as epithelial-to-mesenchymal transitions (EMT), by targeting multiple genes involved
in the exploitation of mesenchymal phenotype (e.g., Zeb1 and Zeb2 [80,81]). As a matter of
fact, miR-200s have been defined as the guardians against epithelial phenotype loss.

In human pancreatic islets and in β cells, all components of the miR-200 family have
been reported to be highly expressed [47,48], thus potentially controlling and maintaining
mature phenotype. Additionally, miR-200s components have been described to be pivotal
in the control of β cell apoptosis and survival [82]. In pancreatic islets of db/db T2D mouse
model, miR-200s are significantly upregulated. Transgenic mice overexpressing miR-
141/200c in β cells develop diabetes due to massive induction of apoptosis and consequent
loss of β cell mass, leading to chronic hyperglycaemia and overt diabetes. On the other
hand, genetic deletion of the two miRNA clusters (miR-141/miR-200a and miR-200b/c-
3p/miR-429) confers protection against β cell apoptosis in three experimental models of
apoptosis: the Akita mouse, the multiple low dose streptozotocin (STZ) model and the
high-fat-diet-fed mouse treated with a single dose of STZ. In the same study, authors
also demonstrated that the tumor suppressor Trp53 is a direct target of miR-200 and that
ablation of Trp53 or of its downstream target Bax was able to prevent miR-200-induced
β-cell apoptosis and, consequently, T2D development. Importantly, silencing of miR-200c
with antagomiRs reduced the expression of pro-apoptotic genes activated by cytokines and
associated with T2D in islets [83]. Nevertheless, complete loss of miR-200 family did not
affect β cell function or glucose tolerance under basal conditions. Overall, miR-200s family
members negatively regulate a conserved anti-apoptotic and stress-resistance network,
which is reinforced upon ablation of those miRNAs which inhibit the expression of several
components of such network. It is important to note that the miR-200 family has been
shown to be significantly downregulated during the early stages of in vitro human β
cell dedifferentiation [47] and that its potential downregulation along with a loss of β
cell phenotype indicates a mechanism of dedifferentiation-induced protection through
the contribution of specific miRNAs downregulation. Collectively, these data are in line
with the novel view of the dedifferentiation process as a mechanism of β cell rescue from
extracellular stimuli and signaling pathways leading to cell death (Figure 3).
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6. Can We Protect or Restore β Cell Function by Mimicking or Antagonizing Key
Groups of miRNAs?

The RNA-based therapeutic approach is an attractive strategy that may potentially
lead to the specific correction of molecular defects or may regulate target cell functions by
modulation of RNAs expression within the cell/tissue of interest.

Because of their multiple functions and involvement in the control of biological
processes in β cells, miRNAs are considered optimal therapeutic targets. As a matter of
fact, the modulation of specific miRNAs in pancreatic islets or in β cells can be used to
achieve multiple goals:

1. Generating in vitro functional β cells by modulating differentiation mechanisms of
iPSCs and ESCs or by inducing transdifferentiation of other adult cell types into
mature β cells. Substitution of highly expressed β cell miRNAs and/or silencing of
dominant non-β cell miRNAs such as liver miR-122 [84] or neuronal miR-124 [85]
have been demonstrated to affect the ability of multipotent stem cells to differentiate
into insulin-positive cells. Indeed, virus-mediated overexpression of miR-375 in
human skin fibroblast-derived iPSCs was sufficient to trigger their differentiation into
insulin-expressing cells and to allow glucose-dependent insulin secretion in vitro [86].
Overexpression of miR-186 and miR-375 by chemical transfection of human iPSCs
promoted the generation of islet-like cell clusters and induced the expression of β
cell-specific markers [87].

2. Protecting β cells from gluco-lipotoxic and/or inflammatory stress. A recent work
by Zhu and colleagues reported that microRNA miR-24, which is upregulated in
pancreatic islets of diabetic db/db mice [73] as well as in islet cells subjected to palmitate-
induced lipotoxicity [74], directly binds and regulates the expression of Ire1α in MIN6
murine β cell line (see above). Importantly, downregulation of Ire1α secondary to
the overexpression of miR-24 was able to protect β cells from both palmitate- and
thapsigargin- induced apoptosis [74]. Accordingly, it was demonstrated that Ire1α
deletion restricted to β cells was able to inhibit β cell apoptosis, thus preventing
disease onset in NOD mice [30]. Therefore, it is conceivable that the regulation of Ire1α
-XBP1 by miR-24 is part of the molecular mechanisms involved in β cell protection
from inflammatory-stress induced apoptosis. Altogether, these data indicate that
modulation of miR-24 expression could be essential to protect β cells from apoptosis
induced by different types of ER stress e.g., inflammatory and lipotoxic, although
impairing β cell identity and function. Importantly, a peculiar miRNA that could
link protection from stress and proliferative/compensatory events is miR-184, an
interesting potential therapeutic target in diabetes mellitus. As a matter of fact, miR-
184 downregulation protects β cells from both gluco/lipotoxicity- and inflammation-
induced apoptosis [75,77].

3. Proliferation and/or regeneration of β cell. Interestingly, miR-184 inhibition leads to
increased β cell mass, mainly by enhancing β cell proliferative capacity, as described
by Tattikota et al., (see above) [78]. Finally, miR-7 is an additional candidate to be
targeted in order to generate a therapy aiming at inducing β cell proliferation [66].

Overall, the role of several miRNAs has been well described in different protective
mechanisms that could be potentially targeted in order to develop an efficient therapeutic
strategy against both T1D and T2D.

With this ambitious goal, a series of efficient approaches aimed at specifically in-
creasing or decreasing miRNAs expression and function have been developed, since the
modulation of small RNAs in cells has become a standardized procedure through transient
or stable transfection or viral transduction of pri-miRNAs, pre-miRNAs, mature miRNAs,
small interfering RNAs (siRNA), short hairpin RNAs or antagomiRs [88,89].

Inhibition of a specific miRNA can be mainly achieved through two different strategies:
antagomiRs and miRNA sponges.

AntagomiRs were the first miRNA inhibitors that were shown to be fully functional
in mammals [90]. They are synthetic antisense oligonucleotides containing 2-O-methyl-
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modified ribose sugars and terminal phosphorothioates and are conjugated at the 3′ end
with a cholesterol molecule, which facilitates their delivery into cells by associating with
lipoproteins and binding to cell membrane receptors [91,92]. Upon cell entry, antagomiRs
are localized in the cytoplasm and do not affect pre-miRNA levels, thus targeting ex-
clusively mature miRNAs through high-affinity base pairing, which prevents miRNAs
binding to their target transcripts. Importantly, a Locked Nucleic Acid (LNA)-based strat-
egy has already been developed in order to inhibit miR-24 expression in HFD-fed mice.
Interestingly, this therapy was effective to reduce fat accumulation in both liver and plasma
of this animal model without any adverse effects on other tissues/organs [93].

MiRNA sponges are tandem-repeated miRNA target sequences located after a reporter
gene and work as miRNA decoys avoiding its binding to a target Mrna [94]. MiRNA
sponges can be naturally found within long non-coding RNA sequences; nevertheless, they
can also be easily synthetically produced as plasmid or viral vectors containing tandem
arrayed miRNA binding sites, separated from each other by small nucleotide sequence
spacers and inserted into a 3′UTR portion of a reporter gene driven by an RNA polymerase
II promoter [95].

On the other hand, mimicking strategies mainly rely on double-stranded non-natural
small RNA molecules, whose function is to mimic and replace natural transcribed miR-
NAs [96]. Importantly, miRNA mimics can be fully designed and chemically modified
based on the target tissue and different experimental applications [97,98].

However, even though multiple strategies have already been developed to specifically
increase or decrease miRNAs expression, selective delivery of synthetic RNA molecules to
a specific cell of interest, without affecting surrounding tissue, appears quite challenging.
Indeed, off-target cell delivery of these molecules represent the main issue of RNA-based
therapeutics. As a matter of fact, these molecules have been reported to induce different
side effects, such as platelet activation and consequent thrombus formation in specific
contexts [99]. In order to overcome this problem, a series of strategies have been developed
to narrow as much as possible the delivery to a set of target cells [100,101]. Among
them, the most important are certainly aptamers [102], which are short single-stranded(ss)
DNA or RNA molecules selected for the binding to a specific target [103], representing
valid vehicles for miRNA-drugs delivery [104]. Furthermore, aptamers can be subjected
to specific modifications, thus potentially avoiding side-effects secondary to the lack of
tissue-specificity while maintaining their therapeutic efficacy.

An issue to be solved is represented by compounds conjugated with Antagomirs.
For instance, PS-conjugated Antisense Oligonucleotide drugs have been demonstrated

to have important side effects such as complement activation and prolongation of aPTT
(activated partial thromboplastin time). In particular, the immunostimulatory effects of PS-
conjugated Antisense Oligonucleotide drugs have been shown to be sequence-dependent
and mainly associated with the presence of CpG motifs [105].

The administration route of miRNA-drugs is an additional aspect that remains to be
standardized. Indeed, different administration strategies of specific miRNA-drugs could
not work in a particular organ or tissue (e.g., due to the action of several enzymes) [106].

For all these reasons, although miRNAdrugs remain a promising tool for the treat-
ment of several disorders, including T1D and T2D, we are currently far from the clinical
administration of these compounds to human subjects.

7. Concluding Remarks

In recent years, compelling evidence has shown that microRNAs are major regulators
of most mechanisms of β cell development, differentiation, maintenance of identity and
function. Given their involvement in all these processes and taking into account the recent
advances in technologies for in vivo miRNA modulation, specific sets of miRNAs may
represent novel therapeutic targets both in T1D and in T2D.

Author Contributions: G.E.G., N.B., G.L., D.F., L.N., C.F., G.S. and F.D.: writing, review and editing
the manuscript. All authors have read and agreed to the published version of the manuscript.



Int. J. Mol. Sci. 2021, 22, 803 14 of 18

Funding: The work is supported by the Innovative Medicines Initiative 2 (IMI2) Joint Undertaking
under grant agreement No.115797-INNODIA and No.945268 INNODIA HARVEST. This joint under-
taking receives support from the Union’s Horizon 2020 research and innovation programme and
EFPIA, JDRF and the Leona M. and Harry B. Helmsley Charitable Trust. FD was supported by the
Italian Ministry of University and Research (2017KAM2R5_003). HEDIMED, Min Salute PROMETEO,
GS was supported by the Italian Ministry of University and Research (201793XZ5A_006).

Data Availability Statement: Data (figures) always available under citation.

Acknowledgments: The secretarial help of Maddalena Prencipe and Alessandra Mechini was
greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective.

Postgrad. Med. J. 2015, 92, 63–69. [CrossRef]
2. Weir, G.C.; Aguayo-Mazzucato, C.; Bonner-Weir, S. β-cell dedifferentiation in diabetes is important, but what is it? Islets 2013, 5,

233–237. [CrossRef] [PubMed]
3. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [CrossRef]
4. Sabouri, E.; Rajabzaseh, A.; Enderami, S.E.; Saburi, E.; Soleimanifar, F.; Barati, G.; Rahmati, M.; Khamisipour, G.; Enderami,

S.E. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr. Stem Cell Res. Ther. 2020, 15, 1–12. [CrossRef]
[PubMed]

5. Kaspi, H.; Pasvolsky, R.; Hornstein, E. Could microRNAs contribute to the maintenance of β cell identity? Trends Endocrinol.
Metab. 2014, 25, 285–292. [CrossRef] [PubMed]

6. Dumortier, O.; Fabris, G.; Van Obberghen, E. Shaping and preserving β-cell identity with microRNAs. Diabetes Obes. Metab. 2016,
18 (Suppl. S1), 51–57. [CrossRef]

7. Plaisance, V.; Waeber, G.; Regazzi, R.; Abderrahmani, A. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during
Diabetes. J. Diabetes Res. 2014, 2014, 1–12. [CrossRef]

8. Chen, Y.; Tian, L.; Wan, S.; Xie, Y.; Chen, X.; Ji, X.; Zhao, Q.; Wang, C.; Zhang, K.; Hock, J.M.; et al. MicroRNA-17-92 cluster
regulates pancreatic beta-cell proliferation and adaptation. Mol. Cell. Endocrinol. 2016, 437, 213–223. [CrossRef] [PubMed]

9. Brereton, M.F.; Iberl, M.; Shimomura, K.; Zhang, Q.; Adriaenssens, A.E.; Proks, P.; Spiliotis, I.I.; Dace, W.; Mattis, K.K.; Ramracheya,
R.; et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 2014, 5,
4639. [CrossRef] [PubMed]

10. Chakravarthy, H.; Gu, X.; Enge, M.; Dai, X.; Wang, Y.; Damond, N.; Downie, C.; Liu, K.; Wang, J.; Xing, Y.; et al. Converting Adult
Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. Cell Metab. 2017, 25, 622–634. [CrossRef]

11. Gu, G.; Dubauskaite, J.; Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct
from duct progenitors. Development 2002, 129, 2447–2457. [PubMed]

12. Collombat, P.; Xu, X.; Ravassard, P.; Sosa-Pineda, B.; Dussaud, S.; Billestrup, N.; Madsen, O.D.; Serup, P.; Heimberg, H.;
Mansouri, A. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta
cells. Cell 2009, 138, 449–462. [CrossRef] [PubMed]

13. Gradwohl, G.; Dierich, A.; LeMeur, M.; Guillemot, F. neurogenin3 is required for the development of the four endocrine cell
lineages of the pancreas. Proc. Natl. Acad. Sci.USA 2000, 97, 1607–1611. [CrossRef] [PubMed]

14. Napolitano, T.; Avolio, F.; Courtney, M.; Vieira, A.; Druelle, N.; Ben-Othman, N.; Hadzic, B.; Navarro, S.; Collombat, P. Pax4 acts
as a key player in pancreas development and plasticity. Semin. Cell Dev. Biol. 2015, 44, 107–114. [CrossRef]

15. Zhong, F.; Jiang, Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in
Diabetes. Front. Endocrinol. 2019, 10, 101. [CrossRef] [PubMed]

16. Salinno, C.; Cota, P.; Bastidas-Ponce, A.; Tarquis-Medina, M.; Lickert, H.; Bakhti, M. β-Cell Maturation and Identity in Health and
Disease. Int. J. Mol. Sci. 2019, 20, 5417. [CrossRef]

17. Collombat, P.; Hecksher-Sørensen, J.; Krull, J.; Berger, J.; Riedel, D.; Herrera, P.L.; Serup, P.; Mansouri, A. Embryonic endocrine
pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Investig. 2007, 117, 961–970.
[CrossRef]

18. Gao, T.; McKenna, B.; Li, C.; Reichert, M.; Nguyen, J.; Singh, T.; Yang, C.; Pannikar, A.; Doliba, N.; Zhang, T.; et al. Pdx1 maintains
β cell identity and function by repressing an α cell program. Cell Metab. 2014, 19, 259–271. [CrossRef]

19. Wang, H.; Brun, T.; Kataoka, K.; Sharma, A.J.; Wollheim, C.B. MAFA controls genes implicated in insulin biosynthesis and
secretion. Diabetologia 2006, 50, 348–358. [CrossRef]

20. Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure.
Cell 2012, 150, 1223–1234. [CrossRef]

21. Puri, S.; Hebrok, M. Cellular Plasticity within the Pancreas—Lessons Learned from Development. Dev. Cell 2010, 18, 342–356.
[CrossRef] [PubMed]

http://doi.org/10.1136/postgradmedj-2015-133281
http://doi.org/10.4161/isl.27494
http://www.ncbi.nlm.nih.gov/pubmed/24356710
http://doi.org/10.1016/S0092-8674(04)00045-5
http://doi.org/10.2174/1574888X15666200621173607
http://www.ncbi.nlm.nih.gov/pubmed/32564764
http://doi.org/10.1016/j.tem.2014.01.003
http://www.ncbi.nlm.nih.gov/pubmed/24656914
http://doi.org/10.1111/dom.12722
http://doi.org/10.1155/2014/618652
http://doi.org/10.1016/j.mce.2016.08.037
http://www.ncbi.nlm.nih.gov/pubmed/27568466
http://doi.org/10.1038/ncomms5639
http://www.ncbi.nlm.nih.gov/pubmed/25145789
http://doi.org/10.1016/j.cmet.2017.01.009
http://www.ncbi.nlm.nih.gov/pubmed/11973276
http://doi.org/10.1016/j.cell.2009.05.035
http://www.ncbi.nlm.nih.gov/pubmed/19665969
http://doi.org/10.1073/pnas.97.4.1607
http://www.ncbi.nlm.nih.gov/pubmed/10677506
http://doi.org/10.1016/j.semcdb.2015.08.013
http://doi.org/10.3389/fendo.2019.00101
http://www.ncbi.nlm.nih.gov/pubmed/30842756
http://doi.org/10.3390/ijms20215417
http://doi.org/10.1172/JCI29115
http://doi.org/10.1016/j.cmet.2013.12.002
http://doi.org/10.1007/s00125-006-0490-2
http://doi.org/10.1016/j.cell.2012.07.029
http://doi.org/10.1016/j.devcel.2010.02.005
http://www.ncbi.nlm.nih.gov/pubmed/20230744


Int. J. Mol. Sci. 2021, 22, 803 15 of 18

22. Jonas, J.C.; Sharma, A.; Hasenkamp, W.; Ilkova, H.; Patanè, G.; Laybutt, R.; Bonner-Weir, S.; Weir, G.C. Chronic hyperglycemia
triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J. Biol. Chem. 1999, 274, 14112–14121. [CrossRef]

23. Kim-Muller, J.Y.; Zhao, S.; Srivastava, S.; Mugabo, Y.; Noh, H.-L.; Kim, Y.R.; Madiraju, S.R.M.; Ferrante, A.W.; Skolnik, E.Y.;
Prentki, M.; et al. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice.
Cell Metab. 2014, 20, 593–602. [CrossRef] [PubMed]

24. Butler, A.E.; Dhawan, S.; Hoang, J.; Cory, M.; Zeng, K.; Fritsch, H.; Meier, J.J.; Rizza, R.A.; Butler, P.C. β-Cell Deficit in Obese Type
2 Diabetes, a Minor Role of β-Cell Dedifferentiation and Degranulation. J. Clin. Endocrinol. Metab. 2016, 101, 523–532. [CrossRef]
[PubMed]

25. Stancill, J.S.; Cartailler, J.-P.; Clayton, H.W.; O’Connor, J.T.; Dickerson, M.T.; Dadi, P.K.; Osipovich, A.B.; Jacobson, D.A.; Magnuson,
M.A. Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca2+-Regulated Genes. Diabetes 2017, 66,
2175–2187. [CrossRef] [PubMed]

26. Kim-Muller, J.Y.; Fan, J.; Kim, Y.J.R.; Lee, S.-A.; Ishida, E.; Blaner, W.S.; Accili, D. Aldehyde dehydrogenase 1a3 defines a subset of
failing pancreatic β cells in diabetic mice. Nat. Commun. 2016, 7, 12631. [CrossRef]

27. Cinti, F.; Bouchi, R.; Kim-Muller, J.Y.; Ohmura, Y.; Sandoval, P.R.; Masini, M.; Marselli, L.; Suleiman, M.; Ratner, L.E.; Marchetti,
P.; et al. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1044–1054.
[CrossRef]

28. Nordmann, T.M.; Dror, E.; Schulze, F.; Traub, S.; Berishvili, E.; Barbieux, C.; Böni-Schnetzler, M.; Donath, M.Y. The Role of
Inflammation in β-cell Dedifferentiation. Sci. Rep. 2017, 7, 1–10. [CrossRef]

29. Rui, J.; Deng, S.; Arazi, A.; Perdigoto, A.L.; Liu, Z.; Herold, K.C. β Cells that Resist Immunological Attack Develop during
Progression of Autoimmune Diabetes in NOD Mice. Cell Metab. 2017, 25, 727–738. [CrossRef]

30. Lee, H.; Lee, Y.-S.; Harenda, Q.; Pietrzak, S.; Oktay, H.Z.; Schreiber, S.; Liao, Y.; Sonthalia, S.; Ciecko, A.E.; Chen, Y.-G.; et al. Beta
Cell Dedifferentiation Induced by IRE1α Deletion Prevents Type 1 Diabetes. Cell Metab. 2020, 31, 822–836.e5. [CrossRef]

31. Moin, A.S.M.; Dhawan, S.; Shieh, C.; Butler, P.C.; Cory, M.; Butler, A.E. Increased Hormone-Negative Endocrine Cells in the
Pancreas in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 3487–3496. [CrossRef]

32. Moin, A.S.M.; Cory, M.; Ong, A.; Choi, J.; Dhawan, S.; Butler, P.C.; Butler, A.E. Pancreatic Nonhormone Expressing Endocrine
Cells in Children With Type 1 Diabetes. J. Endocr. Soc. 2017, 1, 385–395. [CrossRef] [PubMed]

33. Wasserfall, C.; Nick, H.S.; Campbell-Thompson, M.; Beachy, D.; Haataja, L.; Kusmartseva, I.; Posgai, A.; Beery, M.; Rhodes, C.;
Bonifacio, E.; et al. Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell
Metab. 2017, 26, 568–575.e3. [CrossRef] [PubMed]

34. Spijker, H.S.; Ravelli, R.B.G.; Mommaas-Kienhuis, A.M.; van Apeldoorn, A.A.; Engelse, M.A.; Zaldumbide, A.; Bonner-Weir, S.;
Rabelink, T.J.; Hoeben, R.C.; Clevers, H.; et al. Conversion of mature human β-cells into glucagon-producing α-cells. Diabetes
2013, 62, 2471–2480. [CrossRef]

35. Dhawan, S.; Georgia, S.; Tschen, S.-I.; Fan, G.; Bhushan, A. Pancreatic βCell Identity Is Maintained by DNA Methylation-Mediated
Repression of Arx. Dev. Cell 2011, 20, 419–429. [CrossRef] [PubMed]

36. Dor, Y.; Glaser, B. β-cell dedifferentiation and type 2 diabetes. N. Engl. J. Med. 2013, 368, 572–573. [CrossRef] [PubMed]
37. Spijker, H.S.; Song, H.; Ellenbroek, J.H.; Roefs, M.M.; Engelse, M.A.; Bos, E.; Koster, A.J.; Rabelink, T.J.; Hansen, B.C.;

Clark, A.; et al. Loss of β-Cell Identity Occurs in Type 2 Diabetes and Is Associated with Islet Amyloid Deposits. Diabetes
2015, 64, 2928–2938. [CrossRef]

38. Mezza, T.; Cinti, F.; Cefalo, C.M.A.; Pontecorvi, A.; Kulkarni, R.N.; Giaccari, A. β-Cell Fate in Human Insulin Resistance and Type
2 Diabetes: A Perspective on Islet Plasticity. Diabetes 2019, 68, 1121–1129. [CrossRef]
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