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A B S T R A C T

The recognition of nucleic acids is a general strategy used by the host to detect invading pathogens. Many

studies have established that MITA/STING is a central component in the innate immune response to

cytosolic DNA and RNA derived from pathogens. MITA can act both as a direct sensor of cyclic

dinucleotides (CDNs) and as an adaptor for the recruitment of downstream signaling components. In

both roles, MITA is part of signaling cascades that orchestrate innate immune defenses against various

pathogens, including viruses, bacteria and parasites. Here, we highlight recent studies that have

uncovered the molecular mechanisms of MITA-mediated signal transduction and regulation, and discuss

some notable issues that remain elusive.
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1. Introduction

Recently, tremendous advances have been made in our
understanding of the innate immune response to infectious
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pathogens. Host germ line-encoded pattern-recognition
receptors (PRRs) of the innate immune system recognize
pathogen-associated molecular patterns (PAMPs) generated by
invading pathogens, such as lipids, lipoproteins, proteins and
nucleic acids. Among these PAMPs, recognition of pathogen-
derived nucleic acids is a general strategy used by host cells
to detect infectious agents, a subject of intense study in past
decades.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cytogfr.2014.05.003&domain=pdf
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RNA viruses produce RNA during the viral life cycle that can be
recognized by the host as danger signal to trigger innate immune
responses. Viral RNAs are typically recognized by two classes of
PRRs, membrane-bound Toll-like receptors (TLRs) and cytosolic
RIG-I-like receptors (RLRs). While TLRs such as TLR3 recognize viral
RNA in the endosome of certain immune cells, RLRs, including RIG-
I and MDA5, are essential for the recognition of cytosolic viral RNA
in most cell types [1]. Upon recognition of viral RNAs, RIG-I and
MDA5 are recruited to the mitochondrial adaptor protein VISA
(also known as MAVS, IPS-1, and Cardif) [2–5], which triggers a
series of signaling cascades that lead to the activation of
transcription factors IRF3 and NF-kB. Activated IRF3 and NF-kB
work synergistically to induce the production of type I interferons
(IFNs) and proinflammatory cytokines, leading to innate antiviral
responses.

The presence of DNA in endosome or the cytosol is also a danger
signal for the innate immune system. These DNA molecules,
including exogenous DNA derived from invading pathogens and
endogenous inappropriately aggregated self-DNA, can be recog-
nized by DNA sensing systems to initiate innate immune responses
[6–8]. Compared to the well-studied RNA-induced innate immune
responses, our understanding of DNA-triggered signaling is
relatively limited. Exhilaratingly, the discovery of many DNA
sensors and downstream adaptors, especially the discovery of
MITA, has shed new light on cytosolic DNA-triggered signaling
pathways. Using expression cloning, several groups independently
identified MITA (Mediator of IRF3 Activation, also known as STING,
MPYS, ERIS and TMEM173) as a critical mediator of the innate
immune response to cytosolic nucleic acid ligands [9–12].
Subsequently, a series of studies have established the essential
roles of MITA in innate immune responses to DNA viruses [9,13–
15], some RNA viruses [9–11,16,17], retroviruses [18,19], bacteria
[9,13,20–22] and protozoan parasites [23]. Additionally, MITA has
a central role in the pathogenesis of inflammatory and autoim-
mune diseases triggered by recognition of self-DNA that inappro-
priately accumulates in the cytoplasm [6,24], which has been
reviewed elsewhere [25]. Although most studies have focused on
nucleic acid-triggered signaling, MITA has also been proposed to
sense virus-cell membrane fusion events [26].

Human and murine MITA contain 379 and 378 amino acids,
respectively, and share 81% similarity and 69% identity in
sequence. Homologs in other species, including Sus scrofa, Bos

Taurus, Rattus norvegicus, Xenopus, Drosophila, and Danio rerio, also
exhibit high sequence similarity [11,27–29]. MITA contains four
transmembrane motifs in the N-terminus (aa1-137), which
predominantly anchors itself in the endoplasmic reticulum (ER)
and partially in the mitochondria and mitochondria-associated
membrane (MAM) [9–11,13]. The C-terminal domain (CTD, aa138-
379) extends into the cytosol to bind the cytosolic CDNs and
recruits downstream factors (Fig. 1). Among tissues surveyed,
Fig. 1. Schematic presentation of MITA structure. Human MITA contains four N-termina

mitochodria-associated membrane (MAM). Its C-terminal domain (CTD) hangs in the

components including TBK1 and IRF3. The CTD also contains a dimerization domain (D

K48- and K63-linked polyubiquitination by the indicated E3 ubiquitin ligases and with
MITA showed high expression in the heart, spleen, peripheral
leukocytes, placenta and lung, and moderate expression in the
thymus, small intestines, liver and kidney, but almost undetectable
expression in the brain, skeletal muscle and colon. Among
transformed cell lines, MITA is highly expressed in THP-1, U937,
L929 and Raw264.7 cells, making them sensitive to DNA
stimulation, but is poorly expressed in HEK293T, HeLa, and
Huh-7 cells [11,30]. This expression pattern suggests that MITA
might function in the immune system.

MITA might act in two different ways: as a downstream adaptor
of RNA and DNA sensors or by direct binding of CDNs secreted by
bacteria or endogenously generated by the DNA sensor cGAS. Both
pathways lead to the production of type I IFNs and proinflamma-
tory cytokines. In this review, we summarize recent advances in
the understanding of MITA-mediated signal transduction and
regulation in response to cytosolic nucleic acids.

2. The MITA-mediated signaling pathways

2.1. MITA-mediated signaling in response to cytosolic DNA

Genetic evidence has established the requirement of MITA in
type I IFN induction in innate immune response to cytosolic DNA
and CDNs. The most important remaining questions were how
DNA pathogens are recognized and how MITA links DNA sensing to
downstream signaling. In the past years, great efforts have been
made by many groups to identify DNA sensors, and several
candidates are listed in Table 1.

Among these DNA sensors, AIM2 and NALP3 initiate the ASC-
caspase-1 signaling pathway, leading to inflammation but not type
I IFN production [31–35]. TLR9 is known to recognize CpG-DNA in
plasmacytoid dendritic cells (pDCs), and transduce signals through
the adaptor protein MyD88 to induce type I IFNs and inflammatory
cytokines [36,37]. Genetic evidence suggests that DAI is not
required for the sensing of cytosolic DNA in the cell types
examined, including mouse embryonic fibroblasts (MEFs), bone
marrow derived dendritic cells (BMDCs) and macrophages from
DAI-deficient mice [38]. RNA polymerase III only responds to AT-
rich dsDNA and signals through the RIG-I-mediated signaling
pathway [39]. DDX41 was reported to sense cytosolic DNA in
human myeloid dendritic cells (mDCs), BMDCs and monocytes.
DDX41 binds to poly(dA:dT) or HSV-1 DNA via its DEADc domain,
resulting in its interaction with MITA and activation of TBK1 [15].
Another reported DNA sensor, IFI16, can bind to both single-
stranded DNA (ssDNA) and double-stranded DNA (dsDNA), leading
to IFN production and inflammation through MITA- and ASC-
mediated pathways, respectively [40]. LSm14A, a member of the
LSm family involved in RNA processing in the processing bodies,
has recently been demonstrated as a sensor of viral nucleic acids
[41]. LSm14A can bind to poly(I:C), poly(dA:dT) and viral DNA.
l transmembrane (TM) domains, which anchor itself in ER, mitochondria (MT) and

 cytosol, which is responsible for CDN binding and recruitment of downstream

D) and a flexible C-terminal tail (CTT). MITA is post-translationally modified with

 phosphorylation (P) by the indicated kinases.



Table 1
Mechanisms of cytosolic DNA sensing.

Sensor Ligand Cell type Signaling Knockout confirmed Reference

TLR9 CpG DNA pDCs MyD88- IRF7

MyD88- NF-kB

Essential [36,37]

DAI dsDNA Most cell types TBK1-IRF3

RIP3

Not essential [38,60]

AIM2 dsDNA Most cell types ASC-Caspase-1

Inflammasome

Essential [31–34]

NLRP3 dsDNA Most cell types ASC-Caspase-1

Inflammasome

Essential [35]

RNA Pol III AT-rich dsDNA Most cell types RIG-I-VISA-IRF3 ND [39]

MITA c-di-GMP, c-di-AMP

cGAMP

Most cell types TBK1-IRF3 Essential [12,30,50,51]

IFI16 dsDNA, ssDNA THP1, Raw264.7, MEF, BMDM MITA-TBK1-IRF3

ASC-caspase-1

ND [40]

DDX41 dsDNA

c-di-GMP

mDCs

BMDCs

MITA-TBK1-IRF3 ND [15]

LSm14A dsRNA, dsDNA Most cell types RIG-I-VISA

MITA

ND [41]

cGAS dsDNA

RTI

BMDM, DC

Fibroblast

cGAMP-MITA-

TBK1-IRF3

Essential [18,44,46,47,59]

ND, not determined.
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Depletion of LSm14A markedly reduces both SeV- and HSV-1-
induced IFN-b, suggesting that LSm14A mediates innate immune
responses to both RNA and DNA viruses [41]. It has also been
reported that MITA can associate with both ssDNA and dsDNA,
thereby directly acting as a DNA sensor [42]. However, none of
these candidates seems to be a universally required DNA sensor for
detecting viral DNA in distinct cell types or at the animal level.

Recently, a new DNA sensor, cGAS (cyclic GAMP synthase, also
known as MB21D or C6orf150), was identified [43–45]. Expression
analysis showed that the expression of murine cGAS was high in
Raw264.7 cells and BMDMs, but low in immortalized MEFs,
suggesting a role for cGAS in the immune system. Genetic studies
suggested that cGAS is required for the responses to all the DNA or
DNA viruses examined, including HA-DNA, E. coli DNA, poly(-
dA:dT), ISD, HAV-1 and VACA, to induce type I IFNs in primary
fibroblasts, macrophages, and DCs [46]. Additionally, cGAS is
required for innate immune control of DNA virus in mice, such as
HSV-1, MHV68 and vaccinia virus [46,47]. A recent study
established cGAS as the dominant cytosolic DNA sensor responsi-
ble for the detection of internalized adenovirus [48]. Furthermore,
cGAS is essential for retrovirus-triggered innate immune responses
by sensing reverse-transcribed DNA [18]. Based on these advances,
cGAS seems to be a general sensor of cytosolic DNA in most
immune cells [47].

cGAS can bind to DNA in the cytoplasm and subsequently
catalyze the synthesis of cyclic guanosine monophosphate–
adenosine monophosphate (cGAMP) from GTP and ATP. The
intracellularly generated cGAMP is similar to the bacterial second
messengers c-di-AMP and c-di-GMP, which were previously found
to be potent inducers of innate immune responses [14,49,50]. Thus,
cGAMP in metazoans functions as an endogenous second
messenger that triggers IFN production in response to cytosolic
DNA [30].

It has been demonstrated that MITA can directly bind to CDNs
such as c-di-GMP, c-di-AMP and cGAMP [51,52,53,54,55,56,57,58].
Additionally, c-di-GMP and c-di-AMP induce innate immune
responses in a MITA-dependent manner [12,14]. These findings
suggest that, the cGAS-induced, cGAMP-mediated innate immune
response might also require MITA. Indeed, overexpression of cGAS
in HEK293T cells which naturally lacks MITA expression failed to
induce IFN-b. Consistently, delivery of cGAMP failed to induce IFN-
b in MITA-deficient cells, indicating an essential role for MITA in
cGAS-induced innate immune responses [30,44,59].
Collectively, MITA is generally involved in many aspects of
cytosolic DNA-triggered innate immune responses. First, MITA
functions downstream of some essential ssDNA/dsDNA sensors
such as DDX41 and IFI16 to induce type I IFNs. Second, MITA acts as
a direct sensor for CDNs. Finally, the established DNA sensor cGAS,
which is generally involved in the recognition of DNA from DNA
viruses, bacteria, parasites, and retroviruses, initiates downstream
signaling in a MITA-dependent manner.

In all these scenarios, activated MITA initiates signaling
cascades leading to production of type I IFNs and proinflammatory
cytokines. The mechanisms of these processes are illustrated in
Fig. 2 and will be further discussed below. Briefly, MITA recruits
both TBK1 and IRF3, which facilitates the phosphorylation and
activation of IRF3 by TBK1, leading to the induction of type I IFNs.
However, how MITA couples signaling to NF-kB activation remains
unclear.

2.2. MITA-mediated signaling in response to RNA viruses

Several studies have established the critical roles of MITA in the
innate immune responses to some RNA viruses. Knockdown of
MITA impaired Sendai virus (SeV)- and vesicular stomatitis virus
(VSV)-induced type I IFN production in human transformed cell
lines, such as HEK293, HeLa and Huh7 cells, as well as in human
primary macrophage and DCs [10,11,61]. Furthermore, genetic
studies suggested that MITA deficiency rendered MEFs highly
susceptible to VSV, but less susceptibility was observed in BMDCs
or BMDMs, implicating MITA is involved in innate antiviral
response in specific cell types to certain RNA viruses [9]. In vivo,
MITA-deficient mice were defective in type I IFN production and
highly susceptible to lethal infection with VSV but not encephalo-
myocarditis virus (EMCV) [13]. Compared to the universal
requirement for MITA in cytosolic DNA-triggered signaling, MITA
seems to be involved in innate immune responses against RNA
viruses in a virus- and cell type-specific manner.

Several lines of evidence suggest that MITA is only involved in
RIG-I, but not MDA5 signaling. First, MITA interacts with RIG-I but
not MDA5; second, MITA does not mediate signaling triggered by
high molecular weight poly(I:C), which is known to be sensed by
MDA5; third, MITA is involved in SeV-, VSV-, newcastle disease
virus (NDV)-, Japanese encephalitis virus (JEV)-, but not EMCV-
induced innate immune responses, most likely because all of these
viruses, except EMCV, are detected by RIG-I [9,10,11,17].



Fig. 2. MITA-mediated signaling pathways in response to cytosolic nucleic acids. MITA is involved in both RNA and DNA pathogen-triggered signaling. MITA functions

downstream of RIG-I and VISA in response to infection by some RNA viruses, leading to activation of the transcription factors IRF3 and NF-kB, which induces type I IFNs and

inflammatory cytokines. It is likely that mitochondria- or MAM-associated MITA is involved in this process. DNA from pathogens such as DNA viruses, bacteria and parasites

can be detected by cGAS, which synthesizes noncanonical cGAMP that subsequently binds to ER-localized MITA to initiate downstream signaling. Cytosolic DNA can also be

detected by other DNA sensors to activate MITA, but whether cGAS is involved in these processes has not been determined. Bacteria can also trigger innate immune defense by

secreting c-di-GMP and c-di-AMP that directly bind to MITA. Retroviruses generate cDNA during reverse transcription that can also be sensed by cGAS, which then produces

cGAMP to activate MITA. Furthermore, aberrantly aggregated self-DNA can also trigger innate immune responses in a MITA-dependent manner, but whether cGAS or other

DNA sensors are involved remains unclear. Upon binding to CDNs or activation by upstream DNA sensors, MITA traffics to the perinuclear region and forms punctate

structures that contain IRF3 and TBK1, facilitating TBK1-IRF3 interactions and phosphorylation of IRF3 by TBK1. Activated IRF3 collaborates with NF-kB to induce type I IFNs

and inflammatory cytokines. However, the molecular mechanism that links MITA to NF-kB activation remains unclear. Additionally, MITA can recruit STAT6 to the ER upon

virus infection, leading to TBK1-dependent phosphorylation, dimerization and subsequent translocation of STAT6 into the nucleus where it induces transcription of CCL2,

CCL20 and CCL26. MAM, mitochondria associated membrane; Puncta, perinuclear punctate structure; MITA, also known as STING, MPYS, ERIS and TMEM173; VISA, also

known as MAVS, IPS-1 and Cardif.
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Mechanistically, MITA interacts with VISA, most likely at
mitochondria or MAM [10,13]. The ability of RIG-I and VISA to
induce IFN-b was diminished in MITA-deficient cells, whereas the
ability of MITA to induce IFN-b was not affected in VISA-deficient
cells, indicating that MITA functions downstream of VISA. MITA
seems to act as an accessory adaptor to recruit TBK1 and IRF3 to the
VISA-associated complex after viral infection, facilitating activa-
tion of IRF3 and NF-kB (Fig. 2) [10]. To date, the roles of MITA in
RNA virus-induced innate immune response have mainly been
investigated in transformed human cell lines. Additional studies
using primary cells or in vivo studies will provide more definitive
insights into the roles of MITA in innate immune responses against
RNA viruses.

3. Molecular mechanisms of MITA-mediated signal
transduction

Although some puzzles still remain to be solved, great progress
has been made to advance our understanding of the molecular
mechanisms of MITA-mediated responses to cytosolic DNA. MITA
either functions downstream of DNA sensors or acts as a direct
sensor of CDNs, acting in both roles to initiate signaling cascades
that activate the transcription factors IRF3 and NF-kB, leading to
type I IFN and proinflammatory cytokine production. Although
MITA participates in both cytoplasmic RNA- and DNA-triggered
signaling pathways which converge on the TBK1-IRF3 axis, the
molecular mechanisms of these two pathways appear to be
different. For example, NEMO is thought to be required for RNA-
triggered IRF3 activation, but is dispensable for DNA-triggered,
MITA-mediated activation of IRF3 [62]. Additionally, different
cellular fractions of MITA appear to participate in these two
pathways. The MAM- or mitochondria-localized MITA is important
for RNA-triggered signaling, whereas the ER-localized MITA is
responsible for DNA-triggered signaling [10,13].

As a pivotal factor in DNA-triggered signaling, how MITA is
activated to initiate downstream signaling is a central question
that has been extensively studied in the past years. Certain critical
events have been demonstrated to contribute to MITA activation
and subsequent downstream signaling, such as stimuli-induced
MITA dimerization and oligomerization, MITA-mediated signaling
complex assembly, and membrane system-associated transloca-
tion of MITA to the perinuclear regions.

3.1. MITA is a scaffold protein

It has been reported that MITA can associate with both TBK1
and IRF3, and thereby serves as a scaffold protein that facilitates
interactions between TBK1 and IRF3 [10,62]. Specifically, the
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C-terminus of MITA (aa341-379) is required and sufficient for
interactions with TBK1 and IRF3 that facilitate IRF3 phosphory-
lation by TBK1 [62]. Crystal structures of MITA also suggest the role
of the MITA C-terminus in mediating protein interactions [53,54].
Approximately 40 residues at the C-terminus of MITA could not be
modeled in crystal structures, suggesting that the C-terminus of
MITA is highly flexible and most likely protrudes from the concave
cavity to interact with downstream proteins, such as TBK1 and
IRF3 [53,54]. Surprisingly, a truncated MITA protein that only
contained aa139-344 could strongly interact with TBK1 in the
presence of c-di-GMP, suggesting the presence of an additional
TBK1 binding region of MITA [54]. However, another group found
that MITA did not directly facilitate the activation of IRF3 by TBK1
in an in vitro kinase assay because TBK1 alone was sufficient to
phosphorylate IRF3. This discrepancy most likely resulted from the
use of excess protein in vitro [47].

3.2. MITA undergoes dimerization upon ligand binding

Several studies indicated that most of MITA is monomeric in
cells under physiological conditions, and stimulation with
cytosolic dsDNA and dsRNA induced MITA dimerization, which
is thought to be important for MITA activation and subsequent
downstream signaling [11,54]. However, purified MITA in solution
exists as a dimer, and crystallography studies showed that the CTD
of MITA exists as a symmetrical V-shaped dimer both in the
presence and absence of a ligand [52–58]. There are at least two
possible reasons for this discrepancy. Most likely, MITA exists as a
weak dimer under physiological conditions, which is easily
disturbed by the conditions used for normal detection methods.
Upstream activators or ligand binding can strengthen MITA
dimerization, thereby making it easier to detect the dimeric form
of MITA. This hypothesis is supported by a report that c-di-GMP
binds to the MITA dimer interface in a perfectly symmetrical
manner, thereby acting as a ‘glue’ to reinforce MITA homodimer by
increasing the dimer interface area [53]. Alternatively, it remains
possible that dimerization of MITA is signal-induced.

It has also been reported that MITA can form high molecular
weight aggregates after IFN stimulatory DNA (ISD) stimulation,
indicating that MITA may form oligomers or polymers for its
signaling complex assembly [62]. Such a mechanism would be
similar to VISA and ASC, which are activated by polymerization-
mediated signalosome assembly [63,64].

3.3. MITA translocates to the perinuclear region to activate IRF3

Viral nucleic acids trigger the translocation of MITA from the ER
to the perinuclear regions, which is essential for signal transduc-
tion. Artificial addition of an ER retention signal to MITA hampers
its ability to induce antiviral responses [65]. Many membrane-
containing organelles and structures have been implicated in this
process, such as Golgi apparatuses, endosomes, exocysts, micro-
somes, and autophagy-like puncta [9,13,62,65].

Several lines of evidence suggest that dynamic membrane
trafficking mediates the sequential translocation and assembly of
MITA containing signalosomes, which is essential for maximal
activation of the innate immune response triggered by cytosolic
DNA. First, Brefeldin A, known to cause disassembly of the Golgi
complex [66], blocked MITA trafficking, indicating that Golgi
apparatuses are involved in the translocation of MITA. Second, in
the presence of dsDNA, MITA co-localized with the early endosome
marker early endosome antigen 1 (EEA1) and the recycling
endosome marker transferrin receptor (TFR) [13]. Third, upon
ISD stimulation, MITA associates with Sec5, a component of
exocysts that is involved in vesicle trafficking. Depletion of Sec5
impairs the function of MITA, suggesting that exocysts are involved
in MITA-mediated signal transduction [9,13]. Finally, HSV-1
infection causes MITA to predominantly associate with micro-
somes, complexes of continuous membranes that include the ER,
Golgi and transport vesicles [13]. In summary, DNA stimulation
causes MITA to translocate from the ER via the Golgi apparatuses to
vesicles in the perinuclear region, where it forms punctate
structures.

Coincidently, it has been demonstrated that, in response to
intracellular DNA, TBK1 also aggregates in perinuclear punctate
structures in a MITA-dependent manner [13]. Additionally, co-
localization of a phosphorylation defective mutant of IRF3 with
MITA in punctate structures was also detected [67], suggesting that
IRF3 might be activated in these punctate structures. Together,
these studies demonstrate that DNA-stimulated translocation of
MITA to perinuclear regions where MITA-TBK1-IRF3 complex
assemblies is essential for IRF3 activation.

Although MITA is necessary for the localization of TBK1 to
perinuclear regions, some details still need to be revealed. First,
where does the MITA-TBK1interaction happen, does it occur before
or after translocation to the perinuclear region? Specific inhibitors
of such transportation pathways may be helpful to answer this
question. Another important question is how do the puncta form
and what are they? MITA was found to co-localize with several
autophagy-related proteins after DNA stimulation, including LC3
and Atg9a, which are components of the autophagosomes [65].
However, electron microscopy analyses revealed that MITA-
containing puncta induced by dsDNA stimulation did not exhibit
the morphological characteristics of autophagosomes, suggesting
that the puncta may represent a unique membrane structure.
Another study proposed that this puncta is an endo/lysosome [13].
However, it has also been shown that MITA does not localize to
endosomes or lysosomes after dsDNA stimulation [65]. Further
work will be required to clarify the characteristics of the puncta,
which will contribute to understanding the molecular mechanisms
of DNA-stimulated signal transduction.

Overall, these observations clearly suggest that membrane-
associated protein trafficking is closely related to MITA-mediated
signal transduction in innate immunity. In light of these
observations, it has also been reported that translocon-mediated
RIG-I redistribution from the cytosol to MAM is essential for
downstream innate immune signaling [68].

4. Regulation of MITA-mediated signaling

Because MITA exerts critical roles in cytosolic nucleic acids-
triggered innate immune responses, the regulation of MITA-
mediated signal transduction has been extensively investigated.
Many host factors have been implicated in modulating MITA-
mediated signal transduction to generate an appropriate immune
response. Furthermore, MITA-mediated signaling has also been
targeted by viral proteins for immune evasion.

4.1. Ubiquitination-mediated regulation of MITA

Ubiquitination has emerged as a central posttranslational
regulatory mechanism in the positive and negative control of
antiviral signaling [69]. Two typical linkages of polyubiquitin
chains, K48 and K63 (polyubiquitin chains that are linked through
lysine at position 48 or 63 of ubiquitin, respectively), have been
extensively characterized. In most cases, K48-linked polyubiquitin
chains target substrate proteins for proteasome-dependent
degradation, whereas K63-linked polyubiquitin chains usually
enhance substrate protein functions by regulating cellular
localization or protein–protein interactions.

It was reported that TRIM56 is a positive regulator of MITA-
mediated signaling. Knockdown of TRIM56 impaired poly(I:C)- and
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poly(dA:dT)-stimulated type I IFN production in transformed cell
lines and normal human lung fibroblasts, indicating that TRIM56 is
required for both dsRNA- and dsDNA-induced responses [70].
TRIM56 interacted with MITA and preferentially mediated the
K63-linked ubiquitination of MITA on K150, which is required for
MITA dimerization and subsequent recruitment of TBK1 [70].
However, a structural study of the MITA dimer suggested that K150
may not play a major role in the dimerization of MITA, and a K150
mutation had no effect on MITA dimerization, but did impair its
association with TBK1 [54].

In addition to TRIM56, TRIM32 was also identified as a positive
regulator of MITA-mediated signaling in response to cytosolic
poly(I:C) and poly(dA:dT), as well as SeV and HSV-1 infection [71].
TRIM32 targeted MITA for K63-linked ubiquitination at K20, K150,
K224, and K236 through its E3 ubiquitin ligase activity, and
promoted the interaction of MITA with TBK1. These findings
suggested that TRIM32 is an important regulatory protein for
innate immunity against both RNA and DNA viruses.

Both TRIM32 and TRIM56 are IFN-induced genes that act as
positive feedback regulators of cytosolic RNA- and DNA-triggered
signaling. The relationship between these two E3 ligases remains
unclear. It seems reasonable that they have complementary
functions because their underlying mechanisms are somewhat
different. TRIM56 interacts with the C-terminal region of MITA
and partially colocalizes with MITA at punctate structures after
poly(dA:dT) stimulation. By contrast, TRIM32 interacts with the
N-terminal transmembrane domain-containing fragment of
MITA and colocalizes with MITA at the ER and mitochondria.
To better clarify these potentially distinct roles of TRIM32 and
TRIM56, additional studies using knockout mice and cells will
be needed.

In addition to the positive regulation of MITA by ubiquitination,
it was also reported that MITA is negatively regulated by RNF5-
mediated ubiquitination [61]. RNF5 targets MITA for K48-linked
ubiquitination at the mitochondria, leading to its degradation and
inhibition of virus-induced IRF3 activation, IFN-b expression, and
cellular antiviral response [61].

MITA has also been reported to undergo degradation after DNA
virus infection [72]. It has been proposed that CDNs activate
ULK1(ATG1) to phosphorylate MITA on S366, which causes the
degradation of MITA, thus triggering a negative feedback control of
MITA activity. Chloroquine, which inhibits the lysosomal degra-
dation pathway, could only partially block the degradation of MITA
[72], suggesting MITA is mostly degraded by a non-lysosomal
degradation pathway. The degradation of MITA remains incom-
pletely characterized, as the major degradation pathways need to
be determined and the role of ubiquitination in DNA-induced
degradation of MITA needs to be clarified in future studies.

4.2. Phosphorylation-mediated regulation of MITA

The phosphorylation of MITA has been reported by different
groups, and several phosphorylation sites have been identified in
different cell types and in response to different stimuli
[10,11,62,72]. Two groups identified distinct sites of MITA that
are phosphorylated after stimulation by cytosolic dsDNA. One
group found that recombinant human MITA in L929 cells was
phosphorylated on S353, S358 and S379 after ISD stimulation [62],
while another group found that endogenous human MITA was
phosphorylated on S345, S358, S366 and S379 after dsDNA
stimulation [72]. Contrary to DNA virus infection, upon SeV
infection, MITA is mainly phosphorylated on Ser358 by TBK1,
which is critical for the activation of IRF3. Furthermore, the
mutation of Ser358 to alanine impaired the ability of MITA to
interact with TBK1 [10]. However, the function of S358, which was
identified by three groups, is obscure as both S358A and S358D
mutants partially impair their abilities to activate IRF3 [10,62,72].
It is possible that the phosphorylation of MITA is dynamic and
different sites are phosphorylated at different stages following
stimulation.

Depletion of TBK1 prevented dsDNA-induced phosphorylation
of MITA, indicating that TBK1 is essential for MITA phosphory-
lation [54]. MITA forms puncta in TBK1- and IKKe- double-
deficient MEFs following dsDNA stimulation, indicating that the
translocation of MITA is independent of its phosphorylation [55].
Additionally, MITA phosphorylation likely occurs after trafficking
from the ER to the Golgi apparatus [59]. Recently, one study
reported that ULK1(ATG1), an autophagy-related kinase, could
phosphorylate MITA at S366 and cause MITA to be degraded. This
finding suggests that phosphorylation at S366 is important for
negative regulation of MITA-mediated signaling [72]. Surprising-
ly, both S366A and S366D mutants were found to be inactive
[62,72], suggesting that S366 is not only a phosphorylation site.
Indeed, another study found that S366 is important for IRF3
binding [62].

4.3. Regulation of MITA-mediated signaling by viral proteins

Viruses have evolved elaborate mechanisms to antagonize the
innate immune system. For example, Hepatitis C virus (HCV) can
evade innate immunity and establish chronic infection by cleaving
VISA via HCV-NS3/4A serine protease [73]. As a critical component
in the antiviral innate immune response, MITA is also targeted by
various viruses for immune evasion.

Recently, two groups reported that the HCV non-structural
protein NS4B could abrogate RIG-I-mediated type I IFN induction
by targeting MITA [74,75]. MITA shares a structurally homologous
domain with flavivirus NS4B, which suggests a direct protein–
protein interaction. NS4B colocalizes with MITA in the ER and
MAM, and impairs the interaction between MITA and VISA, which
is required for a robust IFN-b induction [74]. These studies suggest
that HCV NS3/4A and NS4B may cooperate to block IFN-b
induction [74]. Independently, another group found that NS4B can
suppress dsRNA- or RNA virus-induced IFN production by
disrupting the MITA-TBK1 interaction [75]. Additionally, NS4B of
Yellow fever virus (YFV) was found to inhibit MITA activity, most
likely by a similar mechanism [13].

Dengue virus (DENV) can evade the innate immune system
through cleavage of human MITA by its NS2B3 proteinase, thereby
inhibiting type I IFN production [76,77]. In MITA-deficient cells, the
replication of DENV was enhanced, indicating an antiviral role for
MITA against DENV infection [76]. The cleavage site of MITA was
mapped to LRR96/G, which is not conserved in mouse MITA and
render it resistant to NS2B3 cleavage [77]. The absence of this
cleavage site explains why the replication of DENV in mouse cells is
severely restricted, and this is consistent with the notion that MITA
plays a key role in inhibiting DENV infection and propagation in
mice.

Human coronavirus HCoV-NL63 and severe acute respiratory
syndrome (SARS) papain-like proteases (PLPs) antagonize innate
immune signaling by inhibiting MITA-mediated IRF3 activation
[78]. PLPs from human HCoV-NL63 or SARS-CoV interact with
MITA, block MITA dimerization and negatively regulate the
assembly of VISA-MITA-TBK1/IKKe complexes that are required
for activation of IRF-3. Furthermore, PLPs reduce the levels of
ubiquitinated forms of MITA. Thus, the HCoV PLPs seem to disrupt
MITA-mediated IFN induction by distinct strategies.

Compared to the extensive targeting of MITA by RNA viruses,
the regulation of MITA by DNA virus-encoded proteins has not
been reported. As an essential component in cytosolic DNA-
induced signaling, it is reasonable that MITA may also be targeted
by DNA viruses, bacteria and parasites.
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4.4. Other regulatory mechanisms

Recently, NLRC3 was reported to diminish MITA-dependent
innate immune responses to cytosolic DNA, c-di-GMP and DNA
viruses [79]. NLRC3 is associated with both MITA and TBK1,
which hampers the MITA-TBK1 interaction and thus impairs type
I IFN production. Nlrc3-deficient mice exhibit enhanced innate
immunity and reduced morbidity and viral loads after HSV-1
infection. This study demonstrates crosstalks exist between two
key pathways of innate immune regulation, NLR- and MITA-
mediated signaling pathways. In addition to NLRC3, MITA was
reported to be regulated by its alternatively spliced isoform [80].
It has also been reported that treatment of cells with type I IFNs
decreases the mRNA levels of MITA in an IFI16-dependent
manner by an unknown mechanism, indicating that MITA is
regulated by a negative feedback mechanism at the transcrip-
tional level [81].

5. Concluding remarks

This review summarizes our current knowledge of the
molecular mechanisms of MITA-mediated innate immune
responses to cytosolic nucleic acids, including the recognition
of cytosolic nucleic acids, subsequent signaling to induce type I
IFNs, and regulation of the signaling pathways. Many studies
have confirmed that MITA is important in RNA virus-triggered
signaling and MITA is targeted by various viruses for immune
evasion. It has also been established that MITA is essential for
innate immune responses against DNA-producing pathogens,
including DNA viruses, retroviruses, bacteria, and parasites.
Thus, additional studies of differential regulation of MITA-
mediated signaling in response to RNA and DNA, and the
crosstalks between these pathways will benefit our understand-
ing of mechanisms of innate immune responses. The identifica-
tion of cGAS as a critical DNA sensor and CDNs (including c-di-
AMP, c-di-GMP and cGAMP) as direct ligands of MITA signifi-
cantly advanced our understanding of DNA sensing and
signaling. Nevertheless, it will also be necessary to clarify and
confirm the role of other DNA sensors using more rigorous
strategies, including a determination of the relationships of other
sensors with cGAS. Additionally, the mechanisms of MITA
activation remain obscure, as the crystallography studies did
not provide evidence of ligand-induced conformational changes
coupled to downstream signaling. The crystallization of full-
length MITA associated with ligands or downstream components
could be critical for further uncovering the mechanisms of MITA-
mediated signal transduction. Another important question is
how MITA mediates NF-kB activation, a critical event in innate
immunity. It will be interesting to investigate whether NF-kB
activation is also associated with formation of punctate
structures. Furthermore, given the different responses in mouse
and human cells, the functions of murine and human MITA might
not be completely similar; discrepancies could result from
critical amino acid changes, differential regulation by viruses, or
other mechanisms [9,10,13,45,52]. Resolving these issues will
contribute to our understanding of innate immune responses,
and provide clues for drug and vaccine development against
infectious and autoimmune diseases.
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