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To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes
a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL
algorithm, firstly, amethod is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In
addition, four strategies (harmonymemory consideration, teaching-learning strategy, local pitch adjusting, and randommutation)
are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies
are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local
exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient
alternative for solving 0-1 knapsack problems.

1. Introduction

Harmony search (HS) [1, 2] is a new population-based meta-
heuristic optimization algorithm. It has received much atten-
tion regarding its application potential as continuous and
discrete optimal problem. Inspired by the process of the
musicians’ improvisation of the harmony, the HS algorithm
improvises its instruments’ pitches searching for a perfect
state of harmony. The effort to find a new harmony in music
is analogous to finding a better solution in an optimization
process. HS has been applied to optimization problems in
different areas [3–11]. The HS algorithm has powerful explo-
ration ability in a reasonable time but is not good at perform-
ing a local search. In order to improve the performance of
the harmony searchmethod, several variants of HS have been
proposed [12–20].These variants have some improvement on
continuous optimization problems. However, their effective-
ness in dealing with discrete problems is still unsatisfactory.

The knapsack problem is one of the classical combina-
torial optimization problems. It derives its name from the
problem faced by someone who is constrained by a fixed-
size knapsack and must fill it with the most valuable items.
The knapsack problem often applies to resource allocation

where there are financial constraints and is studied in fields
such as combinatorics, computer science, complexity theory,
cryptography, and applied mathematics.

The 0-1 knapsack problem is as follows. Given a set of 𝐷

items and a knapsack, with

𝑝𝑗 = profit of item 𝑗,

𝑤𝑗 = weight of item 𝑗,

𝑐𝑗 = volume of item 𝑗,

𝑊 = weight capacity of knapsack,

𝑉 = volume capacity of knapsack,

(1)

select some items so that the total profit of the selected items
is maximum, and the total weight and the total volumes of
selected items are not more than the weight capacity and the
volume capacity of the knapsack. Formally,

maximize 𝑧 =

𝐷

∑

𝑗=1

𝑝𝑗𝑥𝑗, (2)
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subject to
𝐷

∑

𝑗=1

𝑤𝑗𝑥𝑗 ≤ 𝑊,

𝐷

∑

𝑗=1

𝑐𝑗𝑥𝑗 ≤ 𝑉,

(3)

where

𝑥𝑗 = {
1, if item 𝑗 is assigned to knapsack
0, otherwise.

(4)

Manymethods have been employed to solve 0-1 knapsack
problems. Zou et al. proposed a novel global harmony search
algorithm (NGHS) for 0-1 knapsack problems [21]. Y. Liu
and C. Liu presented an evolutionary algorithm to solve 0-1
knapsack problems [22]. Shi used an improved ant colony
algorithm to solve 0-1 knapsack problems [23]. Lin solved
the knapsack problems with imprecise weight coefficients by
using genetic algorithm [24]. Boyer et al. solved knapsack
problems on GPU [25]. Hill et al. proposed a heuristic
method for 0-1 multidimensional knapsack problems [26].
Gherboudj et al. propose a discrete binary cuckoo search
(BCS) algorithm in order to deal with binary optimisation
problems [27]. A novel quantum inspired cuckoo search for
knapsack problems is present in the literature [28].

In recent years, more and more discrete optimization
problems are solved by HS method. To some extent, this is
due to the memory consideration rule that is appropriate to
be employed to resolve the discrete optimization problems.
However, for a high-dimensional discrete optimization prob-
lem, classical HS algorithm can be easy to cause premature
convergence and stagnation behavior. Therefore, we present
a dynamic parameters-adjustment mechanism for solving
the high-dimensional 0-1 knapsack problems. To enhance
the performance of dealing with discrete problems by HS
method, this paper proposed an improved HS algorithm
based on teaching-learning (HSTL) strategies.

The rest of the paper is organized as follows. Section 2
introduces the classical HS algorithm and three state-of-
the-art variants of HS. The teaching-learning-based opti-
mization (TLBO) algorithm and the proposed approach
(HSTL) are introduced in Section 3. Section 4 presents
related constraint-handling technique and integer processing
method. Experimental results are reported in Section 5.
Finally, Section 6 concludes this paper.

2. HS Algorithm and Other Variants

In this section, we introduce the classical HS algorithm
and three state-of-the-art variants of HS algorithms: NGHS
algorithm [17], intelligent tuned harmony search algorithm
(ITHS) [18], and exploratory power of harmony search
algorithm (EHS) [19].

2.1. Classical Harmony Search Algorithm (HS). Classical har-
mony search (HS) is derivative-free meta-heuristic algo-
rithm. It mimics the improvisation process of music players

and uses three rules (memory consideration, pitch adjust-
ments, and randomization) to optimize the harmony mem-
ories. The steps in the procedure of classical harmony search
algorithm are as follows.

Step 1 (initialize the harmony memory). The harmony mem-
ory (HM) consists of HMS harmony. Each harmony is
generated from a uniform distribution in the feasible space,
as

𝑥
𝑗

𝑖 = 𝑥
𝐿
𝑖 + rand () ⋅ (𝑥

𝑈
𝑖 − 𝑥
𝐿
𝑖 ),

𝑖 = 1, 2, . . . , 𝐷; 𝑗 = 1, 2, . . . ,HMS,
(5)

where rand() is a uniform distribution random number
between 0 and 1.

Consider the following:

HM =

[
[
[
[
[
[
[
[

[

𝑋
1

𝑋
2

...

𝑋
HMS

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑥
1
1 𝑥

1
2 ⋅ ⋅ ⋅ 𝑥

1
𝐷

𝑥
2
1 𝑥

2
2 ⋅ ⋅ ⋅ 𝑥

2
𝐷

...
...

...
...

𝑥
HMS
1 𝑥

HMS
2 ⋅ ⋅ ⋅ 𝑥

HMS
𝐷

]
]
]
]
]
]
]
]

]

. (6)

Step 2 (improvise a new harmony via three rules). Improvise
a new harmony 𝑋

new via three rules: memory consideration,
pitch adjustment, and random generation.

(a)Memory Consideration. Decision variable value of the new
harmony will be generated by choosing from the harmony
memory with probability HMCR.

(b) Pitch Adjustment. Get a component randomly from an
adjacent value of one decision variable of a harmony vector
with probability PAR.

(c) Random Generation. Generate a component randomly in
the feasible region with probability 1-HMCR.

The improvisation procedure of a new harmony works as
Algorithm 1.

A new potential variation (or an offspring) is generated
in Step 2, which is equivalent to mutation and crossover
operator in standard Evolution Algorithms (EAs).

Step 3 (update the worst harmony). Consider the following:

If 𝑋
new is better than 𝑋

worst

𝑋
new

= 𝑋
worst

,

Endif ,

(7)

where 𝑋
worst

= (𝑥
worst
1 , 𝑥

worst
2 , . . . , 𝑥

worst
𝐷 ) denotes the worst

harmony in HM.

Step 4 (check stopping criterion). If the stopping criterion
(maximum function evaluation times: MaxFEs) is satisfied,
computation is terminated. Otherwise, Step 2 and Step 3 are
repeated.
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For i = 1 to D
If rand() < HMCR

𝑥
new
𝑖 = 𝑥

𝑗

𝑖 , 𝑗 ∈ 𝑈{1, 2, . . . ,HMS}
If rand() < PAR

𝑥
new
𝑖 = 𝑥

new
𝑖 ± rand() × BW (𝑖)

𝑥
new
𝑖 = min (max (𝑥

new
𝑖 , 𝑥
𝐿
𝑖 ) , 𝑥
𝑈
𝑖 )

Endif
Else

𝑥
new
𝑖 = 𝑥

𝐿
𝑖 + (𝑥

𝑈
𝑖 − 𝑥

𝐿
𝑖 ) × rand()

Endif
EndFor

Algorithm 1: The improvisation procedure of new harmony by classical HS.

For i = 1 to D
𝑥
𝑟
𝑖 = 2 × 𝑥

best
𝑖 − 𝑥

worst
𝑖

𝑥
𝑟
𝑖 = min (max (𝑥

𝑟
𝑖 , 𝑥
𝐿
𝑖 ) , 𝑥
𝑈
𝑖 )

𝑥
new
𝑖 = 𝑥

worst
𝑖 + rand() × (𝑥

𝑟
𝑖 − 𝑥

worst
𝑖 ).

If rand() ⩽ 𝑝𝑚 %random mutation
𝑥
new
𝑖 = 𝑥

𝐿
𝑖 + (𝑥

𝑈
𝑖 − 𝑥

𝐿
𝑖 ) × rand()

Endif
EndFor

Algorithm 2: The improvisation procedure of new harmony by NGHS.

2.2. The NGHS Algorithm. In NGHS algorithm, three sig-
nificant parameters, harmony memory considering rate
(HMCR), bandwidth (BW), and pitch adjusting rate (PAR),
are excluded from NGHS, and a random select rate (𝑝𝑚) is
included in the NGHS. In Step 3, NGHS works as Algorithm
2, where 𝑋

best
= (𝑥

best
1 , 𝑥

best
2 , . . . , 𝑥

best
𝐷 ) and 𝑋

worst
= (𝑥

worst
1 ,

𝑥
worst
2 , . . . , 𝑥

worst
𝐷 ) denote the best harmony and the worst

harmony in HM, respectively. We set parameter 𝑝𝑚 = 2/𝐷

for the 0-1 knapsack problem and 𝑝𝑚 ∈ [0.005, 0.1] for
continuous optimal problem.

2.3. The EHS Algorithm. The EHS algorithm uses the same
structure with the classical HS algorithm and does not intro-
duce any complex operations. The only difference between
HS and EHS is that the EHS algorithm proposed a new
scheme of tuning BW, and it works as follows (proportional
to the current population variance):

BW = 𝑘√
1

HMS

HMS
∑

𝑖=1

(𝑥𝑖 − 𝑥)
2
, (8)

where 𝑘 is the proportionality constant. If the value of 𝑘 is
high, the population variance will maintain or increase, and
thus the global exploration power of algorithm will enhance.
While if the value of 𝑘 is low, the population variance
will decrease and the local exploitation performance will
increase. The experimental results tested by Das et al. [19]
have shown that keeping 𝑘 around 1.2 provided reasonably
accurate results.

The EHS algorithm can enhance the exploratory power,
and can provide a better balance between diversification and
intensification. However, the exploratory power of EHS leads
to the slower convergence [18], and the computational time
of BW is greatly increased.

2.4. The ITHS Algorithm. The ITHS algorithm [18] proposed
a subpopulation formation technique. The population is
divided into two groups: Group A and Group B, which is
carried out based on fit (the mean objective function value
of all harmony vectors in HM). The harmony vectors, whose
objective function value is less than fit, belong to Group A,
and the rest belong to Group B.The improvisation procedure
of new harmony by ITHS is shown in Algorithm 3. In ITHS
algorithm, the parameter PAR is updated with the number of
iterations:

PAR = PARmax −
(PARmax − PARmin) × 𝑡

𝑇max
, (9)

where 𝑡 and𝑇max are the current iterations and themaximum
iterations.

3. HSTL Algorithm

In this section, we proposed a novel harmony search with
teaching-learning strategy which derived from Teaching-
Learning-Based Optimization (TLBO) algorithm. Above all,
the TLBO algorithm is introduced and analyzed, and then we
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For i = 1 to D do
If rand() < HMCR

𝑥
new
𝑖 = 𝑥

𝑗

𝑖 , 𝑗 ∈ 𝑈 {1, 2, . . . ,HMS}
If rand() < PAR

If fit (𝑥𝑗) ≤ fit //Group A
If rand() < 0.5
𝑦𝑖 = 𝑥

best
𝑖 − rand() × (𝑥

best
𝑖 − 𝑥

new
𝑖 )

Else
𝑦𝑖 = 𝑥

best
𝑖 − rand() × (𝑥

worst
𝑖 + 𝑥

new
𝑖 )

Endif
Else //Group B

𝑥
best
𝑚 = 𝑥

best
𝑚 × (𝑥

𝑈
𝑖 /𝑥
𝑈
𝑚) , 𝑚 ∈ 𝑈 {1, 2, . . . ,HMS}

𝑦𝑖 = 𝑥
new
𝑖 + rand() × (𝑥

best
𝑚 − 𝑥

new
𝑖 )

Endif
𝑥
new
𝑖 = min (max (𝑦𝑖, 𝑥

𝐿
𝑖 ) , 𝑥
𝑈
𝑖 )

Endif
Else

𝑥
new
𝑖 = 𝑥

𝐿
𝑖 + (𝑥

𝑈
𝑖 − 𝑥

𝐿
𝑖 ) × rand()

Endif
EndFor

Algorithm 3: The improvisation procedure of new harmony by ITHS.

focus on the details of HSTL algorithm and the strategies of
dynamically adjusting the parameters.

Since its origination, HS algorithm has been applied to
many practical optimization problems. However, for large
scale optimization problems, HS has slow convergence and
low precision, which is because a new decision variable
value in HM can be generated only by pitch adjustment
and randomization strategies during the search process, the
memory consideration rule is only used to adjust the decision
variable values according to the currentHM.HS canmaintain
a strong exploration power in the early stage, but it does not
have a good exploitation in the later stage, and thus it is char-
acterized by earlier mature and slow convergence. Therefore,
for solving large scale optimization problem, the key is how
to balance between global exploration performance and local
exploitation ability.

3.1. Dimension Reduction Adjustment Strategy. As we know,
for a complex optimization problem, its optimization may
experience a process from extensive exploration in a large
range to fine adjustment in a small range. For a D-
dimensional optimization problem, we assume that its opti-
mal solution is 𝑋

∗
= (𝑥
∗
1 , 𝑥
∗
2 , . . . , 𝑥

∗
𝐷). Let initial HM be as

follows:

HM =

[
[
[
[
[
[
[
[

[

𝑋
1

𝑋
2

...

𝑋
HMS

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑥
1
1 𝑥

1
2 ⋅ ⋅ ⋅ 𝑥

1
𝐷

𝑥
2
1 𝑥

2
2 ⋅ ⋅ ⋅ 𝑥

2
𝐷

...
...

...
...

𝑥
HMS
1 𝑥

HMS
2 ⋅ ⋅ ⋅ 𝑥

HMS
𝐷

]
]
]
]
]
]
]
]

]

. (10)

After several iterations, the HM turns into HM2. It can
be seen fromHM2 that each solution𝑋

𝑗
(𝑗 = 1, 2, . . . ,HMS)

in HM2 has nearly achieved the best solution except for one
dimension (𝑦𝑗𝑖 , 𝑗 = 1, 2, . . . ,HMS; 𝑖 = 1, 2, . . . , 𝐷):

HM2 =

[
[
[
[
[
[
[
[

[

𝑋
1

𝑋
2

...

𝑋
HMS

]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑦
1
1 𝑥
∗
2 ⋅ ⋅ ⋅ 𝑥

∗
𝐷

𝑥
∗
1 𝑦
2
2 ⋅ ⋅ ⋅ 𝑥

∗
𝐷

...
...

...
...

𝑥
∗
1 𝑥
∗
2 ⋅ ⋅ ⋅ 𝑦

HMS
𝐷

]
]
]
]
]
]
]
]

]

. (11)

Then we assume that only the harmony memory con-
sideration rule of HS algorithm is employed to optimize the
HM2. In the following, we employ the two methods to gen-
erate two new harmonies: 𝑋new1

= (𝑥
new1
1 , 𝑥

new1
2 , . . . , 𝑥

new1
𝐷 )

and 𝑋
new2

= (𝑥
new2
1 , 𝑥

new2
2 , . . . , 𝑥

new2
𝐷 ), respectively, and then

analyze which method is better.

Method 1. Generate the solution 𝑋
new1 on each variable

𝑥
new1
𝑖 (𝑖 = 1, 2, . . . , 𝐷) by using the harmonymemory consid-

eration rule, as in Algorithm 4.

Method 2. Let 𝑋
new2

= 𝑋
worst and then adjust one of the

variables of the new solution 𝑋
new2 by using the harmony

memory consideration rule, as in Algorithm 5.

In the following, we analyze the two methods.
In Method 1, all of the decision variables of harmony

𝑋
new1 are chosen from HM2. If 𝑋

new1 hopes to be the
optimal solution 𝑋

∗
= (𝑥
∗
1 , 𝑥
∗
2 , . . . , 𝑥

∗
𝐷), we should choose

𝑥
new1
𝑖 = 𝑥

∗
𝑖 , 𝑖 = 1, 2, . . . , 𝐷. In other words, 𝑦

𝑗

𝑖 (𝑗 =

1, 2, . . . ,HMS; 𝑖 = 1, 2, . . . , 𝐷) in HM2 cannot be chosen as
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For i = 1 to D
If rand() < HMCR

𝑥
new1
𝑖 = 𝑥

𝑗

𝑖 , 𝑗 ∈ 𝑈 {1, 2, . . . ,HMS}
EndIf

EndFor

Algorithm 4

𝑋
new2

= 𝑋
worst

i = round(rand()∗D) //Generating a random integer between 1 and D.
𝑥
new2
𝑖 = 𝑥

𝑗

𝑖 , 𝑗 ∈ 𝑈 {1, 2, . . . ,HMS}

Algorithm 5

𝑥
new1
𝑖 in the latter iteration. We can see that the probability

𝑥
new1
𝑖 that turns into 𝑥

∗
𝑖 is HMS − 1/HMS in HM2, so

the probability 𝑋
new1 turns into 𝑋

∗
= (𝑥
∗
1 , 𝑥
∗
2 , . . . , 𝑥

∗
𝐷) is

((HMS − 1)/HMS)𝐷.
In Method 2, assume that the 𝑋

new2
= 𝑋

worst
≜ (𝑦
1
1 ,

𝑥
∗
2 , . . . , 𝑥

∗
𝐷), during each iteration, and only one decision

variable of𝑋new2 needs to be adjusted with harmonymemory
consideration rule. So the probability that decision variable
𝑦
1
1 is chosen to adjust is 1/𝐷, and then the probability that

𝑦
1
1 will be replaced with 𝑥

∗
1 is HMS − 1/HMS. Therefore,

in one iteration, the probability that 𝑋
new2 turns into 𝑋

∗
=

(𝑥
∗
1 , 𝑥
∗
2 , . . . , 𝑥

∗
𝐷) by Method 2 is 1/𝐷 ⋅ HMS − 1/HMS.

Next, we compare the success rate between Method 1 and
Method 2 at different dimensions.

When HMS = 10,D = 10, the success rate of Method 1 is

𝑃 {𝑋
new1

→ 𝑋
∗
} = (

HMS − 1

HMS
)

𝐷

= (
10 − 1

10
)

10

= 0.34867844,

(12)

and the success rate of Method 2 is

𝑃 {𝑋
new2

→ 𝑋
∗
} =

1

𝐷
⋅
HMS − 1

HMS
=

1

10
⋅
10 − 1

10
= 0.09.

(13)

Apparently, under this condition, Method 1 is superior to
Method 2.However, if we setHMS = 10,𝐷 = 100, the success
rate of Method 1 is

𝑃 {𝑋
new1

→ 𝑋
∗
} = (

HMS − 1

HMS
)

𝐷

= (
100 − 1

100
)

100

= 2.65614𝐸 − 05,

(14)

while the success rate of Method 2 is

𝑃 {𝑋
new2

→ 𝑋
∗
} =

1

𝐷
⋅
HMS − 1

HMS

=
1

100
⋅
100 − 1

100
= 9.0𝐸 − 03.

(15)

For different D, a more detailed success rate of Method 1
and Method 2 is listed in Table 1.

From Table 1, it can be seen that, for low dimensional
problem (𝐷 < 50), success rate of Method 1 is greater than
that of Method 2; however, Method 2 has higher success rate
than Method 1 when 𝐷 ≥ 50, and with the increasing of
dimensionality, the success rate of Method 1 will drop dra-
matically, but Method 2 can maintain a higher success rate.

By above idea, in the beginning stages, exploring is on
a wider domain so as to search fast, and in the later stages,
the search focus on a small space to improve the accuracy of
solution. Aiming at the HS algorithm, we design a dynamic
dimension selection strategy to adjust some selected decision
variables. A simple process is shown in Figure 1.

In Figure 1, the parameter TP represents the tune prob-
ability of each decision variable. TP changes from TPmax to
TPmin. In other words, each decision variable of the objective
harmony vectorXnew will be tunedwith probability TPwhich
decreases fromTPmin to TPmin with the increase of iterations.

3.2. The TLBO Algorithm. Teaching-Learning-Based Opti-
mization (TLBO) algorithm [29–38] is a new nature-inspired
algorithm; it mimics the teaching process of teacher and
learning process among learners in a class. TLBO shows a
better performance with less computational effort for large
scale problems [31]. In addition, TLBO needs very few
parameters.

In the TLBO method, the task of a teacher is to try
to increase mean knowledge of all learners of the class in
the subject taught by him or her depending on his or her
capability. Learners make efforts to increase their knowledge
by interaction among themselves. A learner is considered as
a solution or a vector, different design variables of a vector
will be analogous to different subjects offered to learners,
and the learners’ result is analogous to the “fitness” as in
other population-based optimization techniques.The teacher
is considered as the best solution obtained so far.The process
of TLBO is divided into two phases, “Teacher Phase” and
“Learner Phase.”

3.2.1. Teacher Phase. Assume that there are D number of
subjects (i.e., design variables) and NP number of learners
(i.e., population size); 𝑋teacher

= (𝑥
teacher
1 , 𝑥

teacher
2 , . . . , 𝑥

teacher
𝐷 )
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Table 1: Success rate of Methods 1 and 2.

HMS D The success rate
Method 1 Method 2

10 10 3.48678𝐸 − 01 9.00000𝐸 − 02

10 20 1.21577𝐸 − 01 4.50000𝐸 − 02

10 30 4.23912𝐸 − 02 3.00000𝐸 − 02

10 40 1.47809𝐸 − 02 2.25000𝐸 − 02

10 50 5.15378𝐸 − 03 1.80000𝐸 − 02

10 60 1.79701𝐸 − 03 1.50000𝐸 − 02

10 70 6.26579𝐸 − 04 1.28571𝐸 − 02

10 80 2.18475𝐸 − 04 1.12500𝐸 − 02

10 90 7.61773𝐸 − 05 1.00000𝐸 − 02

10 100 2.65614𝐸 − 05 9.00000𝐸 − 03

10 110 9.26139𝐸 − 06 8.18182𝐸 − 03

10 120 3.22925𝐸 − 06 7.50000𝐸 − 03

10 130 1.12597𝐸 − 06 6.92308𝐸 − 03

10 140 3.92601𝐸 − 07 6.42857𝐸 − 03

10 150 1.36891𝐸 − 07 6.00000𝐸 − 03

10 160 4.77311𝐸 − 08 5.62500𝐸 − 03

10 170 1.66428𝐸 − 08 5.29412𝐸 − 03

10 180 5.80299𝐸 − 09 5.00000𝐸 − 03

10 190 2.02338𝐸 − 09 4.73684𝐸 − 03

10 200 7.05508𝐸 − 10 4.50000𝐸 − 03

10 300 1.87393𝐸 − 14 3.00000𝐸 − 03

10 400 4.97741𝐸 − 19 2.25000𝐸 − 03

10 500 1.32207𝐸 − 23 1.80000𝐸 − 03

10 600 3.51161𝐸 − 28 1.50000𝐸 − 03

10 700 9.32731𝐸 − 33 1.28571𝐸 − 03

10 800 2.47747𝐸 − 37 1.12500𝐸 − 03

10 900 6.58049𝐸 − 42 1.00000𝐸 − 03

10 1000 1.74787𝐸 − 46 9.00000𝐸 − 04

is the best learner (i.e., teacher). For each learner 𝑋
𝑗

= (𝑥
𝑗

1,

𝑥
𝑗

2, . . . , 𝑥
𝑗

𝐷), the works of teaching are as follows:

𝑥
𝑗,new
𝑖 = 𝑥

𝑗,old
𝑖 + rand () × (𝑥

teacher
𝑖 − 𝑇𝐹 × Mean𝑖) ,

Mean𝑖 =
1

𝑁𝑃

𝑁𝑃

∑

𝑗=1

𝑥
𝑗

𝑖 ,

𝑗 = 1, 2, . . . , 𝑁𝑃, 𝑖 = 1, 2, . . . , 𝐷,

(16)

where𝑥
𝑗,old
𝑖 and𝑥

𝑗,new
𝑖 denote the knowledge of the jth learner

(𝑋𝑗) before and after learning the ith subject, respectively. 𝑇𝐹
is the teaching factor which decides the value of mean Mean𝑖
to be changed. 𝑇𝐹 is decided by 𝑇𝐹 = round[1 + rand()].

3.2.2. Learner Phase. Another important approach to
increase knowledge for a learner is to interact with other
learners. Learning method is expressed as in Algorithm 6.

Even since the TLBO algorithm proposed by Rao et al.
[29], it has been applied to the fields of engineering opti-
mization, such as mechanical design optimization [29, 32,
37], heat exchangers [33], thermoelectric cooler [34], and

Begin

i = 1

N

N

N

Y

Y

Y

Y

N

i = i + 1

t = t + 1

t ≤ Tmax

End

TP = TPmax − (TPmax − TPmin )∗(t/Tmax )

i ≤ D

Rand() < TP

Select the worst harmony Xworst from HM
as tune object Xnew

Execute harmony tune algorithm on ith

Xnew is better than Xworst

Xworst = Xnew

decision variable xnew
i of harmony Xnew

Figure 1: Dynamic dimension selection strategy for HS algorithm.

unconstrained and constrained real parameter optimization
problems [35, 36]. Some improved TLBO algorithm was
present in last two years. An elitist TLBO algorithm for solv-
ing unconstrained optimization problems [38] by Rao and
Patel and an improved harmony search based on teaching-
learning strategy for unconstrained optimization problems
by Tuo et al. [39] are proposed.

In the TLBO method, the teacher phase relying on the
best solution found so far usually has the fast convergence
speed and the well ability of exploitation; it is more suitable
for improving the accuracy of the global optimal solution.
Learner phase relying on other learners usually has the slow
convergence speed; however, it bears stronger exploration
capability for solving multimodal problems.

3.3. The HSTL Algorithm. In order to achieve satisfactory
optimization performance by applying the HS algorithm to a
given problem, we develop a novel harmony search algorithm
combined teaching-learning strategy, in which both new har-
mony generation strategies and associated control parameter
values can be dynamically changed according to the process
of evolution.
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For each learner 𝑋
𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑃

Randomly select another learner 𝑋
𝑘

(𝑗 ̸= 𝑘)

If 𝑋
𝑗 is superior to 𝑋

𝑘

𝑋
𝑗,new

= 𝑋
𝑗,old

+ rand (1, 𝐷) ⋅
∗
(𝑋
𝑗

− 𝑋
𝑘
)

Else
𝑋
𝑗,new

= 𝑋
𝑗,old

+ rand (1, 𝐷) ⋅
∗
(𝑋
𝑘
− 𝑋
𝑗
)

Endif
Endfor
If 𝑋
𝑗,new is superior to 𝑋

𝑗,old

𝑋
𝑗
= 𝑋
𝑗,new

Endif

Algorithm 6: The procedure of learner phase.

It is of great importance to realize the balance between the
convergence and the diversity. In the classical HS algorithm,
a new harmony is generated in Step 3. After the selecting
operation in Step 4, the population diversity may increase
or decrease. With high population diversity, the algorithm
will have strong exploration power, and at the same time
the convergence and the exploitation power will decrease
accordingly. Conversely, with a low population variance, the
convergence and the exploitation power will increase [18];
the diversity and the exploration power will decrease. So it is
significant how to keep balance between the convergence and
the diversity. Classical HS algorithm loses exploitation ability
easily at later evolution process [19], because of improvising
new harmony from HM with a high HMCR and local
adjusting with PAR. Diversity of HM decreases gradually
from the early iteration to the last.Moreover, inHS algorithm,
a low HMCR employed will increase the probability (1-
HMCR) of random selection in search space; the exploration
power will enhance, but the local search ability and the
exploitation accuracy cannot be improved by single pitch
adjusting strategy.

To overcome the inherent weaknesses of HS, in this sec-
tion, we propose an HSTL method. In the HSTL method, an
improved teaching-learning strategy is employed to improve
the search ability. The HSTL algorithm works as follows.

(1) Optimization target vector preparation is as follows:
𝑋

new
= 𝑋

worst, where 𝑋
worst is the worst harmony in

the current HM.
(2) Improve the target vector 𝑋

new with the following 4
strategies.

(a) Harmony Memory Consideration.The values of the target
vector 𝑥

new
𝑖 (𝑖 = 1, 2, . . . , 𝐷) are randomly from HM with a

probability of HMCR:

𝑥
new
𝑖 = 𝑥

𝑗

𝑖 , 𝑗 ∈ 𝑈 {1, 2, . . . ,HMS} , 𝑖 = 1, 2, . . . , 𝐷. (17)

(b) Teaching-Learning Strategy. If the ith (𝑖 = 1, 2, . . . , 𝐷)
design variable of the target vector 𝑥

new
𝑗 has not been

considered in (a), it will learn from the best harmony (i.e.,
teacher)with probability TLP in the teacher phase or from the
other harmony (i.e., learner) in the learner phase. The TLP is

the rate of performing teaching-learning operator on design
variables that have not been carried out in (a): harmony
memory consideration. It works as follows.

Teacher Phase. In this phase, the learner will learn from the
best learner (i.e., teacher) in the class. Learner modification
is expressed as

𝑥
new
𝑖 = 𝑥

new
𝑖 + rand () × [𝑥

best
𝑖 − 𝑇𝐹 × 𝑀𝑖] ,

𝑀𝑖 =
𝑥
worst
𝑖 + 𝑥

new
𝑖

2
, 𝑖 = 1, 2, . . . , 𝐷,

(18)

where𝑋
best is the best harmony inHM and𝑋

worst is the worst
harmony in HM.

The contribution of this paper is that 𝑀𝑖 is replaced by
(𝑥

worst
𝑖 +𝑥

new
𝑖 )/2, instead of themean value of population.This

replacement will enhance diversity of population more than
standard TLBO algorithm.

Learner Phase. Randomly select r1 and r2 from {1, 2, . . . ,

HMS}, and r1 ̸= r2:

If 𝑥
𝑟
1 is better than 𝑥

𝑟
2

𝑥
new
𝑖 = 𝑥

new
𝑖 + rand () × (𝑥

𝑟
1

𝑖 − 𝑥
𝑟
2

𝑖 )

Else

𝑥
new
𝑖 = 𝑥

new
𝑖 + rand () × (𝑥

𝑟
2

𝑖 − 𝑥
𝑟
1

𝑖 )

Endif .

(19)

(c) Local Pitch Adjusting Strategy. To achieve better solutions
in search space, it will carry out the local pitch adjusting
strategy with probability PAR if design variables have not
been selected to perform harmony memory consideration
and teaching-learning strategy:

𝑥
new
𝑖 = 𝑥

new
𝑖 ± rand () × BW (𝑖) . (20)

(d) Random Mutation Operator. HSTL carries out random
mutation in feasible space with probability Pm as follows:

𝑥
new
𝑖 = 𝑥

𝐿
𝑖 + (𝑥

𝑈
𝑖 − 𝑥
𝐿
𝑖 ) × rand () . (21)
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Begin

Initialize parameters, termination criterion

Initialize harmony memory (HM)

t = 1

Y
Memory consideration

Teaching

N

N

N

N

N

N

N
N

Learning

Local pitch adjustment

Random selection

i = i + 1

t = t + 1 Termination criterion is met?

Output result

Y Y

Y

Y

Y

Y

Y

Rand() < HMCR

Rand() < TLP

Rand() < PAR

Rand() < pm

Rand() < 0.5

TP = TPmax − (TPmax − TPmin )∗t/Tmax

Xnew = Xworst

Xnew is better than Xworst Xnew = Xworst; %update HM

i + 1 ⩽ D

Figure 2: The flowchart of HSTL algorithm.

The improvisation of new target harmony in HSTL
algorithm is given in Algorithm 7.

The flow chart of HSTL algorithm is shown in Figure 2.

(i) Update Operation. In HSTL algorithm, update operation
has some changes, as follows.

Get the best harmony𝑋
best and the worst harmony𝑋

worst

from the HM:

If 𝑋
new is better than 𝑋

best

𝑋
worst

= 𝑋
best

,

𝑋
best

= 𝑋
new

,

ElseIf 𝑋
new is better than 𝑋

worst

𝑋
worst

= 𝑋
new

,

EndIf .

(22)

(ii) Parameters Changed Dynamically. To efficiently balance
the exploration and exploitation power of the HSTL algo-
rithm, HMCR, PAR, BW, and TLP are dynamically adapted
to a suitable range with the increase of generations:

HMCR = HMCRmin + (HMCRmax − HMCRmin)

× (
𝑡

𝑇max
) ,

(23)

TLP = TLPmin + (TLPmax − TLPmin)

× (
𝑡

𝑇max
)

𝑘

, 𝑘 = 5,

(24)

PAR = PARmax −
(PARmax − PARmin) × 𝑡

𝑇max
, (25)

BW = BWmax + exp[ln(
BWmin
BWmax

) × √
𝑡

𝑇max
] , (26)
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𝑋
new

= 𝑋
worst; % select 𝑋

worst as Optimization target vector
For i = 1 toD

If rand() ⩽ HMCR % (a) Harmony memory consideration
𝑥
new
𝑖 = 𝑥

𝑗

𝑖 (𝑗 = 1, 2, . . . ,HMS)
Elseif rand() ⩽ TLP % (b) Teaching-Learning strategy

If rand() ⩽ 0.5 % Teaching
𝑥
new
𝑖 = 𝑥

new
𝑖 + rand() × [𝑥

best
𝑖 − 0.5TF × (𝑥

worst
𝑖 + 𝑥

new
𝑖 )]

Else % Learning
Randomly select r1 and r2 from {1, 2, . . . ,HMS}
If 𝑥𝑟1 is better than 𝑥

𝑟2

𝑥
new
𝑖 = 𝑥

new
𝑖 + rand() × (𝑥

𝑟1
𝑖 − 𝑥

𝑟2
𝑖 )

Else
𝑥
new
𝑖 = 𝑥

new
𝑖 + rand() × (𝑥

𝑟2
𝑖 − 𝑥

𝑟1
𝑖 )

end
Endif
𝑥
new
𝑖 = min (max (𝑥

𝑛𝑒𝑤
𝑖 , 𝑥
𝐿
𝑖 ) , 𝑥
𝑈
𝑖 )

Elseif rand(0,1) ⩽ PAR %(c) Local pitch adjusting strategy
𝑥
new
𝑖 = 𝑥

new
𝑖 ± rand() × BW (𝑖)

𝑥
new
𝑖 = min (max (𝑥

new
𝑖 , 𝑥
𝐿
𝑖 ) , 𝑥
𝑈
𝑖 )

Endif
If rand(0,1) ⩽ 𝑃𝑚 %(d) Random mutation operator in feasible space

𝑥
new
𝑖 = 𝑥

𝐿
𝑖 + (𝑥

𝑈
𝑖 − 𝑥

𝐿
𝑖 ) × rand()

Endif
Endfor

Algorithm 7: Improvisation of new harmony in HSTL algorithm.
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Figure 3: The evolution curves of parameters (HMCR, TLP, PAR,
and BW) of HSTL algorithm.

where (25) and (26) are quoted from the literature studies [18]
and [16], respectively.

Let HMCRmax = 0.9, HMCRmin = 0.6, TLPmax = 0.55,
TLPmin = 0.15, PARmax = 0.5, PARmin = 0.33, BWmax = 1, and
BWmin = 0.001. The changing curves of parameters (HMCR,
TLP, PAR, and BW) are shown in Figure 3.

It can be seen that the parameter HMCR increases
gradually from 0.6 to 0.9 linearly. TLP increases with low

velocity in the early stage and rises sharply in the final stage.
That is to say, in the beginning, the harmony consideration
rule and teaching-learning strategy are carried out with a
smaller probability; in the later stage, HSTL algorithm begins
to focus on local exploitation with harmony consideration
and teaching-learning strategy. The benefits of doing so can
get more opportunities to reinforce the global exploration by
strengthening disturbance in the early stage and in the final
stage to intensify local search step by step, thereby acquiring
high-precision solution. For the same reason, BW decreases
gradually in order to reduce perturbation gradually, and the
PAR’s variation from 0.5 to 0.3 is to reduce the probability of
pitch adjustment.

Equation (27) shows that the randommutation operation
is changed dynamically from 5/D to 3/D with iterations. It
can make the random disturbance change from strong to
weak, and thusHSTL algorithmhas strong global exploration
ability in the early stage and has effective local exploitation
ability in the latter stage:

𝑝𝑚 =
5

𝐷
−

2𝑡/𝑇max
𝐷

. (27)

4. Other Related Techniques for Solving
0-1 Knapsack Problem

The 0-1 knapsack problem is a large scale, multiconstraint,
and nonlinear integer programming problem. So solving
0-1 knapsack problems with HSTL algorithm needs to
employ constraint handling technique and integer processing
method.
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Figure 4: The convergence graphs of KP1–KP5.

4.1. Constraint-Handling Technique. For constrained opti-
mization problems, there have existed many successful
constraint-handling techniques on solving constrained opti-
mization problems, such as penalty function method, spe-
cial representations and operators, repair method, and

multiobjective method [40–53]. In this paper, because we
mainly do some research on discrete optimization problems
by using the HS algorithm, so special handling technique and
the revision methods [23–28] for adjusting the 0-1 knapsack
problems have not been adopted in this paper.
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Figure 5: The box plots of KP1–KP5.

In this paper, the multiobjective method has been used
for handling constrained 0-1 knapsack problems. The multi-
objective method [42] is as follows.

(1) Any feasible solution is better than any infeasible
solution.

(2) Among two feasible solutions, the one that has a better
objective function value is preferred.

(3) Among two infeasible solutions, the one that has a
smaller degree of constraint violation is preferred.The
purpose is to render the infeasible solution with large
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Figure 6: The convergence graphs of KP6–KP8.

degree of constraint violation from moving gradually
towards the solution with no constraint violation or
with smaller degree of constraint violation.

However, for a knapsack problem with many items (𝐷 >

10000) and the knapsack with small capacity, if we only
execute HS algorithm without any revise method to this
small-capacity knapsack, all of the harmony vectors in HM
are probably infeasible. In this case, even in the very good
methods it is hard to obtain the feasible solutions. So, for
an infeasible solution, we will do simple revise through
randomly removing some item from this knapsack. In this

way, the infeasible solution can gradually turn into the
feasible solution.

4.2. Integer Processing Method. In HSTL algorithm, because
the variables are adjusted by the teaching-learning strategy,
local pitch adjusting strategy and random mutation operator
are real numbers, so every variable is replaced by the nearest
integer, that is, as follows:

𝑥

= round (𝑥) . (28)

Let 𝑥 = (0.8, 0.3, 0.9, 0.6, 1.2, 0.4). Then 𝑥


= round(𝑥) =

(1, 0, 1, 1, 1, 0).
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Figure 7: The box plots of KP6–KP8.

5. Solving 0-1 Knapsack Problems with
HSTL Algorithm

5.1. Experimental Setup and Parameters Setting. In order to
evaluate the performance of the HSTL algorithm, we used a
set of 13 knapsack problems (KP1–KP13). KP1–KP3 is quoted,
respectively, from f 5, f 8 and f 10 in the literature [21]. KP4–
KP13 is quoted from website http://homepage.ntlworld.com/
walter.barker2/Knapsack%20Problem.htm. In all the knap-
sack problems (KP1–KP13), KP1–KP8 are called one-dimen-
sional problems that only include weight constraint andKP9–
KP13 are called two-dimensional problems that include both
weight constraint and volume constraint.

All simulation experiments are carried out to compare the
optimization performance of the presented method (HSTL)
with respect to (a) classical HS, (b) NGHS, (c) EHS, and
(d) ITHS. In the experiments, the parameters setting for
the compared HS algorithms is shown in Table 2. To make
the comparison fair, the populations for all the competitor
algorithmswere initialized using the same random seeds.The
variants of HS algorithm were set at the same termination

criteria: the number of improvisations (function evaluation
times: FEs) FEs = 500 × 𝐷, respectively. However, if the
FEs > 5𝐸 + 05, then set FEs = 5𝐸 + 05.

The best and worst fitness value of each test problem are
recorded for 30 independent runs; the mean fitness, standard
deviation (Std), andmean runtime of each knapsack problem
are calculated for 30 independent runs.

5.2. The Experimental Results and Analysis. Table 3 reports
the worst, mean, best, and Std of problem results by applying
the five algorithms (HS, NGHS, EHS, ITHS, and HSTL)
to optimize the knapsack problems KP1–KP8, respectively.
The best results are emphasized in boldface. Figures 4
and 6 illustrate the convergence characteristics in terms of
the best values of the median run of each algorithm for
knapsack problems KP1–KP8. Figures 5 and 7 demonstrate
the performance and stability characteristics according to the
distributions of the best values of 30 runs of each algorithm
for knapsack problems KP1–KP8.

Based on the resulting data in Table 3, the optimal
objective values (best, mean, worst, and Std) can be easily

http://homepage.ntlworld.com/walter.barker2/Knapsack%20Problem.htm
http://homepage.ntlworld.com/walter.barker2/Knapsack%20Problem.htm
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Table 2: Parameter settings for the compared HS algorithms (HS, NGHS, EHS, ITHS, and HSTL).

Algorithm HMS HMCR PAR BW others
HS 5 0.99 0.33 BW = (𝑋𝑈 − 𝑋

𝐿)/1000 /
NGHS 5 / / / /

EHS 50 0.99 0.33 BW = 1.17√(1/HMS) ∑
HMS
𝑖=1 (𝑥𝑖 − 𝑥)

2 /

ITHS 10 0.99 0.33 BWmax = (𝑋𝑈 − 𝑋
𝐿)/2

BWmin = (𝑋𝑈 − 𝑋
𝐿)/10

/

HSTL 10 HMCRmax = 0.95
HMCRmin = 0.6

PARmax = 0.5
PARmin = 0.2

BWmax = (𝑋𝑈 − 𝑋
𝐿)/2

BWmin = (𝑋𝑈 − 𝑋
𝐿)/10

TLPmax = 0.55,
TLPmin = 0.15

Table 3: The result of 1-dimensional (weight versus value) knapsack problems.

Problem D Target weight Total weight Total values Optimal result Algorithm Outcomes Runtime
Worst Mean Best Std

KP1 15 375 741.9172 62.9963 481.069

HS 314.9297 423.191 481.069 67.92161 0.169532
NGHS 481.069 481.069 481.069 6.4E−14 0.173909
EHS 481.069 481.069 481.069 6.4E−14 0.814028
ITHS 437.9345 472.4424 481.069 19.2905 0.447476
HSTL 481.069 481.069 481.069 6.4E−14 0.330757

KP2 23 10000 19428 19309 9767

HS 9747 9760 9767 5.533596 0.313597
NGHS 9767 9767 9767 0 0.305331
EHS 9643 9751.6 9767 22.64509 1.595463
ITHS 9756 9765.7 9767 2.641186 0.790986
HSTL 9767 9767 9767 0 0.585312

KP3 20 878 1098 1085 1024

HS 924 987.4 1024 40.395544 0.254834
NGHS 1024 1024 1024 0 0.245683
EHS 1018 1022.8 1024 2.6832816 1.274226
ITHS 1018 1022.8 1024 2.6832816 0.654352
HSTL 1024 1024 1024 0 0.485799

KP4 40 15 374 14049 1149

HS 786 1109.4 1149 113.7494 12.51123
NGHS 1138 1147.9 1149 3.478505 12.72128
EHS 786 1109.4 1149 113.7494 15.64561
ITHS 786 1112.7 1149 114.7907 13.6885
HSTL 1138 1147.9 1149 3.478505 13.29233

KP5 100 27 1360 34965 1173

HS 1172 1172.5 1173 0.508548 37.14283
NGHS 1172 1172.633 1173 0.490133 37.22416
EHS 1172 1172.567 1173 0.504007 53.20237
ITHS 1172 1172.567 1173 0.504007 41.50243
HSTL 1172 1172.9 1173 0.305129 37.11053

KP6 10000 431 349354 3011792 unknown

HS 4795 4941 5338 228.20495 2902.844
NGHS 5976 6270.4 6363 165.43821 1881.969
EHS 4797 4929.8 5014 94.099416 16979.43
ITHS 4899 4960.6 5064 72.081898 5047.957
HSTL 6318 6474.4 6730 185.7156 1506.648

KP7 10000 1765326 5033006 2063406 unknown

HS 1068628 1070926.5 1073225 3250.5699 4526.0894
NGHS 1126584 1127050.5 1127517 659.73063 5060.0062
EHS 1041435 1043733.5 1046032 3250.5699 5435.1693
ITHS 1124261 1129389 1134517 7252.0871 4555.54
HSTL 1193743 1194524 1195304 1103.794 3326.1473

KP8 11000 1000000 5526981 2263955 unknown

HS 529153 532801.8 537353 3001.1646 10633.825
NGHS 738654 762855.4 798991 26865.404 11912.341
EHS 480038 486268.8 490627 4481.0616 13084.292
ITHS 795202 800908 807164 4864.5424 10785.623
HSTL 940656 944780 947850 2630.108 9606.735
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Figure 8: The convergence graphs of KP9–KP13.

obtained by NGHS, EHS, ITHS, and the HSTL algorithms
with high accuracy on the knapsack problems KP1–KP5.
However, comparatively speaking, NGHS and the HSTL
algorithm have better optimal results on worst, mean, best,

and Std, and thusNGHSmethod and theHSTL algorithm are
more effective and stabilized to solve the problems KP1–KP5.

For the high-dimensional knapsack problems KP6–
KP8, Table 3 shows that the HSTL algorithm has obvious
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Figure 9: The box plots of KP9–KP13.

advantages over other variants of HS algorithms. Comparing
with otherHS algorithms, althoughHSTL algorithmhas slow
convergence speed in the early stage, it can be constant to
optimize the solutions and obtain high precision solutions in
the latter stage, which can be seen from Figure 6.

It is evident from Figure 7 that HSTL algorithmhas better
convergence, stability, and robustness in most cases than HS,
NGHS, EHS, and ITHS algorithms.

Table 4 shows the experimental results on algorithmsHS,
NGHS, EHS, ITHS, andHSTL for two-dimensional knapsack
problems: KP9–KP13. Figure 8 shows the convergence graphs,
and Figure 9 is the box plots of independent 30 runs of
knapsack problems KP9–KP13.

It can be seen evidently from Table 4 that the HSTL
algorithm attained the optimal best, mean, worst, and Std
results among all two-dimensional knapsack problems.
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From the convergence graphs (Figure 8), it can be seen
that the HSTL algorithm has a strong search ability and
convergence throughout the search process for the two-
dimensional knapsack problems. As can be seen from the box
plots (Figure 9), the HSTL has demonstrated some advantage
over the other four algorithms on solving two-dimensional 0-
1 knapsack problems.

6. Conclusion

In this paper, a novel harmony search with teaching-learning
strategies is presented to solve 0-1 knapsack problems. The
HSTL algorithm employs the idea of teaching and learning.
Four strategies are used to maintain the proper balance
between exploration power and exploitation power. With
the process of evolution, the dynamic strategy is adopted to
change the parameters HMCR, TLP, BW, and PAR. Experi-
mental results showed that the HSTL algorithm has stronger
ability to resolve the high-dimensional 0-1 knapsack prob-
lems. However, the HSTL algorithm has more parameters.
In the future, we should focus on improving the structure of
HSTL algorithm, decreasing the running cost and enhancing
efficiency for solving complex optimization problems.
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