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Abstract

In the brain, specific signaling pathways localized in highly organized regions called niches allow the persistence of a pool of
stem and progenitor cells that generate new neurons in adulthood. Much less is known about the spinal cord where a
sustained adult neurogenesis is not observed. Moreover, there is scarce information concerning cell proliferation in the
adult mammalian spinal cord and virtually none in aging animals or humans. We performed a comparative morphometric
and immunofluorescence study of the entire cervical region (C1-C8) in young (5 mo.) and aged (30 mo.) female rats. Serum
prolactin (PRL), a neurogenic hormone, was also measured. Gross anatomy showed a significant age-related increase in size
of all of the cervical segments. Morphometric analysis of cresyl violet stained segments also showed a significant increase in
the area occupied by the gray matter of some cervical segments of aged rats. The most interesting finding was that both
the total area occupied by neurons and the number of neurons increased significantly with age, the latter increase ranging
from 16% (C6) to 34% (C2). Taking the total number of cervical neurons the age-related increase ranged from 19% (C6) to
51% (C3), C3 being the segment that grew most in length in the aged animals. Some bromodeoxyuridine positive-neuron
specific enolase negative (BrdU+-NSE2) cells were observed and, occasionally, double positive (BrdU+-NSE+) cells were
detected in some cervical segments of both young and aged rats groups. As expected, serum PRL increased markedly with
age. We propose that in the cervical spinal cord of female rats, both maturation of pre-existing neuroblasts and/or possible
neurogenesis occur during the entire life span, in a process in which PRL may play a role.
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Introduction

The discovery that neurogenesis occurs in the brain of adult

human and of nonhuman primates has generated a great deal of

interest [1,2]. Indeed, the possibility that the adult central nervous

system (CNS) retains the potential for neurogenesis opens the

prospect for new interventive therapies aimed at stimulating the

genesis of specific neurons (e.g., dopaminergic nigral neurons) in

patients affected by neurodegenerative diseases and other

disorders of the adult/aged CNS [3,4].

Although sustained neurogenesis has been reported in the adult

rat brain [5,6], it was not detected in the spinal cord of intact

adult male rats [3]. The existence of neurogenesis has been

explored neither in the spinal cord of female nor in older

(.4 mo.) male rats. In fact, there is scarce information even on

the general morphological changes in the spinal cord of aging

rats. In previous studies we have observed that there is an

increase in the number of neurofilaments present in the gray

matter of aged rats [7], changes in the lectinhistochemical pattern

[8], a complete loss of neuron-specific nuclear protein (NeuN)

immunoreactivity in cervical, thoracic and lumbar segments of

aged female rats [9], as well as a decrease in the expression of a

phosphatase and tensin homologue on chromosome 10 (PTEN), a

tumor suppressor gene known to play an important role in the

regulation of cell size [10].

In neither case the observed changes were due to inflammatory

or other pathological conditions since the number of glial cells did

not increase [7,11].

As part of a systematic characterization of morphological age

changes in the brain and spinal cord of female rats, we

morphometricaly and immunohistochemicaly assessed the cervical

segments of aged female rats and compared them with the same

segment of young counterparts. We report here that besides the

previously reported age changes in female rats described above,

aging is also associated with an increase in the number of neurons

in the cervical spinal cord. Since prolactin (PRL) has been

reported to induce neurogenesis in the forebrain of adult female

mice [12,13] we also measured serum levels of PRL in our female

rats and found a significant increase with aging.

Methods

Animals and specimen collection and processing
Young (4–5 mo.) (n = 7) and aged (30 mo.) (n = 7) female

Sprague-Dawley rats, raised in our aging rat colony, were used.

The young females were virgin while the aged animals were

retired breeders. Animals were housed in a temperature-controlled

room (2262uC) on a 14:10 h light/dark cycle. Food and water

were available ad libitum. In our rat colony, the average 50%

survival time for females, studied in groups of 50–60 animals, is
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30 mo. Around 10–12 mo. of age, reproductive cessation occurs in

our females. All experiments with animals were performed

according to the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Committee on the

Ethics of Animal Experiments of INIBIOLP’s Animal Welfare

Assurance No A5647-01.

Euthanasia was performed according to the Guidelines on the

Use of Animals in Neuroscience Research (the Society of

Neuroscience) and the Research Laboratory Design Policy and

Guidelines of NIH. Immediately before sacrifice rats were placed

under general anesthesia by injection of ketamine hydrochloride

(40 mg/kg, i.p.) plus xylazine (8 mg/kg; i.m.) and blood samples

were taken from the tail veins. The corresponding serum was

stored at 220uC until hormone assay.

After blood sampling, the animals were intracardiacally

perfused with a buffered saline-paraformaldehyde 4% solution

during approximately 30–45 min. The head of the rats was cut

1–2 mm rostral to the occipito-atloideal junction using an electric

rotary saw. The vertebral column was then removed and posfixed

in 10% buffered formaldehyde for 24 hs. The spinal cord was then

dissected, immersed in cryopreservation buffer (sucrose 30%;

polyvinylpyrrolidone 1%; etilenglycol 30% phosphate buffer 1M

1%; DW to 100 ml) and stored at 220uC until use.

Coronal sections of cervical segments were performed under a

magnifying glass. Because the spinal cord segment is, by definition,

that part of the cord which gives rise to those root fibers that unite

to form a pair of spinal nerves [14], the caudal border of a segment

was defined by its most caudal dorsal rootlets [15]. Every segment

was placed at the center of one well of a 48-well plate. The well

was then filled with 0.5 ml jellifying solution (sucrose 10% in

phosphate buffer 1M; low melting point agarose [Sigma Chemical

Co., St. Louis, MO] 4%). After 24 h storage at 4uC the jelly blocks

were serially cut into 20 mm thick coronal sections using a

vibratome (Leica VT 1000S, Germany). Sections were then

mounted on jellified slides (unflavored gelatin 6 g; KCr(SO4)2.12

H2O 0.5 g, DW to 300 ml).

Sections were stained with the cresyl violet technique and used

for cell counting and morphometric analysis. From each block,

three to five slices, 120 mm apart, were analyzed. Additional

sections were immunolabeled with appropriate antibodies.

Bromodeoxyuridine injection protocol and tissue
sections pretreatment

Additional five young and four aged female rats were given a

single daily injection of 5-bromo-29-deoxyuridine (BrdU; 50 mg/ kg

i.p., Sigma, St. Louis, MO) during 10 days. Seventeen days after the

last injection, animals were perfused and spinal cords processed as

described above. For BrdU immunofluorescence different DNA

denaturation variants using formamide in SSC were compared

against the standard procedure described below. It was found that in

all cases formamide caused a significant deterioration of section

quality without a significant improvement of BrdU labeling

intensity. Briefly, sections were hydrated with PBS during 10 min.

Then, sections were treated with 2M HCl for 30 at RT. Samples

where then washed with borate buffer 0.1 M,pH 8.5 during

10 min. Sections thus treated were used for immunofluorescence

labeling.

Immunofluorescence
For double-labeling BrdU immunohistochemistry, mouse anti-

BrdU (DakoCytomation) and rabbit anti human neuron specific

enolase (NSE; DAKO Corporation, Carpinteria, USA) were used

as primary antibodies. Slides were washed twice with PBS, and

incubated for 45 min with a 1:1000 Alexa555-conjugated goat

anti-mouse IgG and 1:1000 Alexa488-conjugated goat anti-rabbit

IgG (Jackson Immuno Research, West Grove, Pennsylvania). After

washing the slides twice with PBS, they were counterstained for

15 min with the fluorescent DNA stain 49,6-diamidino-2-pheny-

lindole (DAPI). Fluorescence was detected with an Olympus

confocal microscope (Olympus FV1000) with an emission filter of

490–540 nm, for Alexa488 detection (laser 473 nm); 575–675 nm

for Alexa555 detection (laser 559 nm) and 430–455 nm for DAPI

detection (laser 405 nm). An objective of 40X (UPlanSAPO) with

a NA of 0.95 was used. With the performed staining BrdU was

localized in the cell nucleus, whereas the cell-specific marker used

was present in the cytoplasm.

Image analysis
The images of cresyl violet stained spinal cord sections were

captured using a digital RGB video camera (Olympus DP71, Japan)

attached to a microscope (Olympus BX50, Japan). In order to

create a complete map of the entire segment taken with a 40x

objective, images were captured using a digital image analyzer

(cellSens Dimension, V1.4, Olympus Corporation, Japan) and

stitched using an automatic Multiple Image Alignment process. No

further processing was necessary after obtaining the original images.

For counting and morphometric determinations the entire

segment was analyzed. In order to determine the morphometric

characteristics of neuronal bodies, segmentation based on color

was performed [16]. Neurons were then characterized using the

following parameters: cellular area (reports the area of each object)

and mean diameter (reports the average length of diameters

measured at 2 degree intervals and passing through the object’s

centroid – equidistant point to the borders in an irregular object).

To manually and automatically differentiate neurons from glial

cells slides were stained with cresyl violet since the dye does not

label glial cell somas and stains differentially glial from neuronal

nuclei [17]. Besides, glial nuclei diameter is below 5 mm while

those of neurons are above that size.

Morphometric data were taken only from those neuronal somas

that showed a delineated shape and a distinguishable nucleus.

Similarly, only those cells that were recognized by the image

analyzer, based on the staining or color pattern and on their size

and shape, were included in the analysis. In addition, there was an

independent observation by two morphologists, in order to

eliminate glial cells from counting and morphometric character-

ization. When determining the mean area occupied by neurons in

the gray matter, all the neuronal somas were considered.

For estimating the number of cells present in an entire cervical

segment the following formula was applied [18]:

N~
d

n:s

Xn

i~1

x

Where, N = total estimated number of cellular bodies; d = length

(mm) of the rostrocaudal axis of the segment being assessed; n =

number of noncontiguous slices counted per cervical segment

(n = 3); s = thickness of the section (20 mm); x = number of

perikarya counted per non-contiguous slice assessed. Therefore, N

represents an estimate of the total number of neurons present in

every segment.

Hormone assay
Serum PRL was measured by a specific radioimmunoassay

using the rat materials provided by Dr. A. F. Parlow, Pituitary

Neuron Number Increase in the Rat Spinal Cord
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Hormones and Antisera Center, Harbor-UCLA Medical Center,

Torrance CA, USA. Iodination grade rat PRL was radiolabeled by

the Iodo-GenH method [19]. A 1/10 goat anti-rabbit IgG serum in

0.05 M phosphate buffer, 1% normal rabbit serum and 8%

polyethylenglycol, was used to separate bound from free hormone.

Serum PRL was expressed in terms of NHPP rPRL RP-3.

Statistical Analysis
To establish differences in the total number of neurons in the

entire cervical region of young and aged rats the Student’s t test for

paired groups was applied. The analysis of variance (ANOVA) was

used to evaluate differences between young and aged rats

segments. Significant differences between mean values were

defined as those with a p,0.05. The Correlation Coefficient was

analyzed to determine correlation between the occupied neuronal

area and the amount and size of neurons in young and aged rats.

Results

Age changes in the area of different cervical segments
Macroscopic and low magnification assessment of spinal cord

sections corresponding to the cervical segments already revealed a

statistically significant age-related increase in the overall area

(Fig. 1A and B). The absolute area (mm2) occupied by the gray

and white matter in the entire cervical region showed a statistically

significant increase with age. Although an increase in the absolute

area was observed in all of the analyzed segments (up to 13%),

statistical differences were detected only in C2 through C7

segments (Fig. 2A). The gray matter area increased in aged

animals in comparison to young rats in all but C1 and C8

segments. Although differences with young rats were significant for

the gray matter area of the whole cervical region, statistical

differences between segments were only observed for C5 and C7

(Fig 2B). Despite the above changes, the ratio gray matter

area:whole area did not change significantly with age (Fig. 2C).

Morphometric analysis of age changes in cervical spinal
cord neurons

Aged rats showed a significant increase in the total area occupied

by neurons in the corresponding segments (Fig 3A). There was a

trend towards an increase in neuronal size in the aged rats but this

increase achieved significance only for C6 and C8 (Fig 3B).

The average counting per section per segment (Fig 4A) as well as

the estimation of the total number of neurons present in each segment

revealed a neuron number increase ranging from 19% (C6) to 51%

(C3) in the aged as compared to the young animals (Fig 4B). A

positive correlation was observed between the occupied neuronal area

and the number of counted neurons per area both in young (r = 0.99)

and aged rats (r = 0.95). On the other hand there was no correlation

between the occupied neuronal area and the mean neuronal size

(r = 20.22; r = 20.40, for young and aged rats, respectively).

Immunofluorescence analysis in cervical spinal cells
Triple labeling immunofluorescence analysis showed the

existence of both NSE[+] - BrdU[+] and NSE[2] - BrdU[+] cells

Figure 1. Low magnification view of the entire spinal cord of young and aged rats. A. The entire spinal cord was dissected from the spine
both in young (above) and aged (below) rats after fixative perfusion. The vertical bars drawn below each spinal cord specimen correspond to the
emergence of the nerve in each of the eight cervical segments. Note the increase in width of the entire aged spinal cord in comparison to the young
specimen. Bar = 1 cm. Inset: magnification of the emergence of the C2, C3 and C4 nerves in the young (upper) and aged (lower) spinal cord to
highlight the longitudinal enlargement of C3 in the aged specimen. Bar = 1 mm. B. Twenty mm thick coronal section of each cervical segment of
young (upper panels) and aged (lower panels) female rats stained with cresyl violet are shown. Sections were morphometrically assessed and data
statistically compared among both age groups. Bar = 1 mm.
doi:10.1371/journal.pone.0022537.g001

Neuron Number Increase in the Rat Spinal Cord
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in different segments of animals of both age groups (Fig. 5). In

both groups, the frequency of BrdU[+] cells in the cervical

segments was very low. This fact made it difficult to statistically

detect age-related differences of this parameter.

PRL determination
As expected serum PRL levels increased with aging in the

female rats (Table 1).

Discussion

While previous studies indicate that in the cervical spinal cord of

female rats, aging is associated with a variety of structural and

cellular changes (see introduction), the present results reveal that

the most significant changes take place in the gray matter where

we found a significant increase in cervical neuron numbers in aged

rats.

Comparison of the total and gray matter area of cervical

segments between age groups provided the first indication of an

increase in the number and/or size of gray matter elements with

age. The H-shape of the gray matter has characteristic identity

features for each cervical segment [20], which allowed us a reliable

identification of all cervical segments in animals of both ages.

Since we previously showed that in the rat spinal cord the NeuN

marker is lost with aging [9], we decided to identify neurons using

a specific neuron cytoplasm marker (NSE) for immunofluores-

cence analysis. As was previously done [21], the cresyl violet

staining was used for identification, counting and morphometric

analysis of neuronal cells. This choice is based on the fact that the

combination of size and morphology provides a safe set of criteria

to perform reliable digital counting of spinal cord neurons.

Considering that neurons are morphometrically well discernible

from glial cells, in our opinion, this is a highly suitable technique

for performing morphometry and counting.

Active cell proliferation has been reported in the spinal cord of

juvenile turtles [22], young female mice [23] and young rats [3],

Figure 2. Age changes in the total and gray matter area in all
cervical segments of female rats. The whole section (A) as well as
the gray matter area (B) was manually delimited using an image
analyzer and measured. White matter area was calculated by
subtracting the gray matter area from the whole area of the section.
Asterisks over bars indicate a significant difference (* P,0.05;
** P,0.001) from the corresponding young counterpart. The total
cervical region area of aged animals was significantly greater than that
of young rats. The gray matter area: total area ratio (C) was calculated in
young and aged rats. Numbers on bars indicate the mean percentage
of increase recorded.
doi:10.1371/journal.pone.0022537.g002

Figure 3. Morphometric analysis of age changes in cervical
spinal cord neurons. The upper graph (A) shows the total occupied
neuronal area in every cervical segment in young and aged rats. The
lower graph (B) shows the mean neuronal area of the corresponding
segment. Asterisks over bars indicate a significant (* P,0.05;
** P,0.001) difference from the corresponding aged counterpart.
Numbers on bars indicate the mean percentage of increase recorded.
doi:10.1371/journal.pone.0022537.g003

Neuron Number Increase in the Rat Spinal Cord
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but in neither case neurogenesis was detected. In the latter study,

4-month old male Fischer 344 rats were i.p. injected with BrdU

and double labeling was subsequently performed in C7, T8 and L2

sections in order to detect cells showing colocalization of BrdU

with different cell markers. Four weeks after BrdU injection,

frequent cell proliferation throughout the spinal cord was

observed, particularly in white matter tracts, but no BrdU-labeled

cells were found to colocalize with markers of immature or mature

neurons. Nevertheless, in a recent report the capability to initiate a

neurogenic process in the gray mater of intact spinal cord has been

shown in voluntarily exercising adult rats in a time-dependent

manner [24]. Our results showing an increase of neuron numbers

in all cervical segments of aged rats as well as the existence of cells

positive for BrdU and NSE, strongly suggest the existence of

neurogenesis in the spinal cord of adult and aged female rats. In

search of an explanation that reconciles our results with those of

Horner et al. [3], we considered the possibility that neurogenesis in

the cervical spinal cord of female rats may be an event that occurs

during discrete time windows.

Since we used females, the possibility exists that the physiolog-

ical hyperprolactinemia that occurs during pregnancy and

lactation gives rise to neurogenic waves in the spinal cord of

pregnant and lactating mothers. This hypothesis is based on

studies in pregnant female mice in which their physiological rise in

circulating PRL levels was reported to induce neurogenesis in the

forebrain subventricular zone [12,13]. In these studies PRL was

found not only to stimulate the proliferation of neuronal

precursors but also to participate in the differentiation of these

precursors into neurons.

In the female, but not male rat, aging is associated with a marked

increase in the incidence of pituitary prolactinomas and mammary

tumors [25,26]. The prevalence of these pathological alterations

begins to rise shortly after the first year of life [27]. These changes

are paralleled by a sustained estrogen secretion, and low levels of

circulating progestagens [28,29]. It has been suggested that in

female rats, continuous exposure to moderately increased or

medium levels of estrogens unopposed by progesterone leads

initially, to increased PRL secretion and later to the development of

PRL-secreting pituitary adenomas [30]. Furthermore, it is known

that an increased estrogen to progesterone ratio exerts an enhanced

mitogenic action on a number of estrogen-responsive tissues. In this

context, the progressive hyperprolactinemia and increased estrogen

to progesterone ratio that develop in female rats during aging may

directly or indirectly contribute to maintaining a positive rate of

neuronal accumulation after reproductive age. Since aging is

associated with a constellation of endocrine and other changes, a

number of additional factors could also contribute to cervical

neuron accumulation in very old animals.

It has been shown that progenitors isolated from the adult rat

spinal cord in the presence of fibroblast growth factor, display stem

cell properties and can generate neurons after transplantation in

the adult rat dentate gyrus [31]. Consequently, it could be

hypothesized that, when exposed to physiological cues in vivo, adult

spinal cord progenitors possess the capability to differentiate into

neurons.

Binucleated neurons have been described in the CNS of normal

adult rabbits and rats [32]. They have been also found in

substantial numbers in the cerebral cortex of the flathead mutant rat

whose phenotype shows a marked reduction in the size of the

cerebral cortex and cytokinesis failure in the developing pyramidal

neurons [33]. Whether the presence of binucleated neurons in the

C5 segments of our young and aged animals observed in previous

studies [34] is related to the increase in neuron numbers with age

is not clear at this stage.

Our results on the age changes of mean neuron size profiles in

the cervical segments lend further support to the idea that in the

gray matter of the cervical spinal cord, the neuronal populations

are highly dynamic during the entire life span of the animals, with

the larger neurons becoming predominant in the aged females.

Our data also suggest that cytoplasmatic accumulation of

lipofuscin pigments in aged neurons [7] while apparently devoid

of toxic effects, may contribute to increasing cell size. As

mentioned above, the expression of PTEN, a tumor suppressor

gene known to play an important role in the regulation of cell size,

has been shown to decrease in the spinal cord of aging rats [10].

This decrease may play a role in the age-related increase in

neuronal size reported here.

It has been reported [7] that the mesenchymal cell marker

vimentin showed a high level of expression in the basal cell layer

surrounding the ependymal tube in young but not in aged females.

Since the cell layer that surrounds or is close to the spinal cord

central canal is believed to be a source of stem cells in the spinal

cord [3,35], the high expression of vimentin in the young rats may

Figure 4. Cervical neuron numbers in young and aged rats. The
upper graph (A) shows the average counting of neurons per section per
segment of both age groups. The lower graph shows the estimated
total number of neurons present in each segment. Asterisks over bars
indicate a significant (* P,0.05; ** P,0.001) difference from the
corresponding age counterpart. Numbers on bars indicate the mean
percentage of increase recorded.
doi:10.1371/journal.pone.0022537.g004

Neuron Number Increase in the Rat Spinal Cord
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indicate a significant proliferative potential which seems to be

substantially reduced in the aged animals. On the other hand, the

expression of the glial markers S-100 and GFAP was comparable

in young and aged animals with the latter being predominantly

expressed in lamina X (surrounding the central canal). Since it is

believed that GFAP labels stem cells [36], its periependymal

distribution is consistent with the hypothesis that this region is rich

in stem cells. The higher level of neurofilament protein expression

in the cervical sections of aged versus young rats, in that study, is

consistent with an increase in neuronal cell size and/or number. It

is also consistent with the increase in the gray matter area and

whole area observed in this and previous studies [7]. Interestingly,

the possibility has been suggested that the ependyma of the rat

spinal cord may be a reservoir of immature neurons in ‘‘standby’’

mode, with the potential to complete their maturation and integrate

to spinal circuits [37]. The region that surrounds the central canal of

the spinal cord derives from the neural tube and retains a substantial

degree of plasticity. In turtles, this region is a neurogenic niche

where newborn neurons coexist with precursors, a fact that may be

related with the endogenous repair capabilities of low vertebrates.

Immunohistochemical evidence suggests that the ependyma of the

mammalian spinal cord may contain cells with similar properties,

but their actual nature remains unsolved [37].

In functional terms, C5 is the cervical segment that innervates

the largest number of muscles, including pectoral, thoracic, neck

and forelimb (brachial plexus) muscular groups; C5, together with

C3 and C4 motoneurons also contribute to diaphragm innervation

[38]. Aging seems to have a differential impact on cervical and

lumbar neurons. Thus, a significant decrease in the number of

gastrocnemious, but no ulnar, motoneurons was reported in aged

(27 mo.) versus middle aged (9 mo.) Fischer 344 males [39]. Also,

sex seems to be an important determinant of the effect of aging on

spinal cord neurons as indicated by the observation that very old

(.30 mo.) WAGxBN male, but not female, rats undergo a high

prevalence of paralysis or severe paresis of the hindlimbs and

atrophy of the skeletal muscles in the lumbar region and hindlimbs

[40]. In our rat colony, aged females (some of which live up to 33

months) virtually never show paralysis of the hindlimbs.

Although the evidence reported here is limited to a single region

of the spinal cord and does not explore the influence of gender and

Figure 5. Presence of BrdU positive cells at the cervical spinal cord. A. A C6 young neuron labeled green (NSE) and blue (DAPI) negative for
BrdU with a nearby negative glial cell. Bar = 20 mm. B. A NSE[+] – BrdU[+] neuron found in an aged C6 segment. Bar = 10 mm. C. A NSE[2] – BrdU[+] cells,
probably corresponding to a glial cell, found in a young C4 segment. Bar = 10 mm.
doi:10.1371/journal.pone.0022537.g005

Table 1. Cervical spinal cord neuron number and serum PRL
levels in young and aged female rats.

Age Total estimated neurons # Serum PRL (ng/ml)

Young 7610660.126106 (n = 7) 24.061.9 (n = 6)

Aged 10610660.086106 (n = 7) 110.064.6 (n = 5)

Significance ** **

Data are expressed as mean 6 SEM. Sections were stained with cresyl violet and
neurons morphologically identified, classified by size and counted. #: Total
estimated neurons in the entire cervical region. **: P,0.01
doi:10.1371/journal.pone.0022537.t001

Neuron Number Increase in the Rat Spinal Cord
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other biological variables on spinal cord neurogenesis, a task

beyond the scope of a single study, the importance of the present

results lies in the fact that they provide two clear lines of evidence

indicating that NSE-positive neuron number increase occurs in the

adult and aged spinal cord of the female rat. Long term exposure

to high levels of circulating PRL in the female rat may account, at

least in part, for this phenomenon.

The present report extends the conclusions of previous studies

in the brain of older humans (Eriksson et al., 1998) [1], in the sense

that it suggests that the aging spinal cord of mammals also retains

a significant degree of neuronal plasticity and could therefore be

induced to undergo self-repair by proper activation of dormant

physiologic mechanisms.

We conclude that in the female rat, aging is associated with an

increase in the number and average size of cervical spinal cord

neurons, thus increasing the overall cervical area volume. We

suggest that specific endocrine changes that occur during the

female rat life span such as rises in circulating PRL levels can

trigger neurogenic processes responsible, at least in part, for the

age-related increase in the number of cervical spinal cord neurons

reported here. Whether neuron numbers increase with age in

other spinal cord segments and whether this phenomenon also

occurs in males, remains to be investigated.

Acknowledgments
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