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Abstract
In previous work we developed a pharmacogenetic predictor of antipsychotic (AP) induced extrapyramidal symptoms
(EPS) based on four genes involved in mTOR regulation. The main objective is to improve this predictor by increasing
its biological plausibility and replication. We re-sequence the four genes using next-generation sequencing. We
predict functionality “in silico” of all identified SNPs and test it using gene reporter assays. Using functional SNPs, we
develop a new predictor utilizing machine learning algorithms (Discovery Cohort, N= 131) and replicate it in two
independent cohorts (Replication Cohort 1, N= 113; Replication Cohort 2, N= 113). After prioritization, four SNPs were
used to develop the pharmacogenetic predictor of AP-induced EPS. The model constructed using the Naive Bayes
algorithm achieved a 66% of accuracy in the Discovery Cohort, and similar performances in the replication cohorts.
The result is an improved pharmacogenetic predictor of AP-induced EPS, which is more robust and generalizable than
the original.

Introduction
Antipsychotic (AP) medication is the gold standard in

schizophrenia treatment. Although APs have demon-
strated overall efficacy and safety there are large inter-
individual differences in their efficacy and side effects
between patients. Nowadays, treatment selection remains
a “trial and error” process, with multiple failed trials
required before an acceptable balance between response
to therapy and side effects is reached. Finding this balance
is especially important considering there is an estimated
noncompliance rate of 40% to AP treatment1. One of the
strongest predictors of noncompliance is the experience
of harmful side effects2. Therefore, the identification of

robust predictors of AP-induced side effects holds the
potential to provide a rational basis for treatment
selection3.
Taking into account that much of the inter-individual

variability in AP-induced side effects is due to genetic
factors (estimated heritability, h2, 0.60–0.80), a number of
pharmacogenetic markers have been associated with AP
side effects, although none is yet a definitive predictor of
response4.
Acute extrapyramidal symptoms (EPS) induced by AP

treatment, which may develop within a few days of initi-
ating the treatment (in contrast to tardive dyskinesia, the
late-onset EPS), are frequent and serious adverse reac-
tions to AP drugs. Acute EPS constitutes a complex
phenotype including several syndromes: akathisia; acute
dystonia; and parkinsonism. Acute dystonia and parkin-
sonism respond to AP dose reduction and anticholinergic
agents, whereas, akathisia does not respond to antic-
holinergic medication. Even though the exact mechanism
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underlying each of these different syndromes is not clear,
excessive striatal dopamine D2 receptor (DRD2) blockade
is believed to be the common cause5. Our understanding
of the mechanism and the genetic factors accounting for
AP-induced EPS is still evolving6. In previous studies, our
group developed a convergent functional genomics (CFG)
approach to identify candidate genes for pharmacogenetic
studies of EPS7–9. That strategy resulted in the identifi-
cation of the mTOR pathway as a source of new candidate
genes.
Recently, various authors have implicated the mTOR

signaling pathway in the mechanism of action of APs10.
Moreover, the relationship between mTOR and motor
alterations has also been observed in Parkinson disease. L-
dopa induced dyskinesia appears to be caused by DRD1
hypersentitivity and mTOR pathway activation, and could
be attenuated by rapamycin, a potent mTOR inhibitor11.
In agreement with the L-dopa model, we describe, in
mice, that inhibition of mTOR signaling in the striatoni-
gral DRD1 pathway is a possible mechanism underlying
the resistance to EPS12.
We developed a pharmacogenetic predictor based on

four single nucleotide polymorphisms (SNPs), our
hypothesis was that genetic variants that modify the
mTOR pathway might determine susceptibility to the
appearance of AP-induced EPS13. However, some aspects
of this pharmacogenetic predictor need to be improved
before it is ready for clinical application.
The main objective of the present study is to improve

the pharmacogenetic predictor of AP-induced EPS based
on the mTOR pathway by increasing its biological plau-
sibility and replication in independent populations. To
this end: (1) the genes included in the predictor (AKT1,
FCHSD1, RPTOR, and DDIT4) have been re-sequenced
using targeted next-generation sequencing (NGS); (2) the
functionality of the SNPs identified in each gene has been
predicted “in silico” using a web-based software developed
to this end by our group; (3) candidate SNPs with sus-
pected functionality have been tested in vitro using luci-
ferase reporter assays; (4) functional candidate SNPs have
been used to develop a new predictor of AP-induced EPS
utilizing several machine learning algorithms; and (5) the
algorithm thus constructed has been replicated in two
independent cohorts.

Material and methods
Subjects
Discovery Sample
Hundred and thirty-one inpatients treated with risper-

idone (48 cases presenting EPS and 83 controls not pre-
senting EPS) recruited consecutively at the Psychiatry
Service of the Hospital Clínic (Barcelona, Spain) over a
period of 3 years (2002–2004) who participated in the

original study as a Discovery Sample13. A complete
description of this cohort can be found elsewhere14,15.

Replication Sample 1
Hundred and thirteen inpatients (49 cases presenting

EPS and 64 controls not presenting EPS) recruited from
the same Psychiatry Service of the Hospital Clínic (Bar-
celona, Spain) over a different period of time (2007–2009)
treated with risperidone or other APs with similar DRD2
blockade potency and similar risks of inducing EPS
(amisulpride, paliperidone, and ziprasidone).

Replication Sample 2
Hundred and thirteen patients (43 cases with EPS and

70 controls without) from the PEPs study
(Phenotype–genotype and environmental interaction:
application of a predictive model in first psychotic epi-
sodes) treated with the same APs as in Replication Sample
1 (amisulpride, paliperidone, risperidone, and ziprasi-
done)16. The complete clinical protocol used in the PEPs
project was previously published elsewhere17.
The study was approved by the Ethics Committee of the

Hospital Clínic.

EPS assessment
In order to assess adverse drug reactions in detail, two

procedures were followed: (a) identification of EPS events
in clinical records; (b) application of the Simpson-Angus
scale (SAS)18. In accordance with our previous stu-
dies14,17,19,20, EPS were considered present when three or
more items from the SAS were reported in the clinical
record. Patients without EPS (SAS < 3 or no-EPS event
during the observational period) were taken as controls.
The observational period to capture acute EPS was
15 days for the Discovery Sample and Replication Sample
114,19,20. For Replication Sample 2 the observational per-
iod was 6 months17.

Targeted next-generation sequencing (NGS)
Eighty-eight samples from the Discovery cohort were

sent to IMGM laboratories (Lachhamer, Germany) for
sequencing using the Illumina MiSeq platform. The
technique was applied to the four genes from the original
predictor13 with 10 kbps of additional flanking, down-
stream and upstream.

Variant calling
From the .fastq format generated in the sequencing

step, we reconfigured to .sam and .bam formats with
samtools (http://samtools.sourceforge.net/). We used
the bowtie2 program (http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml) to prepare and index the reference

Boloc et al. Translational Psychiatry           (2018) 8:276 Page 2 of 10

http://samtools.sourceforge.net/
http://bowtieio.sourceforge.net/bowtie2/index.shtml
http://bowtieio.sourceforge.net/bowtie2/index.shtml


sequence (GRCh37/hg19), to sort the .bam files by posi-
tion, to align the sequences with the reference and finally,
to merge and index the alignments.
Using samtools and bcftools (https://samtools.github.io/

bcftools/), we performed the variant calling (filters: depth,
quality, and strand bias). In order to map the variants for a
specific position/SNP for each patient sequenced, we used
custom made Perl scripts.
We performed a functionality study of all the

SNPs using Ensembl’s Variant Effect Predictor (http://
www.ensembl.org/info/docs/tools/vep/index.html), Poly-
Phen (http://genetics.bwh.harvard.edu/pph2/), PRO-
VEAN (http://provean.jcvi.org/index.php), and SIFT
(http://sift.jcvi.org/).

SNP mapping
SNPs were mapped with the help of a local utility

developed in our lab (which is now freely-available
through a web portal; SiNoPsis: https://compgen.bio.ub.
edu/SiNoPsis)21. This utility works with different data-
bases that contain information on cis regulatory elements
(CRE). This analysis yields a table classifying each SNP
into one of the following categories: ecreSNP (disrupts
CRE and is eQTL), creSNP (disrupts CRE, not eQTL),
eSNP (only eQTL), and normSNP (neither eQTL nor
disrupts CRE).

SNP selection and genotyping
In order to select candidate SNPs to test their func-

tionality in vitro and to create the predictor, we con-
sidered (Supplementary Table s1): (1) SiNoPsis categories;
(2) LD with the SNP from the original predictor; and (3)
p-values from the preliminary association test for EPS
(N= 88) using SNPassoc R package22.

“In vitro” functionality assessment
Construction of promoter–reporter plasmids
We synthesized the DNA fragments using genomic

DNA from patients carrying either the wild-type (allele 1)
or mutant (allele 2) sequence for each SNP studied.
Regions were amplified using OneTaq Polymerase
(NEBiolabs, Ipswich, MA, USA) and a pair of primers
(Integrated DNA Technologies, Coralville, IA, USA)
designed for each sequence (Supplementary Data Table
S2). The resulting PCR products were digested with spe-
cific restriction enzymes (NEBiolabs) and were cloned
into the pGL4.10-basic vector (Promega, Madison, WI,
USA). The constructs were all confirmed by DNA
sequencing.

Cell culture and plasmid transient transfection
The human embryonic kidney 293 (HEK293) cell line

(generously donated by Dr. C. Sindreu) was used for the
luciferase reporter assay. 2.5 × 105 HEK293 cells were

transfected with either 100 or 250 ng of equimolar
quantities of each constructed vector or CMV as a positive
control using the calcium/phosphate method. Cells were
separately transfected with the normalization control
vector (empty pGL4.10), paired for each test transfection.

Luciferase reporter assay
24 h after transfection, cell lysates were incubated with

Beetle Lysis Juice (AttendBio, Barcelona, Spain) and the
luciferase activity was measured in a Spark® luminometer
(TECAN, Männedorf, Switzerland). Measured activities
were normalized using empty pGL4.10 as control vector.
At least three independent transfection experiments were
performed and each luciferase assay was carried out in
triplicate.

Statistical analysis
All the statistical analysis was performed using Graph-

Pad Prism v.6 software (GraphPad Software, La Jolla, CA,
USA). Means and standard deviations were computed for
continuous variables. The normality of continuous vari-
ables was tested according to the Kolmogorov–Smirnov
and Shapiro–Wilk tests, and the equality of the variance
between groups was assessed by Levene’s test. Student’s t-
test was used to assess differences between allele 1 and
allele 2 in each SNP. In all instances, a value of 0.05 was
accepted.

Development of AP-induced EPS predictor using machine
learning
The polymorphisms selected were genotyped in the

three populations participating in the present study by
real-time PCR using TaqMan allelic discrimination pre-
designed assays (Applied Biosystems, Foster City, CA,
USA).
In the present analysis, supervised methods of class

prediction based on machine learning were applied. This
means that the machine is trained to identify classification
patterns of controls and cases, using the Discovery Sam-
ple. In this process, the software has all the available data
for each individual included in the study: the selected
genetic markers and the individual’s classification as
control or case. The algorithm created by this approach is
then validated with the Replication Sample 1 and Repli-
cation Sample 2. For this validation, the software only has
each individual’s genetic information, and predicts its case
or control status according to the algorithm developed,
but blind to the individual’s real status.
First, in order to prioritize SNPs, we performed a

genetic association analysis of EPS with the selected SNPs,
in the Discovery Sample using the SNPassoc R package22.
SNPs with the nominal significant p-values were selected.
Then, classification algorithms were applied in the Dis-
covery Sample. For each algorithm, we used 10-fold cross-
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validation to estimate the prediction error. The best
model was selected and then validated using Replication
Sample 1 and Replication Sample 2.
We evaluated the performance of the different classifi-

cation techniques using: (1) area under the curve (AUC),
for classification model comparison; (2) sensitivity (true
positives (TP))/((TP+false negatives (FN)), the capacity to
predict EPS cases correctly; (3) specificity (true negative
(TN))/(TN+FN), the capacity to reject non-EPS controls);
(4) accuracy (TP+TN)/All, the capacity to correctly pre-
dict EPS cases and non-EPS controls; (5) positive pre-
dictive value (PPV) TP/(TP+FP), measures the EPS cases
predicted correctly; (6) positive likelihood ratio test (LR+)
(sensitivity/1− specificity), to assess the value of per-
forming a prediction; and (7) The Matthews correlation
coefficient (MCC) a measure of the quality of binary (two-
class) prediction.
We used three machine learning methods23–25 from the

free open-source software package Orange v.2.7 (http://
orange.biolab.si/download/):
- Support Vector Machine (SVM): RBF kernels were

used. We used the Automatic Parameter Search that
tunes the relevant SVM parameters in a methodologically
sound manner. All other parameters were set to default.
- Naive Bayes (NB): Laplace estimate was used for

assessing prior class probabilities; the method for esti-
mating conditional probabilities was the m-estimate; and
the parameter for m-estimate was set to 2.0.
- Random Forest (RF): We grew trees without any pre-

pruning. Ten classification trees were included in the
forest. The number of attributes that are arbitrarily drawn
for consideration at each node number was set according
to default parameters.

Results
Demographic and pharmacological data for the three

cohorts included in the present study are summarized in
Table 1. As expected from the sample description, sig-
nificant differences in the AP type between the cohorts
was observed.

Targeted next-generation sequencing and SNP mapping
Table 2 shows the result of the NGS for each gene. As it

can be observed, only 1.5% of all the SNPs were located in
exonic regions of the candidate genes, and only 0.4%
could be classified as missense variants. However,
according to the Polyphen and SIFT predictions, amino
acid changes introduced by SNPs have a weak effect on
protein structure or are not potentially harmful. Con-
versely, 83.5% of SNPs in functionally relevant areas of the
gene are located in cis regulatory regions (CRE), including
promoters and enhancers.
In order to clarify the potential role of these variants in

regulatory regions we developed the SiNoPsis web-based

open-source software21. Table 2 also includes a summary
of this analysis for each gene.
According to: (1) the SiNoPsis classification (ecreSNP >

creSNP > eSNP); (2) the LD with the SNPs in the original
predictor (higher LD values) and; (3) the result of the
preliminary association analysis (lower p-value) (Supple-
mentary Table S1), 12 SNPs were selected for in vitro
functionality tests and to develop the AP-induced EPS
pharmacogenetic predictor (Table 3).

In vitro functionality assessment
Variants of the regulatory regions cloned and their

localization and identifiers are all specified in Table 3.
rs1130214 (A1 region) lies within the first exon of the

AKT1 gene corresponding to the promoter and it includes
the TATA box. rs74090038 (A2 region), rs67583154 (A3)
and rs33925946 (A4) are three promoter-flanking regions
with unknown transcriptional activity (Supplementary
Figures S1A) rs67583154 (A3 region) was not assessed
due to persistent difficulties in mutant generation. The
SNP variants in all three regions were significantly less
active than their wild-type variants (Fig. 1a, b).
Four regions within the DDIT4 gene were studied

(Supplementary Figures S1B): D1 (rs1053639) encom-
passes two thirds of the coding sequence; D2 (rs4747241)
is located immediately following the 3′ untranslated
region (UTR); while D3 (rs4747242), and D4
(rs10823911), both lie further away from the 3′ UTR of
the gene. Both the D1 SNP and D4 SNP had a stimulating
effect on transcription; while the transcriptional activities
of the D2 SNP and D3 SNP were reduced compared to
their wild-type counterparts (Fig. 1c, d).
Two regions within the FCHSD1 gene were assessed: F1

(rs1421896) within its 3′ UTR, and F2 (rs34798770) which
is localized within the 5′ UTR (Supplementary Figures
S1C). Although localized within the FCHSD1 gene, F1,
bearing the TATA box, is a part of a vast sequence that
overlaps with the histone deacetylase 3 (HDAC3) gene
and acts as its promoter. The F1 SNP had a stimulating
effect on the whole region. In contrast, F2 had almost null
activity and was not affected by the introduction of the
SNP (Fig. 1e, f).
We assessed two of the three regions within the RPTOR

gene. The R1 (rs34726568) region was impossible to clone
due to persistent amplification difficulties. The R2
(rs9899898) and R3 (rs9915667) regions have character-
istics of promoter-flanking regions (Supplementary Fig-
ures S1D). The two SNPs significantly enhanced
transcriptional activity (Fig. 1g, h).

Development of AP-induced EPS predictor using machine
learning
To build the AP-induced EPS predictor, we first prior-

itized the selected SNPs based on the association analysis
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performed on the Discovery Sample (Table 3). Two SNPs
in the AKT1 gene (rs33925946 and rs1130214) and two
SNPs in the RPTOR gene (rs3476568 and rs9915667)
provided nominally significant results and were selected
to be included in the predictor.
Three algorithms (Random Forest, Support Vector

Machine, and Naive Bayes) were applied to the Discovery
Sample (Table 4). The three classifiers provide better
prediction than chance, and the Naive Bayes learner
achieved the best results in all the parameters used to
evaluate the performance of the classification techniques.
The Naive Bayes algorithm was used to predict the EPS
status of Replication Sample 1 and Replication Sample 2.
As it can be observed in Table 4, the different estimated
parameters showed similar results for the two replication
cohorts.

Discussion
In the present study, we refined and replicated a phar-

macogenetic predictor of EPS induced by AP. The starting
point was an algorithm that had previously been devel-
oped by our group, based on the statistical interaction of
the genotypes of four SNPs located in four genes involved
in the mTOR pathway13.
Candidate gene studies have been the gold standard in

pharmacogenetics, in part because of the difficulty to
recruit enough samples to have sufficient statistical power
to perform GWA studies. Regardless of the strategy, most
studies use indirect associations. That is, they use marker
SNPs (or tagSNPs) that are highly informative with regard
to the variability in a gene, and that could be in LD with
one or more functional variants. However, after a sig-
nificant association with a tagSNP, follow-up studies have

Table 1 Demographic and pharmacological data of the three cohorts included in the present study

Discovery Cohort Replication Cohort 1 Replication Cohort 2

No-EPS EPS No-EPS EPS No-EPS EPS

N 83 48 64 49 70 43

Gender, male (%) 45 (54.2) 28 (58.3) 38 (59.4) 28 (57.1) 46 (65.7) 32 (74.4)

Age, mean (SD) 35.2 (14.8) 29.4 (12.9) 33.1 (12.9) 31.8 (11.9) 24.4 (6.6) 21.9 (6.1)

Antipsychotica

Amisulpride, N (%) – – 4 (6.2) 5 (10.2) 6 (8.6) 1 (2.3)

Paliperidone, N (%) – – 15 (23.4) 10 (20.4) 17 (24.3) 6 (13.9)

Risperidone, N (%) 83 (100.0) 48 (100) 24 (37.5) 26 (53.06) 42 (60.0) 30 (69.7)

Risperidone LAI, N (%) – – 6 (9.3) 7 (14.2) 4 (5.7) 6 (13.9)

Ziprasidone, N (%) – – 10 (15.6) 7 (14.2) 1 (1.4) 0 (0.0)

Antipsychotic dose, mean (SD)b 362.9 (198.3) 470.7 (211.5) 466.1 (426.1) 443.2 (331.3) 625.2 (464.2) 756.8 (452.2)

Antipsychotic combination, N (%) 28 (33.7) 18 (37.5) 25 (37.3) 18 (36.7) 27 (38.5) 17 (39.5)

SD standard deviation, LAI long acting injection, EPS extrapyramidal symptoms
aFor those patients treated with an AP combination, the AP with the higher CEDD value is listed
bFor patients treated with an AP combination, the sum of the CEDD of each AP in the combination is calculated

Table 2 Summary of the SNPs identified after resequencing the four candidate genes in 88 samples of the Discovery
cohort

SNP functionalityb SiNoPsis categoriesc

Gene SNPs Fragment size (pb)a UTR Splicing Missense Synonymous Regulatory region ecreSNP creSNP eSNP

AKT1 92 46,395 6 0 2 3 25 9 15 22

FCHSD1 61 32,118 10 1 3 3 35 1 5 29

DDIT4 34 22,121 2 0 0 0 19 5 1 17

Raptor 1455 441,549 11 1 2 12 28 59 53 382

aSequenced DNA including the whole gene and 10 kbp of additional flanking region at downstream and upstream
bThe functionality was done using Ensembl’s Variant Effect Predictor, PolyPhen, PROVEAN, and SIFT
cecreSNP (disrupts CRE and is eQTL), creSNP (disrupts CRE, not an eQTL), eSNP (only an eQTL)
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Fig. 1 Results of the luciferase assay. using both 100 ng (a, c, e, g) and 250 ng (b, d, f, h) of DNA, of the selected SNPs in each gene: AKT1 (a, b),
DDIT4 (c, d), FCHSD1 (e, f), and RPTOR (g, h). For each SNP the ratio of the activity measured with the Allele 1 vs. Allele 2 is showed. Measured activities
were normalized using empty pGL4.10 as a control vector. At least three independent transfection experiments were performed and each luciferase
assay was carried out in triplicates. *p-value < 0.05; **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001
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rarely been performed to identify the functional variant
responsible for the association and its possible effect on
the transcription of the gene or the functionality of the
resulting protein. Moreover, genetic heterogeneity, i.e.,
more than one SNP in the same gene may be associated
with a trait, is rarely taken into account.
In the original predictor, the SNPs selected were not

apparently functional, although they had been associated
with different clinical phenotypes in other studies13.
Therefore, in the present study, the four genes and the
adjacent regions were sequenced, to identify the func-
tional variants. The results demonstrate something that is
not surprising, and that is in fact well known: no variant in
the exonic regions of these genes that could induce a
change in the amino acid sequence of the resulting pro-
tein seems to be related to the presence of EPS. Across
many phenotypes, the majority of associated SNPs reside
within noncoding regions26. Noncoding risk loci are
involved in the regulation of transcriptional activity and
are enriched in eQTLs and CREs27. CREs include pro-
moters and enhancers as well as noncoding sequences,
either near to or far from genes, which include binding
sites for the regulatory factors required for the expression
of the gene. Our hypotheses is that SNPs affecting CREs
may alter the proper spatiotemporal organization of the
transcriptome in response to AP treatment, and may
therefore be associated with AP-induced EPS. Using
SiNoPsis21 we identified those SNPs that could potentially
be modifying CRE functions. This information was cros-
sed with two types of data: from the LD relationship with
the variants from the original predictor, and with the
information from the statistical association of the SNP
with AP-induced EPS.
Since the functionality of the selected SNPs was based

on in silico prediction, we decided to test their func-
tionality using an in vitro model. Nine of the ten SNPs
tested proved to be functional, since the transcription
of the reporter gene was modified by the different alleles
of each SNP. This result validates the predictions of

SiNoPsis. Since the model does not use a neuronal or
CNS-derived cell line, the exact effect that each allele may
have on gene transcription is unknown. However, we are
certain that the presence of one or another allele in the
CRE sequence alters the binding of transcription factors
and the establishment of the transcriptional machinery.
Using functional SNPs instead of tagSNPs increases the
likelihood of replicating the results, since LD differences
between populations are avoided. It also increases the
biological plausibility of the association.
Another aspect that limits the introduction of phar-

macogenetics into clinical practice is that most of the
results have their origin in single SNP genetic association
studies that ignore the complexity of the relationship
between genetic variants created by epistasis28. Acute EPS
constitutes a complex phenotype29, and this complexity
does not seem to be explained either by the simple
interaction between APs and DRD230 or by the presence
of a single genetic variant with a major effect. It is rather
due to the presence of multiple SNPs with discrete effects
and low penetrance that interact between them. Super-
vised machine learning methods can detect interactions in
the absence of significant individual effects that would be
undetectable using traditional methods focused on major
differences at the group level. Moreover, supervised
machine learning methods characterize the risk at the
individual level and not at the population level, in contrast
to association methods, thus yielding potentially clinically
useful results31–33. Although machine learning has some
advantages over classical statistics, it also has some lim-
itations that need to be considered, such as overfitting, the
effect of genetic heterogeneity, the lack of standardized
procedures and the difficulty of interpreting data34.
The original predictor was developed using multifactor

dimensionality reduction (MDR): the first machine
learning methods developed to detect gene–gene inter-
actions35. However, some disadvantages have to be con-
sidered when using MDR: the models could be difficult to
interpret, and the genotype combinations are classified as

Table 4 Summary of the prediction performance during the training phase (CV= 10) with the Discovery cohort (N=
131), and during the replication phase of the best model with both Replication Cohort 1 (N= 113) and Replication Cohort
2 (N= 113)

Sample Type Model Accuracy Sensitivity Specificity PPV AUC LR+ MCC

Discovery cohort Training SVM 0.63 0.19 0.89 0.50 0.36 1.73 0.11

Training RF 0.65 0.25 0.88 0.55 0.65 2.08 0.17

Training NB 0.66 0.31 0.86 0.56 0.64 2.16 0.20

Replication Cohort 1 Replication NB 0.63 0.39 0.81 0.61 0.64 2.07 0.22

Replication Cohort 2 Replication NB 0.64 0.38 0.79 0.50 0.58 1.75 0.17

SVM support vector machine, RF random forest, NB naive bayes, PPV positive predictive value, AUC area under de curve, LR+ positive likelihood ratio test, MCC The
Matthews correlation coefficient
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high or low risk but there is no quantitative measurement
of that risk36. Therefore, in this study, different algorithms
were used that can improve not only the capacity to
predict AP-induced EPS but also the replication of the
results.
The lack of replication is another reason for the poor

clinical translation of pharmacogenetics. Several studies
show that the results of the first study correlate only
modestly with subsequent research on the same associa-
tion37. The first study often suggests a stronger genetic
effect than it is found by subsequent studies. Both bias
and genuine population diversity may explain why early
association studies tend to overestimate the trait protec-
tion or predisposition conferred by a genetic poly-
morphism. The heterogeneity of phenotypes and
differences in LD between populations may also explain
the problems in replicating these studies.
We used two different cohorts to replicate the predictor.

One of those cohorts was very close to the cohort used to
create the predictor, since it was recruited at the same
hospital, therefore patients are from the same geo-
graphical area and the same group of clinicians estab-
lished the phenotype. The second cohort came from a
multicenter study, where, although the phenotype was
established in a similar way, it happened at different
centers with different clinicians. This cohort differed in
some factors that have been related to EPS risk, including
clinical (chronic inpatients vs. first episode of psychosis),
pharmacological (different AP types and dosage), and
demographical (age and sex) factors29. However, the
results of applying the predictor in the three populations
gave very similar results, showing that the improved
predictor is a robust tool capable of correctly classifying a
large majority of patients, regardless of the cohort to
which they belong. In summary, in this study we opti-
mized the predictor of AP-induced EPS based on the
genetic variability of the mTOR pathway.
This new predictor includes four polymorphisms in

only two genes: AKT1 and RPTOR. However, the effect of
the genes that were no longer included (DDIT4, FCHSD1)
could not be ruled out, although we would need a larger
sample with sufficient statistical power to test the effect
on the model of other variants. In this sense, it should be
noted that the SNP mapped to the FCHSD1 gene appears
to be found in the promoter region of an important gene
for epigenetic regulation: HDCA3. Further studies are
needed to establish the role of this gene in AP-induced
EPS, and its possible interaction with the mTOR pathway.
The final result is a predictor with less accuracy than the

original but which is more robust and generalizable. This
is mainly due to the fact that this algorithm uses func-
tional SNPs instead of SNP markers in LD with causal
variants. In addition, the functionality of these SNPs has
been tested in vitro. The different parameters used to

measure the predictive capacity of this algorithm show
that it is at the border of clinical application, since they
show moderate to important results. It is essential to
continue the search for new candidate genes and research
to identify functional SNPs, and thereby to add new
variables to the algorithm to increase its predictive
capacity. Likewise, clinical, demographic and pharmaco-
logical variables should also form part of a future pre-
dictor with clinical applicability. A predictor of EPS would
be useful for guiding clinicians in their choice of AP, and
should reduce the number of unnecessary trials and limit
misdiagnosed EPS. For the patient, this will mean fewer
adverse events and better compliance, with the overall
economic benefits that this implies.
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