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Purpose: Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and 
genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma 
endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD.
Patients and Methods: This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 
years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) 
in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All 
patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries 
(SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal 
biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal 
resistance factor (CRF).
Results: Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short 
posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor 
compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, 
plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance 
indices.
Conclusion: Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic 
damages of corneal and scleral tissue in nAMD.
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Introduction
The etiopathogenesis of age-related macular degeneration (AMD) is particularly complex, involving oxidative, ischemic, 
inflammatory, and genetic factors.1–3 An important aspect is the choroidal ischemic component, which can lead to the 
onset of both types of AMD, the dry AMD and the wet AMD (with neo angiogenesis). Two principal hypotheses have 
been proposed to explain the onset of choroidal ischemia.4

The first theory suggest that the ischemia is due to the production of substances with angiogenic properties that not 
only damage the cardiovascular system but also affect the choriocapillaris, Bruch’s membrane, and the retinal pigment 
epithelium (RPE).5 Endothelin-1 (ET-1) is the most potent and long-acting vasoconstrictor peptide with binding sites in 
many ocular tissues such as iris, ciliary processes, RPE and both choroidal and retinal vasculature. Several studies have 
found increased ET-1 plasma levels in various ocular diseases.6,7 A second hypothesis posits that over time, there is 

Clinical Ophthalmology 2024:18 2583–2591                                                                  2583
© 2024 Finzi et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Clinical Ophthalmology                                                                        Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 21 May 2024
Accepted: 2 September 2024
Published: 10 September 2024

http://orcid.org/0000-0003-3877-0417
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


a progressive increase in scleral stiffness, leading to venous blood pooling within the rigid structure; according to 
Starling’s law, this results in a slowdown of choriocapillaris circulation and subsequent focal ischemia.8

Based on these assumptions, we aimed to evaluate a possible correlation between ocular hemodynamic data of 
treatment-naive patients with asymmetrical AMD, and their scleral rigidity (SR) values and plasma endothelin-1 (ET-1) 
levels.

Materials and Methods
The study was conducted in accordance with the Declaration of Helsinki and informed consent was obtained from all 
subjects.

This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, 
who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD 
(iAMD) in the other eye.9 The AMD was diagnosed by Optical Coherence Tomography (OCT), Fluorangiography (FA) 
and Indocyanine Green Angiography (ICGA) (Heidelberg Spectralis, Heidelberg Engineering, Heidelberg, Germany).

The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years (Table 1).
The exclusion criteria included regular tobacco use and systemic diseases that could interfere with endothelial 

function, such as hypertension, heart failure, diabetes mellitus, and dyslipidemia; in addition, patients with previous 
cerebrovascular problems, autoimmune diseases, and those taking vasoactive drugs were excluded.

Plasma ET-1 levels were measured for all patients and healthy subjects in the control group. Venous blood samples 
were obtained from an antecubital vein and placed in a refrigerated container with EDTA and ice. The blood was then 
centrifuged at 4°C, frozen at −25°C, and ET-1 extraction was performed using a C-18 Sep-column pack (Peninsula 
Laboratories, Belmont, CA, USA). The concentration of ET-1 (picograms/milliliter) was subsequently determined using 
a commercial radioimmunoassay (ELISA) kit (T-4050 BMA Biomedicals, Peninsula Laboratories, Belmont, CA, USA).7

All patients and healthy controls underwent color Doppler imaging (CDI) of the ophthalmic artery (OA), short 
posterior ciliary arteries (SPCAs), and central retinal artery (CRA) using an Aplio 500 ultrasound machine (Toshiba 
Medical System, Tokyo, Japan) with a 7.5 MHz linear probe, following established protocols.10–12 The examinations 
were conducted by an experienced sonographer in a blinded manner. In short, the ultrasound probe was placed on the 
closed eyelid of the eye being examined with the patient in a supine position and positioned to optimize the signal from 
the vessel being examined. The OA was examined in one of three segments: laterally, from above, or medially of the 
optic nerve shadow. The CRA was examined 2 mm anterior to the shadow of the optic nerve, and the SPCAs were 
visualized on the temporal or nasal side of the optic nerve shadow, approximately 10–15 mm behind the ultrasonographic 
image of the globe.

The ultrasound software recorded three main parameters: peak systolic velocity (PSV), end diastolic velocity (EDV) 
and resistance index (RI); this last parameter is related to the resistance present downstream of the sampling point of the 
vessel examined. Therefore, these parameters allow the assessment of any circulatory damage.13

SR values were determined using the double weighing method with a Schiötz tonometer, utilizing 5.5 g and 10.0 g weights; 
the reading of the two weights on the tonometric scale were applied to the Friedenwald nomogram to obtain the values of SR.14

Table 1 Demographic Data of the Participants to the Study

AMD Control Group §p<0.05

Age, years 76.4±3.7 74.7±3.9 0.1619

CI 95% 74.6–78.1 72.8–76.5

Gender, M:F 8:12 7:13

Ethnicity 100% Caucasian 100% Caucasian

Notes: §Mann–Whitney U-test. 
Abbreviations: F, female; M, male; AMD, age-related macular degeneration; 
CI, confidence interval.
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Corneal biomechanics were assessed using an Ocular Response Analyzer (ORA Reichert Ophthalmic Instruments 
Inc, Depew, NY, USA). The instrument has an integrated infrared beam that records the flattening of the cornea during 
the inward and outward corneal response to an air pulse lasting approximately 20 milliseconds. The collected corneal 
displacement data allow for the calculation of two indices: corneal hysteresis (CH) and corneal resistance factor (CRF).

CRF has been shown to be relatively independent of intraocular pressure (IOP) compared to CH.15–17 Recent 
experimental studies, both ex-vivo and using finite-element eye modeling, have highlighted the relationship between 
corneal biomechanics, particularly CRF, and scleral biomechanics.17–19

For the statistical analysis we used the MedCalc 10.9.1 statistical software (MedCalc Software, Ostend, Belgium). 
The data underwent analysis with the Mann–Whitney U-test to compare differences between groups, Wilcoxon’s signed- 
rank test for within-subject comparisons, and Spearman correlation test, with statistical significance set at p < 0.05.

Results
The CDI examination revealed a general reduction in PSV in patients with AMD compared to the control group, affecting 
all examined vessels in both eyes with nAMD and iAMD, with moderate statistical variability depending on the vessel 
examined (Table 2). PSV was significantly reduced in the eye affected by nAMD (p = 0.0063) at both SPCAs (p = 
0.0056) and the CRA (p = 0.0453) compared to the healthy group. RI showed a marked increase in all examined vessels 
in AMD eyes compared to the control group. Moreover, RI showed a significant increase in nAMD eyes compared to 
iAMD eyes (p = 0.0363).

Table 2 Summary Table of the Color Doppler Flowmetry Survey

nAMD iAMD *p<0.05 Control Group (CG) §p<0.05 CG vs nAMD §p<0.05 CG vs iAMD

PSV OA 48.40 ± 8.03 48.43 ± 8.86 0.995 48.56 ± 10.98 0.602 0.678

CI 95% 44.46–52.16 44.28–52.57 43.43–53.71

EDV OA 8.30 ± 1.88 10.46 ± 2.86 0.0138 9.48 ± 2.91 0.088 0.429

CI 95% 7.42–9.18 9.12–11.80 8.2–10.85

RI OA 0.83 ± 0.03 0.83 ± 0.05 0.684 0.76 ± 0.04 0.0001 0.0001

CI 95% 0.82–0.84 0.74–0.78 0.81–0.86

PSV SPCAs 12.37 ± 2.80 13.36 ± 3.60 0.0764 15.44 ± 3.59 0.0056 0.0559

CI 95% 11.06–13.68 11.68–15.05 13.76–17.12

EDV SPCAs 2.74 ± 0.89 3.61 ± 1.41 0.0001 3.98 ± 0.93 0.0214 0.4017

CI 95% 2.69–2.80 2.95–4.27 3.54–4.42

RI SPCAs 0.80 ± 0.03 0.77 ± 0.07 0.0363 0.74 ± 0.02 0.0001 0.0305

CI 95% 0.79–0.81 0.74–0.81 0.73–0.75

PSV CRA 13.28 ± 1.80 13.88 ± 2.77 0.0385 14.15 ± 1.49 0.0453 0.695

CI 95% 12.43–14.12 12.59–15.18 13.45–14.85

EDV CRA 2.79 ± 0.80 3.30 ± 0.98 0.0483 3.14 ± 0.63 0.133 0.543

CI 95% 2.42–3.15 2.84–3.76 2.85–3.44

RI CRA 0.80 ± 0.03 0.82 ± 0.03 0.5763 0.76 ± 0.03 0.0067 0.0424

CI 95% 0.78–0.80 0.77–0.79 0.75–0.77

Notes: *Wilcoxon signed-rank test; §Mann–Whitney U-test. 
Abbreviations: OA, Ophthalmic Artery; SPCAs, Posterior Short Ciliary Arteries; CRA, Central Retinal Artery; nAMD, neovascular age-related macular 
degeneration; iAMD, intermediate age-related macular degeneration; PSV, peak systolic velocity; EDV, end diastolic velocity; RI, resistance index; CG, control 
group; CI, confidence interval).
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CH and CRF values found in AMD eyes and in healthy controls are summarized in Table 3. Eyes affected by nAMD 
showed increased CH compared to healthy controls (p = 0.0106) and iAMD (p = 0.0186). Furthermore, CRF was higher 
in nAMD compared to both healthy controls (p = 0.0001) and iAMD (p = 0.0256), which, in turn, exhibited an increase 
in CRF compared to the control group (p = 0.0025). SR values determined using the Friedenwald nomogram demon
strated a statistically significant increase in eyes affected by both nAMD (p = 0.0004) and iAMD (p = 0.0077) compared 
to healthy controls; nAMD eyes had significantly higher SR than iAMD eyes (p = 0.0033).

In AMD patients, there was a significant increase in ET-1 plasma levels compared to the control group (p = 0.0006) 
(Table 3).

At the SPCAs level, in both eyes with nAMD and fellow eyes with iAMD, an increase in ET-1 values correlated with 
a reduction in PSV (nAMD: p = 0.001; iAMD: p = 0.006) and an increase in RI (nAMD: p = 0.001; iAMD: p = 0.001) 
(Table 4).

Additionally, the significant increase in RI in the SPCAs of nAMD eyes compared to fellow iAMD eyes (p = 0.0363) 
correlated with scleral stiffness, showing an increase in CRF (r = 0.52; p < 0.020) and SR (r = 0.48; p = 0.033) (Table 5).

Table 3 Correlation Between Mechanical Factors and AMD

nAMD iAMD *p<0.05 Control Group (CG) §p<0.05 CG vs nAMD §p<0.05 CG vs iAMD

CH (mm/Hg) 11.18 ± 1.06 10.15 ± 1.25 0.0186 10.02 ±1.70 0.0106 0.6167

CI 95% 10.69–11.70 9.57–10.74 9.24–10.81

CRF (mm/Hg) 12.24 ± 1.05 11.23 ±1.30 0.0256 9.82 ± 1.36 0.0001 0.0025

CI 95% 11.77–12.71 10.53–11.74 9.18–10.46

CCT (µm) 530 ± 11 528 ± 12 0.7937 526 ± 12 0.2612 0.5516

CI 95% 525–535 522–534 520–532

SR 0.0385 ± 0.005 0.0358 ± 0.004 0.0033 0.0328 ± 0.004 0.0001 0.0077

CI 95% 0.0363–0.0408 0.0340–0.0375 0.031–0.0346

ET-1 (pg/mL) 2.060 ± 0.276 2.060 ± 0.276 – 1.492 ± 0.0.560 0.0006 0.0006

CI 95% 1.931–2.188 1.931–2.188 1.225–1.758

Notes: *Wilcoxon signed-rank test; §Mann–Whitney U-test. 
Abbreviations: nAMD, neovascular age-related macular degeneration; iAMD, intermediate age-related macular degeneration; CH, corneal hysteresis; CRF, corneal 
resistance factor; SR, scleral rigidity; ET-1, endothelin-1; CG, control group; CCT, corneal central thickness; CI, Confidence interval.

Table 4 Spearman Correlation Test Between ET-1 and PSV and RI Values 
in SPCAs of Patients with Asymmetric AMD

nAMD SPCAs-PSV SPCAs-RI iAMD SPCAs-PSV SPCA-RI

ET-1 r = 0.70 r = 0.78 ET-1 r = 0.59 r = 0.88

p<0.001 p<0.001 p<0.006 p<0.001

Abbreviations: ET-1, endothelin-1; nAMD, neovascular age-related macular degeneration; 
iAMD, intermediate age-related macular degeneration; SPCAs, Posterior Short Ciliary 
Arteries; PSV, peak systolic velocity; RI, resistance index.
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Discussion
The objective of our study was to analyze the blood flow of the orbital vessels using color Doppler imaging in a cohort of 
patients with asymmetrical age-related macular degeneration, with the aim of exploring potential correlations between 
flowmetric indices, scleral rigidity values, and plasma endothelin-1 levels. Our study revealed that, compared to the 
healthy group, in naive patients with asymmetric AMD there is a significant increase of RI in all vessels examined both 
in nAMD and iAMD particularly affecting the SPCAs, with notable differences between nAMD and iAMD eyes. 
Furthermore, we observed a notable rise in SR and CRF in both eyes of AMD patients compared to controls, with 
a particularly high increase in SR in nAMD eyes compared to their fellow eyes; our results demonstrated a correlation 
between SR values and CRF, supporting the results found and validated by previous articles.20,21

Additionally, plasma ET-1 levels were markedly elevated in AMD patients compared to the control group, with 
a correlation observed between ET-1 values, abnormal SPCAs blood flow rates, and increased RI in both nAMD and 
iAMD eyes.

Previous studies on patients with asymmetrical AMD have shown mixed results. For example, Sandhu et al22 found 
no significant differences in pulsatile ocular blood flow (POBF) between the two eyes of Caucasian patients with 
asymmetrical AMD.

In contrast, earlier Chinese studies by Chen et al23,24 reported a significant reduction in blood flow in the eye affected 
by choroidal neovascular membrane (CNVM) compared to the contralateral eye during the active and scarring phases.

We believe that these varying outcomes may be attributed to differences in the assessment techniques employed; 
indeed, POBF assessment evaluates overall choroidal blood flow and may not detect subtle ischemic areas at the 
choriocapillaris level and could be influenced by variations in scleral stiffness.25 Our investigation using the CDI 
technique confirms the findings of both Chen et al and Boltz et al.24,26

Our flowmetric data align with the findings of previous investigations utilizing various methods such as POBF studies 
and laser Doppler flowmetry (LDF) studies.27–32 These studies collectively suggest that choroidal ischemia plays a key 
role in the development of AMD in both its dry and wet forms.30,33–35

The etiopathogenesis of choroidal ischemia in AMD has been explored through various theories. A mechanical theory 
proposed by Friedman36 hypothesizes that, with the aging processes of the ocular tissues, there is an increase in scleral 
stiffness leading to an increase in resistance to venous outflow and, therefore, according to Starling’s law, a consequent 
reduction of choriocapillaris perfusion.8

Our study of SR detected using the Friedenwald nomogram14 corroborates these findings observed by Friedman and 
Pallikaris et al.37 Furthermore, at the level of SPCAs, the increase in RI in eyes with nAMD has a significant correlation 
with the increase in SR and CRF. This correlation confirms the results found and validated by previous articles;20,21 these 
data would also confirm that the CRF index is a reliable expression of the scleral stiffness as hypothesized by us19 and 
demonstrated by recent studies on ocular biomechanics.17,18 However, these results seem to confirm that choroidal 
ischemia appears to have a multifactorial, and not purely mechanical, etiology.

The factors involved may be genetic,38,39 metabolic40,41 or related to the tissue aging processes.42 Chronic subclinical 
inflammation emerges as a common underlying factor that can contribute to and sustain retinal damage.43

Table 5 Spearman Correlation Test Between CRF and SR with PSV and RI 
Values in SPCAs of Patients with Asymmetric AMD

nAMD PSV-SPCAs RI-SPCAs iAMD PSV-SPCAs RI-SPCAs

CRF 0.347 r=0.520 CRF −0.145 0.144

p<0.133 p<0.020 p<0.543 p<0.544

SR −0.179 r=0.480 SR −0.104 −0.020
p<0.451 p<0.033 p<0.663 p<0.935

Note: Statistically significant correlation values are in bold. 
Abbreviations: CRF, Corneal Resistance Factor; SR, Scleral Rigidity; PSV, Peak Systolic 
Velocity; RI, Resistance Index; SPCAs, Short Posterior Ciliary Arteries; nAMD, neovascular age- 
related macular degeneration; iAMD, Intermediate age-related macular degeneration.
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Genetic factors, particularly those related to chromosome 144 and inflammation-regulating genes like complement 
factor H (CFH), are significantly associated with AMD.45,46 CFH is a circulating protein that both directly and indirectly 
inhibits the three complement activation pathways;44 the presence of complement factors within drusen47–49 would 
therefore lead to the hypothesis that AMD may derive from an aberrant inflammatory reaction caused by 
a downregulation of the complement system.50

Several studies have explored genetic variants, especially the CFH variant Y402H, in ARMD development and 
progression, albeit with conflicting results.51–53

Metabolic factors contributing to the development of AMD are closely associated with retinal aging processes and 
involve various mechanisms; these factors include the formation of drusen containing pro-inflammatory molecules,54,55 

thickening and stiffening of Bruch’s membrane due to lipid accumulation,44 and damage to the RPE.
Aging of RPE cells leads to metabolic alterations in the digestion process of photoreceptor outer segments, resulting 

in the accumulation of lipofuscin.40,56 Additionally, oxidative processes determine an increase in chromophore A2E,41,57 

capable of activating not only the complement cascade through the onset of a chronic subacute inflammatory 
reaction,41,58 but also the NLRP3 inflammasome.40,41,59–61 The NLRP3 inflammasome activation may lead to abnormal 
production of vasoactive molecules by RPE cells, further exacerbating the inflammatory response and potentially 
contributing to the pathogenesis of AMD.62

The role of inflammation in AMD, particularly involving choriocapillaris cells, has been highlighted by studies 
showing an increase in plasma inflammatory markers such as C-reactive protein and IL-6. Additionally, markers 
associated with endothelial dysfunction, including systemic and choroidal soluble vascular cell adhesion molecule-1 
(sVCAM)54,55,63 were found to be elevated, along with an increase in plasma homocysteine levels.64,65 The presence of 
diffuse endothelial dysfunction in AMD was confirmed using the flow mediated dilation (FMD) test, which is non- 
invasive and easily reproducible.66 Inflammatory reactions play a crucial role in initiating endothelial dysfunction, as 
indicated by the correlation observed between inflammatory markers and markers of endothelial dysfunction.54 The 
impairment of endothelial function leads to a cascade of events characterized by reduced endothelial nitric oxide synthase 
(eNOS) levels, subsequently resulting in decreased nitric oxide (NO) production;67 the eNOS and NO reduction is 
associated with an increase in ET-1 production,65,66 as demonstrated in our study. The elevation of plasma ET-1 levels 
correlates with reduced blood flow and increased resistance indices in the SPCAs, contributing significantly to chor
iocapillaris ischemia; this can subsequently lead to an increase in vascular endothelial growth factor (VEGF) production 
and the development of CNVM.67,68

Our data supports the hypothesis that the dysfunction of SPCAs and choriocapillaris endothelium, induced by 
a chronic subacute inflammatory process at the retinal level, is the most likely mechanism driving the onset of 
choriocapillaris ischemia. This hypothesis is further confirmed by the studies of Coleman et al relating to the possible 
efficacy of phosphodiesterase type 5 (PDE-5) and type 6 (PDE-6) inhibitors in AMD treatment.69 These drugs have 
shown to improve endothelial function, increase plasma nitric oxide (NO) levels, and enhance choroidal blood flow.70

Regarding the mechanical theory focusing on scleral rigidity due to lipid accumulation in scleral tissue8,71 we propose 
that inflammation plays a crucial role in this process. Subacute chronic inflammation would lead to an alteration of the 
enzymatic mechanisms that regulate the homeostasis of the extracellular matrix of the ocular tissues with consequent 
stiffening not only of the scleral tissue but also of the Bruch’s membrane.72–74

Conclusion
Our data indicate that in AMD, there is a reduction in blood flow at the level of the SPCAs, accompanied by an increase 
of resistance index. This hemodynamic alteration is correlated with the increase in plasma ET-1 level. Alterations in 
scleral (SR) and corneal (CRF) biomechanics are evident only eyes with nAMD.

We think that to validate our hypotheses it would be necessary to study a greater number of patients affected by 
ARMD; this would allow us to better understand the trigger that leads to the appearance of ARMD and above all the 
possible evolution towards the neovascular form.
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