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ABSTRACT

Heat shock transcription factor (HSF1) is a
conserved master regulator that orchestrates the
protection of normal cells from stress.
However, HSF1 also protects abnormal cells and is
required for carcinogenesis. Here, we generate an
highly specific RNA aptamer (iaRNAHSF1) that
binds Drosophila HSF1 and inhibits HSF1 binding
to DNA. In Drosophila animals, iaRNAHSF1 reduces
normal Hsp83 levels and promotes developmental
abnormalities, mimicking the spectrum of pheno-
types that occur when Hsp83 activity is reduced.
The HSF1 aptamer also effectively suppresses the
abnormal growth phenotypes induced by constitu-
tively active forms of the EGF receptor and Raf
oncoproteins. Our results indicate that HSF1 con-
tributes toward the morphological development of
animal traits by controlling the expression of mo-
lecular chaperones under normal growth conditions.
Additionally, our study demonstrates the utility of
the RNA aptamer technology as a promising
chemical genetic approach to investigate biological
mechanisms, including cancer and for identifying
effective drug targets in vivo.

INTRODUCTION

HSF1 is a highly conserved transcription factor that
responds to a variety of signals to regulate the expression
of a broad spectrum of target genes (1,2). HSF1 activity in
Drosophila and Saccharomyces cerevisiae is encoded by a
single HSF1 gene; while in mammals and plants multiple
isoforms exist that appear to have specialized functions
(3–6). In response to thermal exposure, HSF1 is respon-
sible for activating the heat shock (HS) response, a highly
conserved mechanism among different kingdoms (7).

During this response, HSF1 activates the expression of a
specific set of HS genes, resulting in the accumulation of
proteins possessing chaperoning activities that allow or-
ganisms to cope with cellular damage induced by thermal
stress. Additionally, HSF1 activity has been shown to be
important during certain cell and developmental processes
in various organisms. In S. cerevisiae, HSF1 is essential
for cell viability and for vegetative growth (8). Unlike
yeast, animals do not require HSF1 activity for general
cell growth; rather HSF1 is required during specific devel-
opmental stages. For instance, in Drosophila, HSF1
activity is required for early larval development and
during oogenesis (9); while in Caenorhabditis elegans,
HSF1 has been shown to be required for maintenance of
longevity (10,11). Mammals have evolved multiple HSFs
with specialized functions which appear to play multiple
regulatory roles during development that extend beyond
the HS/stress response (2–5).
Although mouse HSF1 activity is not required for

animal viability, it does protect cells from cellular insults
(4,12,13) and, interestingly, also has been implicated in
cancer as a ‘non-classical oncogene’ (14). Importantly,
HSF1 activity promotes tumor formation and participates
in the maintenance of the transformed phenotype of
cancer cells without affecting the viability of normal cells
(14). Therefore, HSF1 can function to promote cell
survival even under conditions that could potentially
become deleterious to cells, such as development of the
transformed state.
To further understand HSF1 function during animal

development and its role in tumor maintenance, we used
RNA aptamer technology as a chemical–genetic approach
to inhibit HSF1 activity in Drosophila melanogaster.
Aptamers are single-stranded RNA molecules that can
bind with high affinity to specific molecular surfaces
through ionic, hydrophobic and hydrogen bond inter-
actions. They are isolated from combinatorial libraries
containing �1� 1015 different RNA molecules through
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an iterative process of selection and amplification called
systematic evolution of ligands by exponential enrichment
(SELEX) (15,16). The large sequence complexity
associated with such a starting library enhances the prob-
ability of isolating specific and high-affinity aptamer
RNAs to various types of molecular targets, ranging
from single small molecules (17) to distinct functional
domains on a protein (18). Aptamers have also been
used previously in therapies (19,20) and in basic research
(21,22), demonstrating the broad utility of these molecular
inhibitors. Aptamers can not only be selected to bind and
inhibit distinct molecular surfaces with high specifi-
city, they can also be expressed in vivo under tight
genetic control (23) and assert their effect within specific
cells, tissues or at specific developmental stages with-
out eliciting an immune response in the targeted
organism (24).
Herein, we report the design, construction and valid-

ation of a potent inhibitory aptamer RNA molecule for
HSF1 (iaRNAHSF1). This iaRNAHSF1 contains two HSF1
binding domains engineered from a previously isolated
RNA aptamer that targets the highly conserved HSF1
DNA binding domain-linker region (25). In Drosophila,
we demonstrate that this iaRNAHSF1 is highly specific to
HSF1 and can interfere with the HSF1 trans-activa-
tion function under both non-induced and HS condi-
tions in vivo. Because of the broad implication of
increased Hsp levels in diseases, such as human cancer
(14,26–29), we examined the effect of iaRNAHSF1

under conditions that model cellular transformation in
flies. In Drosophila, HSF1 inhibition by iaRNAHSF1

suppresses the abnormal phenotypes that are induced by
the expression of gain-of-function mutants of the epider-
mal growth factor receptor (EGFR ellipse mutant)
and Raf oncogenes, and the effects of iaRNAHSF1 expres-
sion are similar to the usage of Hsp83 loss-of-function
mutants or treatment of flies with the Hsp83 inhibitor
17-allylamino-17-demethoxygeldanamycin (17-AAG), a
frequently used anticancer agent in humans (30).

MATERIALS AND METHODS

Oligonucleotides and other reagents

A single iaRNAHSF1 unit was constructed in two parts by
extending 50 pmol of each of the following primer sets
(I and II; III and IV) in 100 ml using a single round PCR
reaction:

(I) 50-CCGCTCGAGTGACGTTGGCATCGCGATACA
AAATTAAGTTGAACGCGAGTTCTTCGGAAT,

(II) 50-GGCCGGAATTCAAGGAGTATGACGAAGGC
AGTTGAATTCCGAAGAACTCGCGTTCAACTT,

(III) 50-GGCCGGAATTCAACTGCCTTCGGGCATC
GCGATACAAAATTAAGTTGAACGCGAGTT
CTTGGAGGCTCGACGTCT,

(IV) 50-CGCGTCGACGTTTCGTCCTCACGGACTC
ATCAGTAGCGAAACCACATCGCTAGACGT
CGAGCCTCCAAGAACTCG.

Each half of the molecule was purified by running the
extended products on high-resolution 8% native gel and

extracted from the gel matrix as visualized by
EtBr staining. Then each template was restricted
with EcoR1 (Invitrogen), ligated together, and cloned
into pstBlue-blunt cloning vector (Invitrogen):
pstBlue.iaRNAHSF1X1 is a coding sequence that contains
two individual (AptHSF1-1) gene upstream of a
self-cleaving hammer-head ribozyme.

Construction of synthetic genes

Repetitive head-to-tail iaRNAHSF1 genes were created by
sub-cloning iaRNAHSF1X1 into a Gateway donor vector
(pDONR221.iaRNAHSF1X1) by lifting the iaRNAHSF1X1

sequence from pstBlue.iaRNAHSF1X1 using primers con-
taining the AttB1F and AttB2R Gateway cloning se-
quences (Invitrogen): 50-AAG TTT GTA CAA AAA
AGC AGG CTT CGG ATC CAG AAT TCG TGA TC
and 50-GGG GAC CAC TTT GTA CAA GAA AGC
TGG GTT AGC CTA GGT CGA CG. Because each
iaRNAHSF1 unit is flanked by the complementary
asymetric Xho1 and Sal1 restriction sites at the 50- and
30-ends, respectively, we can use the general Gateway
cloning strategy to select for correctly ligated tandem
iaRNAHSF1 repeats (Supplementary Methods S1). In this
method, a single iaRNAHSF1X1 unit is first lifted from
pDONR221.iaRNAHSF1X1 via PCR and the resulting
amplicon is cut with either Sal1 or Xho1 before the cut
products are combined and ligated together. Using this
scheme, only those products that are in proper head-to-tail
orientation contain the required Gateway AttB sites in the
50- and 30-ends (AttB1F.iaRNAHSF1X2.AttB2R) needed for
creation of an Gateway compatible Drosophila transform-
ation expression vector, pUAS.iaRNAHSF1X2. Using the
polymer of two as template and repeating the polymer-
ization strategy creates a polymer of four,
p{UAS.iaRNAHSF1X4, w+}. Overall, geometric progres-
sion of polymeric length is achieved in each subsequent
round of polymerization.

Drosophila strains

Parental iaRNAHSF1 animals were created by injecting
Drosophilaw1118 embryos with p{UAS.iaRNAHSF1X8,
w+} and p{UAS.iaRNAHSF1X16, w+} transformation
vectors and screening the progeny of F1 females for
animals that contain the mini-white gene when crossed
to a double-balanced CSX fly line containing CyO(2);
TM6(3); Xasta(2,3). Sites of p-element insertions were
determined genetically by continuous backcrossing to the
CSX stock, resulting in homozygous fly lines that con-
tain aptamer genes in various chromosomes:
(i) UAS.iaRNAHSF1X8(X), (ii) UAS.iaRNAHSF1X16(X),
(iii) UAS.iaRNAHSF1X8,16(X), (iv) UAS.iaRNAHSF1X8(II),
(v) UAS.iaRNAHSF1X16(II), (vi) UAS.iaRNAHSF1X8,16(II),
(vii) UAS.iaRNAHSF1X16(III). To express iaRNAHSF1, we
crossed homozygote UAS.iaRNAHSF1 parentals with
various Gal4 sources purchased from Drosophila Stock
Center (Bloomington): 6983 (Salivary Gland Gal4), 5138
(Ubiquitous tubulin Gal4). Systemic iaRNAHSF1 expressing
animals were created by isolating F1 females from aptamer
parentals in the second chromosome (UAS.iaRNAHSF18

and UAS.iaRNAHSF18,16) mated to 5138 animals.

6730 Nucleic Acids Research, 2011, Vol. 39, No. 15

http://nar.oxfordjournals.org/cgi/content/full/gkr206/DC1


Heterozygote F1 males were then mated to CSX females,
and the resulting F2 animals that contained both aptamer
genes and Gal4 protein (UAS.iaRNAHSF1/CyO;
Tub.Gal4/Sb) were isolated and isogenized to create true
breeding aptamer expressing lines. Other Bloomington
stocks used in this study include: 5693 (Hsp83e6D

antimorphic mutant), 5743 (Duplication 61F7–F8;
64B10–12). Animals containing the pUAS.eGFP(I) trans-
genes were a kind gift provided by Dr Garcia-Bellido’s
laboratory, and animals expressing the gain of functions
EGFrElp and RafBT98 mutants were kindly provided by Dr
Marc Therrien’s laboratory.

In vitro binding assays

Internally labeled 32P-UTP iaRNAHSF1 was transcribed
from an iaRNAHSF1X1 PCR template containing a 50-T7
promoter using Maxi-script Kit and instructions
(Ambion) and purified by gel electrophoresis.
Electrophoretic motility shift assays (EMSA) were per-
formed by addition of increasing molar amounts of
purified GST-HSF1 protein to limiting amounts of
32P-iaRNAHSF1 (<1 nM) using the following binding con-
ditions: 25mM Tris–HCl, 75mM KOAc, 0.5Mm MgCl2,
10% glycerol pH 7.4 and allowing complexes to form for
0.5 h at 25�C. The RNA protein complexes were separated
in 6% native gel (3mM Tris–HCl, 200mM glycine,
0.5mM MgCl2). Competition experiments were per-
formed by pre-incubating increasing molar amounts of
cold-iaRNAHSF1 mixed with T4 kinase labeled Hsp83 or
Hsp70 promoter DNAs to 50 nM purified GST-HSF1
before separating the complexes on 2% native gels (0.5�
TAE, 0.5mM MgCl2) or by filter binding assays. The
promoter DNA sequences were amplified from
Drosophila genomic DNA using the following primer
sequences:

Hsp83�449F: 50-ACTTGACTGGGCTTGTAGCAGGTT,
Hsp83+114R: 50-TTCTGGATGCCAGGGATGCAACTT,
Hsp70�200F: 50-TGCCAGAAAGAAAACTCGAGAAA,
Hsp70+64R: 50-CTGCGCTTGTTTGTTTGCTTAGCT.

RNA quantification

Total RNA was extracted from whole animals using
Trizol reagent (Invitrogen). Quantification of the relative
transcript levels was determined by oligo-dT reverse tran-
scription, followed by real-time PCR analysis (RT–qPCR)
using the following primer sets:

Rp49+141F: 50-CCCAAGGGTATCGACAACAGA,
Rp49+204R: 50-CGATGTTGGGCATCAGATACTG,
18 S+417F: 50-TGACGAAAAATAACAATACAGGAC

TCA,
18S+569R: 50-CAGACTTGCCCTCCAATTGG,
iaRNAHSF1 F: 50-TGGTTTCGCTACTGATGAGTCCGT,
iaRNAHSF1 R: 50-GCAGTTGAATTCCGAAGAACTCGC,
Hsp70Ab+2155F: GGTCGACTAAGGCCAAAGAGTCTA,
Hsp70Ab+2266R: TCGATCGAAACATTCTTATCAGT

CTCA,
Hsp83+3628F: 50-GCGACCAGTCGAAACAAACAACCA,
Hsp83+3732F: 50-AACTCGGCCGTAGTAAACTCAG,

Hsp26+580F 50-CAAGGTTCCCGATGGCTACA,
Hsp26+667R 50-CTGCGGCTTGGGAATACTGA.

All statistical analyses in this study were calculated using
Student’s t-test.

Immunofluorescent assays of polytene chromosomes

Salivary glands were dissected from third stage instar
larvae in 0.5� Grace’s medium. Chromosomes were
spread, fixed onto slides and immunostained using
antibodies targeting HSF1, GAGA factor (GAF) as
described previously in Schwartz et al. (31).

Morphological studies

Aptamer expressing animals were scored for phenotypic
abnormalities using a dissecting microscope. Here, the
abnormal Drosophila traits were quantified by screening
a population of aptamer expressing animals (>500 flies)
and determining the number of animals with abnormal
traits in the total population. Pictures were taken using
an 8.0Mb Nikon digital camera mounted onto the
microscope. Quantification of morphological
abnormalities was calculated by quantifying abnormal
size or area using the ImageJ software.

Cell culture

iaRNAHSF1X8 was subcloned into Gateway pDEST48
(Invitrogen) and stable Drosophila S2 cells were selected
by maintaining cells in 6 mg/ml Blasticidin reagent.
iaRNAHSF1 was induced using 0.5mM CuSO4.
iaRNAHSF1 half-life (t1/2) determination was performed
by treating cells with 0.5mM CuSO4 for 24 h before
adding 1 mg/ml alpha-amanitin, a potent RNA Pol II in-
hibitor. Upon the addition of amanitin, cells were col-
lected and the total RNA samples were isolated using
the Trizol reagent and protocol. Total iaRNAHSF1

values were calculated by comparing their relative levels
to 18S RNA levels at specific time points following
amanitin treatment.

RNAi treatment

Approximately 1� 106 Drosophila S2 cells were
incubated with 10 mg dsRNA targeting HSF1 and Hsp83
for 5 days using genes containing T7 promoter target-
ing each sequence amplified from Drosophila genomic
DNA:

T7Hsp83+378F: 50-TAATACGACTCACTATAGGGTT
CCATGATCGGTCAGTTCGGTGT,

T7Hsp83�1048R: 50-TAATACGACTCACTATAGGGC
GTACAGCTTGATGTTGTTGCGCT,

T7HSF1 F: 50-GAATTAATACGACTCACTATAGGG
AGAGCCTTCCAGGAGAATGCA,

T7HSF1R: 50-GAATTAATACGACTCACTATAGGG
AGAGCTCGTGGATAACCGGTC.
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RESULTS

Design, construction and validation of the iaRNAHSF1

expression system

Previously, we isolated an RNA aptamer that binds the
DNA binding domain of Drosophila HSF1 with an
apparent dissociation constant (Kd) of 20–40 nM (25).
Because HSF1 is multimeric, we used this aptamer to con-
struct a divalent version that we demonstrate has a several
fold higher affinity, Kd� 8 nM (Figure 1A–C). This
improved avidity of iaRNAHSF1 is sufficient to prevent
HSF1 from binding to its natural binding sites on the
Hsp70 and Hsp83 promoters in vitro (Figure 1D and E).
As shown here, increasing the concentrations of HSF1
results in the formation of various protein–DNA
complexes as visualized by the altered electrophoretic
motility (Figure 1D, lanes 2–4). The long HS element
(HSE) of Hsp83 can bind multiple HSF1 trimers, and
the weaker bands of intermediate mobility likely represent
binding of non-saturating amounts HSF1 trimers to this
HSE. These weaker bands and the major shifted band are
all effectively inhibited by increasing amounts of
iaRNAHSF1 (Figure 1D, compare lanes 5–8 versus 9–12).
To test the effect of iaRNAHSF1 on HSF1 function in

animals, we generated an aptamer expression system
designed to rapidly produce high levels of nuclear
localized dimeric iaRNAHSF1 in desired cell types. The
approach was a systematic step-wise variation of that
used by Shi et al. (23). The dimeric iaRNAHSF was
joined to a hammerhead ribozyme and this unit was
duplicated and the product reduplicated by a
forced-Gateway cloning strategy to generate up to 16 re-
petitive head-to-tail repeats under the control of a
Gal4-activated promoter (Figure 2A and Supplementary
Methods S1). The resulting expression system allows
high-level expression of dimeric aptamer RNAs, because
each repeating aptamer coding unit within a given poly-
meric template is flanked by a self-cleaving hammer-head
ribozyme. Upon transcription of the polymeric template
RNA in a tissue expressing the Gal4 transcription activa-
tor, the hammer-head ribozymes undergo self-cleavage re-
sulting in the release of multiple free functional iaRNAs
from every transcription cycle (23) (Supplementary
Figure S1A). This self-cleavage ensures that the aptamer
RNAs are not polyadenylated and not substrates for
nuclear export; therefore, they should remain localized
within the nucleus. Additionally, the self-ligation activity
of the released form of the hammerhead creates covalently
closed circles that are thought to stabilize and protect the
RNA aptamer from degradation (23).
To test the stability of iaRNAHSF1 in living cells, we

analyzed the rate of iaRNAHSF1 decay in stable
Drosophila cells at specific times following alpha-amanitin
treatment. In these experiments, the iaRNAHSF1 exhibited
an in vivo half life of �2 h (Supplementary Figure S1B).
Finally, to test the production of iaRNAHSF1 in whole

Drosophila animals, we crossed flies with the
Gal4-regulated polymeric aptamer gene with a line ex-
pressing a tubulin-promoter-driven Gal4 gene. The
iaRNAHSF1 level is elevated �150-fold over parental
strains that lack Gal4 protein (Supplementary

Figure S1C) demonstrating that the aptamer gene is
regulated by Gal4. Collectively, our results reveal that
this engineered polymeric dimeric aptamer construct has
an improved apparent affinity for HSF1, is stable under
cellular conditions, and can be effectively induced to high
levels in vivo.

iaRNAHSF1 is a potent HSF1 antagonist under non-heat
shock conditions

To determine the in vivo efficacy of the iaRNAHSF1 as a
HSF1 antagonist, we measured its effect on known HSF1
gene targets under both non-heat shock (NHS) and HS
conditions. We focused initially on the Hsp83 gene locus
(63B), which is the ortholog of mammalian Hsp90,
because it is expressed under non-stress inducing condi-
tions, and HSF1 is significantly enriched at this locus
compared to other loci (32,33). We investigated the
effects of iaRNAHSF1 expression at three different levels:
(i) HSF1 binding to the Hsp83 chromosomal locus,
(ii) Hsp83 mRNA levels and (iii) traits in animals.
Antibody staining for HSF1 on Drosophila salivary
gland chromosomes confirms that under normal growth
conditions HSF1 preferentially binds to the Hsp83 gene
locus (63B) [Figure 2B, compare HSF1 signal (red) relative
to GAF control (green)]. However, upon iaRNAHSF1 ex-
pression, the HSF1 levels at the 63B locus is significantly
reduced by �50% (P=0.035) (Figure 2C, left).

Previous reports have implicated the enhancer elements
and upstream regulatory sequences present in the
promoter regions of the Hsp83 gene as being critical for
Hsp83 gene expression (34); however the Hsp83 upstream
region also has a tandem array of nine binding sites for the
HSF DBD. Because, there is currently no direct evidence
indicating whether HSF1 has a role in regulating the basal
expression of Hsp83, we tested whether HSF1 inhibition
compromises Hsp83 expression levels by quantifying the
levels of Hsp83 mRNA in iaRNAHSF1 expressing and
wild-type (Gal4 parental) animals not exposed to
thermal stress (NHS). In these and the following RT–
qPCR experiments, we determine and compare HS
mRNAs by normalizing their values to a housekeeping
gene whose level does not vary relative to total RNA in
response to HSF1 aptamer expression, HSF1 RNAi treat-
ment, or temperature. Here, animals that express
iaRNAHSF1 contain an �50% reduction of Hsp83
mRNAs compared to control animals (Figure 2C, right)
(P=0.008), indicating that under non-HS conditions
HSF1 activity is required for the expression of Hsp83.
We confirmed this result using another approach, which
involved RNAi-depletion of HSF1 from Drosophila S2
cells. In these experiments, HSF1 knockdown resembled
the effects of iaRNAHSF1 expression and similarly
reduced the expression levels of Hsp83 and Hsp70
transcripts (Supplementary Figure S1D), thus further
demonstrating that normal HSF1 activity is required for
the full expression of HS mRNAs under normal growth
conditions.

Adult animals that constitutively express iaRNAHSF1

display phenotypic abnormalities in the abdominal
segments, wing shape and morphology, bristles and eye
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protrusions in specific genetic backgrounds at high
frequencies (Figure 2D). Intriguingly, the aptamer-
induced phenotypes closely resemble the abnormalities
that occur when Hsp83 activity is reduced; although the
developmental defects occur at much greater frequencies
(35,36). This increased penetrance is best illustrated by
the notched wing phenotype observed in �90% of
iaRNAHSF1 expressing animals; while this same pheno-
type is only present in �5–20% of the wild-type animals
that have been raised in media containing the Hsp83

inhibitor (17-AAG) during the first two generations, and
in <1% of Hsp83e6D antimorphic mutants. The observed
increased penetrance of abnormal traits that occurs
among aptamer expressing animals might be a result of
inbreeding of fly populations that have such abnormal
traits, as has been shown in previous studies of Hsp83
mutant animals or feeding animals with 17-AAG (36).
Additionally, or alternatively, we cannot rule out HSF1
having some contribution to basal expression of other HS
proteins that are known to contribute to Hsp83’s
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chaperone functions. Taken together, our findings demon-
strate that under NHS conditions, iaRNAHSF1 expression
can compromise HSF1 binding to its native binding sites,
such as the Hsp83 locus (63B), resulting in decreased
Hsp83 transcript levels and giving rise to animals with
phenotypes that resemble loss of function Hsp83
mutants (Figure 2).

iaRNAHSF1 is a potent HSF1 antagonist under HS
conditions

It is well documented that under HS conditions, HSF1
undergoes homo-trimerization and binds with high
affinity to the HS elements (HSE) of HS promoters
(33,37). HSF1 binding to promoters results in the recruit-
ment of various components of the transcription machin-
ery (38), dramatic changes in chromatin architecture and
nucleosome disruptions over the entire gene locus (39),
and �200-fold increase in expression of major HS genes.

Although iaRNAHSF1 is predicted to have more difficulty
competing against the DNA binding capacity of
HS-activated HSF1 homotrimers, we do observe a
modest but reproducible inhibitory effect. Figure 3A
shows that fly lines that contain 48 dimeric aptamer
repeats (three 16-mer arrays inserts crossed into a single
line) have high-level iaRNAHSF1X48 expression that is suf-
ficient enough to compromise HSF1 binding to the Hsp70
(87A and C) loci following HS treatment. Quantification
of the HSF1 antibody signals, which are normalized to
GAGA factor antibody staining at a nearby site that
does not undergo ‘puffing’ (86E), shows the effectiveness
of the iaRNAHSF1 at inhibiting the ability of HSF1 to
bind at both the 87A and 87C loci (Figure 3B).
Furthermore, quantification of the total mRNAs from
three major classes of HS genes: Hsp26, Hsp70 and
Hsp83 demonstrates that iaRNAHSF1 expression reduces
their expression (Figure 3C).
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Figure 2. iaRNAHSF1 is a potent HSF1 antagonist under NHS conditions. (A) Design of iaRNA expression system in vivo. Diagram of a polymeric
template of 16 iaRNAHSF1 gene units and their corresponding transcripts (i) corresponds to the first processed iaRNAHSF1 which lacks a hammer-
head, (ii) correspond to the middle iaRNAHSF1 repeats that contain the ‘self-cleaving’ hammer head ribozymes and (iii) corresponds to the final
processed hammer head ribozyme that does not have the iaRNAHSF1. (B) Constitutive iaRNAHSF1 expression results in decreased HSF1 binding to
Hsp83 gene (63B locus) during non-induced (NHS) conditions (note: the average diameter of a polytene chromosome is 4 mm). (C) Quantification of
the relative intensities shown in panel B among WT (n=29) and iaRNAHSF1 expressing animals (n=29) (left), and quantification of Hsp83 mRNAs
in WT (n=6) and iaRNAHSF1 (n=6) expressing animals (right) shows that constitutive iaRNAHSF1 expression inhibits HSF1 binding to the Hsp83
locus under NHS conditions in vivo (observed signals normalized to GAF intensities at 63A). (D) HSF1 inhibition by iaRNAHSF1 results in adult
animals that resemble Hsp83 loss-of-function mutants, and in animals that display abnormal animal morphology within abdominal segments, wings
and bristle structures at high frequencies (n >500 animals).
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Functional specificity of the in vivo iaRNAHSF1–HSF1
interaction

Overexpression of either iaRNAHSF1 or HSF1 results in
increased lethality and an increased frequency of specific
morphological phenotypes. To assess the specificity of
iaRNAHSF1 for HSF1, we reasoned that overexpression
of both molecules within the same animal should amelior-
ate the aberrant phenotypes of each. This genetic
approach is analogous to factor titration or add-back ex-
periments in biochemical assays, where the inhibition of a
protein by an RNA aptamer is reversed by the addition of
excess protein (22,23,25).

First, we assessed if HSF1 overexpression could
suppress the abnormalities induced by iaRNAHSF1

overexpression. Here, systemic iaRNAHSF1 expression
results in lethality that occurs with increasing
iaRNAHSF1 gene dosage (Figure 4A, compare animals
that express 8, 24 and 48 iaRNAHSF1 repeats). We
reasoned that the observed lethality that occurs among
animals expressing high levels of iaRNAHSF1X48 is likely
due to the fact that HSF1 is an essential gene for
Drosophila development (9). This iaRNAHSF1-induced
effect is effectively suppressed upon HSF1 co-expression
(Figure 4A, compare gray and blue column). Additionally,
we took advantage of the abnormal wing (notching) defect
that occurs with a high frequency in iaRNAHSF1 express-
ing animals to further determine the specificity of
iaRNAHSF1 to HSF1. We choose to focus on the
abnormal (notch) wing phenotype because it occurred
most frequently in the aptamer expressing population,
and as with any genetic suppression analysis, it provided
us with an easily observable phenotype that was quick to
score. Figure 4B shows that the notched wing defect
occurs in iaRNAHSF1 expressing animals and is absent
in any of the parental stocks (Figure 4B, compare

parental controls). Moreover, this abnormality is not
affected by GFP overexpression, but it is effectively
rescued upon overexpression of either HSF1, or Hsp83,
a major product of HSF1 activity in non-stressed cells
(Figure 4B).
Second (a complementary test), we assayed if

iaRNAHSF1 expression could suppress the abnormalities
induced by HSF1 overexpression. We find that
tissue-specific HSF1 overexpression results in abnormally
small salivary glands (Figure 4C, compare right and left
panel). This abnormality is effectively suppressed when
iaRNAHSF1 co-expressed with overexpressed HSF1
(Figure 4C, middle panel). Quantification of the salivary
gland length among WT animals and animals that either
overexpress HSF1 alone or with iaRNAHSF1 shows that
iaRNAHSF1 co-expression restores the salivary gland
morphology to nearly WT size (Figure 4D).
Furthermore, we find that the high frequencies of lethality
in flies with high-level systemic HSF1 overexpression
(Figure 4A) is effectively suppressed by iaRNAHSF1

co-expression, resulting in viable and fertile animals
(Figure 4A). Lastly, we decided to express the HSF1
aptamer (iaRNAHSF1) and compare its effects with a
control aptamer RNA (Rev) that lacks the sequence spe-
cificity to target HSF1 protein in stably selected
Drosophila S2 cells. Placing each aptamer gene under the
control of the copper-inducible promoter results in tight
chemical control and high amounts of aptamer levels upon
addition of low amounts of CuSO4 (Supplementary Figure
S2A). In this system, we observe decreased HSF1 levels at
the Hsp70 promoter upon iaRNAHSF1, but not control
RNA (Rev) expression (Supplementary Figure S2B).
Moreover, iaRNAHSF1 expression inhibits CuSO4 induc-
tion of Hsp70 while expression of the control RNA
sequence does not (Supplementary Figure S2C).
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Figure 3. iaRNAHSF1 expression inhibits HSF1 activity under HS conditions in vivo. (A) High-level iaRNAHSF1 inhibits HSF1 binding to Hsp70
gene loci under HS conditions (left column=WT, right column= iaRNAHSF1X48; antibodies: red=HSF1, green=GAF, blue=DNA, dot=87A
locus, triangle=87C locus) (note: the average diameter of a polytene chromosome is 4 mm). (B) Quantification of the relative fluorescence of HSF1 in
panel E at Hsp70 (87AC loci) among WT or iaRNAHSF1X48 expressing animals (signals normalized to GAF intensity at 86E locus. WT n=5;
iaRNAHSF1 n=14). (C) Constitutive iaRNAHSF1 expressing compromises major HS gene activation by HSF1 during heat stress (mRNAs quantified
by RT–qPCR. Error %SEM, WT n=4, iaRNAHSF1 n=4).
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Taken together, we conclude that iaRNAHSF1 does not
produce its phenotypes non-specifically, but rather acts
on the intended target, HSF1, thereby inhibiting expres-
sion of Hsp83, which is HSF1’s primary target of binding
and regulation under non-induced conditions.

iaRNAHSF1 expression attenuates phenotypes of
hyperactive mutations in the MAPK signaling pathway

Hsp83 is known to modulate the MAPK signaling
pathway, a well-conserved and important regulatory
pathway that is frequently overactivated in human
cancers (40). In Drosophila, gain-of-function mutations
within the MAPK pathway does not result in tumor for-
mation; rather, hyper-activation of the MAPK pathway
results in an altered cell fate specification and abnormal
tissue morphology. Components of this pathway, such as
the EGFR and Raf oncogenes, depend on normal levels of

Hsp83 activity for their proper folding, localization or
kinase activity (1,41). Thus, the inhibitory potential of
the aptamer on the MAPK pathway can be analyzed
in vivo by comparing the effects of iaRNAHSF1 expression
in animals that also harbor gain-of-function EGFR
(ellipse) or Raf (RafBT98) mutations. Here, tissues that
have decreased MAPK signaling activity should more
closely resemble the tissues of animals that do not
harbor the gain-of-function mutants.

Expression of iaRNAHSF1 inhibits HSF1 and this, in
turn, decreases Hsp83 levels. Because Hsp83 is needed
for MAP kinase pathway function, we sought to deter-
mine if iaRNAHSF1 expression might suppresses the
abnormalities induced by gain-of-function mutations of
the Drosophila EGFRellipse and RafBT98 oncogenes.
Heterozygote animals that express EGFRellipse have been
previously shown to contain abnormal wing veins morph-
ology (42). Indeed, this abnormality is effectively
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Figure 4. iaRNAHSF1 inhibits HSF1 with high specificity in vivo. (A) Co-expression of iaRNAHSF1 and HSF1 suppress the lethality induced by either
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suppressed when HSF1 is inhibited by iaRNAHSF1, or
when Hsp83 activity is compromised by expression of
the Hsp83e6D antimorphic mutant or when EGFRellipse

hemizygote flies are treated with the Hsp90 inhibitor
17-AAG (Figure 5A).

Similarly, heterozygote animals that express a
gain-of-function RafBT98 protein have been shown to
contain multiple cells within each ommatidium resulting
in flies with a distinct rough eye morphology (Figure 5B).
Moreover, it has been previously demonstrated that
RafBT98 mutants require normal Hsp83 activity to exert
this eye specific defect (41). In agreement with the previous
findings, we find that the rough eye phenotype that is
induced by RafBT98 expression can be reversed by
reducing Hsp83 activity through the co-expression of the
Hsp83e6D antimorphic mutant, or by treating RafBT98

animals with 17-AAG (Figure 5B). Consistent with our
findings that HSF1 controls the expression of Hsp83, we
find that HSF1 inhibition by the aptamer also results in
the strong suppression of the rough eye phenotype that is
caused by increased RafBT98 signaling activity (Figure 5B).
The affected surface area of the eye with a rough eye
phenotype in each of these overactive MAPK signaling
genetic backgrounds can be effectively attenuated by
iaRNAHSF1 expression or direct Hsp83 inhibition
(Figure 5C).

DISCUSSION

iaRNAHSF1 is a novel HSF1 DNA binding domain
inhibitor in vitro and in vivo

In this study, we describe the in vivo utility of an aptamer
that targets the highly conserved HSF1 DNA binding

domain. We engineered a potent inhibitor of trimeric
HSF1 by constructing a dimeric molecule derived from
two copies of a previously selected RNA aptamer, which
had a modest Kd of �20–30 nM. The dimeric aptamer
(iaRNAHSF1) binds HSF1 with an improved affinity of
Kd of �8 nM. By creating a genetically controlled expres-
sion system, which contains polymers of a dimeric
aptamer fused to a self-cleaving ribozyme, we demonstrate
that we can express iaRNAHSF1 at high levels in whole
animals. In cells, this RNA molecule displays an
in vivo half-life of 2–4 h, is adequate to produce the
phenotypes in animals seen here. Moreover, it can be a
useful inhibitor particularly in basic studies of the HS
response that are often performed within the first few
hours following stress induction. We do, however, ac-
knowledge that the effectiveness of the aptamer could
benefit from other modifications that further limit exo-
nuclease degradation.
It is well-documented that HS stress can affect the

monomer–oligomer equilibrium status of HSF1 (43).
Within seconds following a heat stress, HSF1 shifts from
a monomer to a homotrimer state, binding stably and
cooperatively to HS gene promoters (37). This can be
visualized in vivo using real-time imaging techniques;
under normal growth conditions, where monomeric
HSF1 displays rapid off-rates with its target genes, but
is stably associated with target loci after the cells have
been exposed to heat stress (33). Here, we show that our
HSF1 aptamer can prevent HSF1 binding to HS loci and
its ability to induce gene expression under both normal
and stress conditions in vivo. While the aptamer is effective
in inhibiting the modest HSF1 DNA binding activity in
NHS cells, it only partially inhibits strong HSF1 binding
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Figure 5. Expression of iaRNAHSF1 suppresses gain-of-function mutations of genes in the MAPK signaling pathway. (A) iaRNAHSF1 expression and
Hsp83 inhibition suppress the abnormal wing phenotype induced by the EGFrElp mutant. (B) iaRNAHSF1 expression and Hsp83 inhibition suppress
the rough eye phenotype induced by activated RafBT98 mutant. (C) Quantification of rough eye phenotypes in panel B calculated by area. Error
%SEM, WT (n=5); RafBT98 (n=26); RafBT98+iaRNAHSF1 (n=33); RafBT98+Hsp83e6D (n=33); RafBT98+3.6 mM 17AAG (n=33).
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in HS cells (Figure 3). We note that aptamer expressing
animals show normal survival after heat stress, pre-
sumably because the levels of chaperone expression is suf-
ficient to overcome the proteotoxic effects of heat.
However, high-level expression of this aptamer in yeast
cells results in strong growth defects at elevated tempera-
tures (44).
Whenever a ligand such as an aptamer is used in vivo to

study and manipulate the function of a protein, it is im-
portant to know whether the intended target is specifically
recognized by the ligand/drug. However, testing the
binding of iaRNAHSF1 to every protein in a cell is not
feasible. Instead, we use functional assays to demonstrate
that effect of iaRNAHSF1 is specific to HSF1. The
abnormalities that arise from the expression of
iaRNAHSF1 in Drosophila are effectively suppressed by
HSF1 co-expression and not a control protein like GFP,
suggesting that the aptamer is exerting its effects by tar-
geting HSF125. Conversely, the abnormalities observed in
Drosophila induced by HSF1 overexpression are also
effectively suppressed by iaRNAHSF1 overexpression.
Moreover, in Drosophila S2 cells iaRNAHSF1 expression
effectively attenuates HSF1 activity while expression of a
control aptamer sequence (Rev) does not. Collectively,
our analysis provides further supporting evidence for the
specific nature of the aptamer–HSF1 interaction in vivo.

HSF1 regulates the activity of the Hsp83 (Hsp90)
buffering system that promotes adaptation to stress

In contrast to mammals, where theHsp83 locus (Hsp90) is
not controlled by HSF1 but rather by other HSF isoforms
(45), here we show that Drosophila, which has a single
of HSF gene, requires HSF1 for the proper expression
of Hsp83 during development. The constitutive level of
Hsp83 protein is impressive, reaching concentrations of
1–2% of the total protein content in vivo (45–47). This
HSF1 involvement in constitutive expression of Hsp83
was first suggested by the fact that the Hsp83 locus (cyto-
logical site 63B) shows the highest HSF1 occupancy over
any site on Drosophila chromosomes. We also find that
either iaRNAHSF1 or HSF1 RNAi expression in
Drosophila reduces the levels of HS transcripts, and in
particular, the constitutive levels of Hsp83. Hsp83 has a
general role in biological processes such as spermatogen-
esis, protein trafficking, signal transduction, cytoskelletal
organization and cell survival pathways (41,48–52). Given
the fact that Hsp83 exerts its chaperone functions in
concert with other HS proteins; it is, therefore, likely
that decreasing various HS mRNAs levels with
iaRNAHSF1 expression attenuates Hsp83 activity resulting
in animals that have phenotypes of previously reported
Hsp83 mutants (35), albeit at much higher frequencies
than seen previously in Hsp83 hemizygotes. Moreover,
we find that iaRNAHSF1 expression effectively attenuates
the abnormal activities of Hsp83 client proteins, EGFR
and Raf oncoproteins. Collectively, our data suggest that
in Drosophila the Hsp83 gene is a primary target of HSF1
regulation during normal conditions, and is highly respon-
sive to HSF1 inhibition during animal development.

This study builds upon a previous Hsp83-directed
chaparone ‘buffering’ model (35,36), and our data
supports the hypothesis that the master regulator HSF1
is critical for constitutive expression of molecular chaper-
ones. In particular, HSF1 inhibition results in an altered
chaperone-driven buffering system that promotes animal
trait variation and the signaling activities of cancer
causing mutations (Supplementary Figure S3). Herein,
we provide an in vivo approach aimed at understanding
HSF1 function during animal development and its
putative role for early drug target validation. Because
the HSF1 DNA-Linker domain is highly conserved
among eukaryotes (53), it is likely that this novel HSF1
inhibitor (iaRNAHSF1), or derivatives thereof will prove to
be a useful reagent(s) that will further aid in unraveling the
functions of related HS transcription factors in other
model organisms or of HSF1-dependent diseases such as
cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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