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Data-driven modeling of solar-powered
urban microgrids
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Distributed generation takes center stage in today’s rapidly changing energy landscape. Particularly, locally
matching demand and generation in the form of microgrids is becoming a promising alternative to the central
distribution paradigm. Infrastructure networks have long been a major focus of complex networks research
with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban con-
text, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid
model and study its citywide implementation, identifying the self-sufficiency and temporal properties of micro-
grids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience
under cost constraints. We characterize load-related failures solving power flows in the networks, and we show
the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our find-
ings hint at the existence of an optimal balance between cost and robustness in urban microgrids.
INTRODUCTION

As large-scale empirical data on technological and social systems have
become more ubiquitous, the study of such systems in the form of
complex networks (1–3) has gained considerable momentum. Critical
infrastructures have traditionally been a major focus of networks
research, owing to their vital importance to the functioning of modern
societies. Among critical infrastructures, power grids have been
studied extensively in the past 15 years in the context of complex
networks. The high-voltage transmission portion of power grids has
been fairly well studied in terms of structural characteristics (4, 5),
robustness against intentional attacks (6, 7), self-organized criticality,
and cascades of blackouts (8). More recently, they have been modeled
as multiple layers of interdependent networks, and it has been shown
that interdependency results in cascading failures (9, 10). The effect of
spatial embeddedness on complex networks with a focus on power
systems has shown that spatially embedded interdependent networks
undergo an abrupt collapse regardless of the coupling strength (11).
Load-based cascading failures on power grids can be studied using
simple load redistribution mechanisms with initially assigned capac-
ities (12–16). The effect of load growth and power fluctuations on the
abruptness of failures has also been investigated using direct current
(DC) power flow (15), and flow optimization has been investigated on
resistor networks (16). In this context, self-healing methods have been
proposed for the quick recovery of distribution networks (17) and the
effects of power-communications coupling have been studied. Overall,
the new trends have clearly shown the need for introducing a certain
level of realism in the statistical modeling of power grids by the
inclusion of flow dynamics and conservation laws (18).

Although the existing electrical infrastructure has been well studied
at the level of transmission grids, we need to take into account the
ongoing departure from the present central generation paradigm
toward distributed generation (DG), that is, moving toward the
production of energy on a local scale using small resources instead
of relying on large central facilities. As a response to the ever-increasing
demand for electricity (19, 20) and higher rates of urbanization (21),
DG has emerged as a key player in battling the increasing strain on the
existing grid infrastructure as well as the vulnerabilities caused by
natural disasters and other unforeseen circumstances, while providing
users with clean, affordable, and local energy. However, increased levels
of DG penetration, coupled with the intermittency of renewable DG
sources, introduce an additional level of instability and power quality
problems, which is an imminent issue power grids are facing. Hence,
the seamless integration of a large number of DG units in the existing
infrastructure requires a systemic approach. This approach is embodied
in the microgrid concept (22), which is based on the idea of an inter-
connected and coordinated group of buildings/loads equipped with
DGs that aim to match consumption and production on a local level,
attaining autonomy from the grid if the need arises (23).

The need to accommodate the rising urban demand in a self-
sustainable way urges us to propose and study the implementation
of urban microgrids. The study of urban microgrids differs from the
previous studies concerning power grids in that (i) it involves the
medium- and low-voltage distribution grid as the underlying network
and (ii) it involves smaller networks (typically of the order of tens of
nodes) compared to the larger transmission networks that are tradi-
tionally studied. Moreover, spatial heterogeneities throughout urban
areas have to be taken into account because microgrids, as any other
type of infrastructure network, are spatial networks (24) where nodes
and links are embedded in a geometric space, thereby putting severe
constraints on network topology and characteristics. The shape and
efficiency of these spatial networks are also cost-driven (25–27). The
traditional method used to study the robustness of networks, namely,
percolation theory (28), is concerned with the thermodynamic limit
(N → V), whereas the robustness study of microgrids involves a re-
gime of far smaller size. A very recent study has tackled the percola-
tion properties of spatial micronetworks with microgrid applications
in mind (29).

Here, we relate the specific case of urban environments to previous
work on electrical infrastructure networks. In particular, we consider
the space and demand heterogeneity in urban areas served by the
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distribution grid and investigate the implementation and viability of
coordinated networks of DG in the form of solar-powered microgrids.
In doing so, we bring together the unique aspects of spatial networks,
percolation theory, power flow dynamics, and the temporal evolu-
tion of real consumption data for a fundamental treatment of micro-
grids at the systems level, taking a cross-disciplinary approach
between power systems engineering and the physics of complex
networks. Remaining true to user demand, we regard the citywide
implementation picture to quantify the self-sufficiency and flow
dynamics of microgrids throughout the day. We propose optimal
topologies that manage congestion and increase resilience while
staying within realistic grid constraints, showing the competition
between cost and resilience. Finally, we explore their robustness
against load-based failures and find two distinct regimes as a function
of an optimization parameter a. Our simulations thus suggest an
optimal trade-off between cost and robustness in microgrids.

Description of data
To model the demand and generation profiles of urban microgrids, we
use two sources of data. The first model is comprised of the monthly
electric bills of 4683 Cambridge, MA accounts over the course of 36
months and is obtained from NSTAR, the electricity and gas utility in
Cambridge (30). These data are geolocated by parcel centroids using
the geographic information system (GIS) data of Cambridge. For the
scope of this work, accounts are chosen such that they represent the
single-family, residential portion of the user base where there is only
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
one account per parcel (Fig. 1A). They subsequently fall within the
residential/small-commercial monthly usage range of 200 to 2000 kWh
(Fig. 1B). The distribution of these usage values, P(U), for an average
day in July is shown in Fig. 1C and follows a lognormal distribution

P Uð Þ ¼ 1

Us
ffiffiffiffiffi

2p
p e−ðlnU − mÞ2=ð2s2Þ

with a mean (m) of 2.94 and an SD (s) of 0.57.
The second part of the data is the high–temporal resolution smart

grid data provided by the Pecan Street Research Project (31). This data
set consists of 17 months of aggregated and disaggregated usage and
solar generation data collected from 70 participating homes, with
15-min-interval smart-meter readings. The hourly demand and
generation profiles are calculated by averaging the 15-min-interval
readings in 60-min windows. Similar to the user data set of Cambridge,
the typical monthly usage range of Pecan Street users lies within the
200- to 2000-kWh range. To get an overview of the monthly user
behavior within this range, we plot and superimpose the distributions
of monthly usage of the Cambridge and Pecan Street users. Despite
the different locations (Cambridge and Austin), we observe an agree-
ment between the two distributions for nonsummer months, hinting
at a similar aggregated usage behavior on average (see section S1).

This similarity in usage between the two data sets for residential
users enables us to model the daily demand profiles of the 4683
Cambridge users after the Pecan Street users. To do this, we bin both
data sets into monthly usage ranges, and then for each user in the
Fig. 1. Temporal patterns of electric energy demand. (A) Map of a portion of Cambridge, MA. The colors represent the monthly electricity con-
sumption. (B) Monthly electricity consumption of 4683 users over the course of 3 years. (C) Distribution of the daily consumption for an average day in

July. The solid red curve denotes the lognormal fit. (D) Hourly demand profiles for a typical day in July, with representative daily curves marked with colors
and respective daily consumption values. (E) Hourly solar generation profiles for typical residential-size installations.
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Cambridge data set, we randomly pick one of the users in the Pecan
Street in the same usage range and assign the hourly demand of that
Pecan Street user to the Cambridge user, scaling up or down by a
constant factor to match the exact monthly usage of the Cambridge
user. To introduce additional stochasticity to the assignment, we add
noise in the form of di(t) = di

0(t)(1 + bxi), where di
0(t) is the initial

demand of user i at time t, di(t) is the demand of user i at time t with
added noise, where xi is a random variable uniformly distributed in [−1, 1],
and b = 0.2 to keep the Cambridge demands within 20% error relative
to the original Pecan Street user demands. This results in a general
picture of Cambridge average hourly demands where the average
hourly demand of Pecan Street is conserved and variability is intro-
duced between users (Fig. 1D). The hourly demands of Cambridge
accounts used in the power flow calculations of microgrids are
sampled from these profiles throughout the paper. The solar genera-
tions are similarly sampled from Pecan Street generations (Fig. 1E);
however, in this case, there is much less variability between users’
generation profiles as the typical residential solar photovoltaic
(PV) system installation sizes do not show much variation.

Microgrid model
In our framework, microgrids are modeled as part of the existing
electricity distribution network, downstream of distribution substations
(Fig. 2). We assume the microgrids to be equipped with solar PV as
distributed energy resources and with a smart grid architecture that is
capable of managing bidirectional flows in the microgrid. To formalize
our model, we follow the convention of representing buses as nodes
and distribution lines connecting the loads as links. Each node i is
either a load bus or a generator bus depending on whether it has
generation capability. We represent the net real power injected by
node i at time t as Pi(t) = Gi(t) − Li(t), where Gi(t) and Li(t) are the
generation and loads at time t, respectively. The power flow Fij on each
link ij ∈ E is given by DC power flow calculations (see Materials and
Methods). The microgrid is connected to the utility grid at one point,
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
the PCC. For the purposes of our simulations, where the aggregate
demand on the PCC is considered, we randomly place the PCC in
the network. However, we note that a detailed knowledge of the actual
distribution network topology can inform one’s decision in PCC site
selection for more realistic results. We assume that the voltage-related
assumptions of DC power flow (small voltage angle differences, flat
voltage profile) are ensured by centralized or decentralized control
strategies (32–34) that are able to react to system conditions in real
time, either by voltage control devices at the PCC or within the
microgrid by the power electronics on each node. Here, we can assume
that the reactance-to-resistance (X/R) ratios in the microgrid infra-
structure are high enough for the DC approximation (35–38) to be
valid. See section S2 for a sensitivity analysis of the alternating current
(AC) versus DC comparisons on a realistic building microgrid config-
uration with real demand and generation values.

When building the microgrids, we respect the low- and medium-
voltage distribution network topologies, which are radial, or open- or
closed-loop networks with laterals, that is, tree networks with or
without a small number of meshed connections that can be switched
on and off during emergencies. The simplest topology of distribution
networks is the radial topology. Although it is the least costly topology,
it is also the least likely to work reliably with the increase of the share
of DG (39). Closed-loop topologies, on the other hand, offer a good
compromise between cost and reliability by offering a few small-world
links that go into effect when a part of the network becomes
disconnected.
RESULTS

Citywide implementation of microgrids
For a citywide implementation of microgrids, we partition the single-
account parcels into microgrid neighborhoods. In the partitioning, we
assume that the cost related to line lengths is the most dominant factor
Fig. 2. Microgrid and its network representation. The microgrids are part of the distribution grid, downstream of distribution substations. Users with
and without solar PVs are modeled as load and generator nodes, respectively, equipped with smart grid electronics to govern bidirectional flows and

voltage fluctuations. The microgrid is connected to the distribution network at one point via the point of common coupling (PCC).
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driving network topologies (27). Hence, we use a k-means algorithm
to cluster parcels into microgrids spatially, which provides a good
compromise between network size (in number of nodes) and spatial
size (in meters). In our k-means partitioning, we set the number of
clusters to 200, which results in a microgrid size distribution centered
around 25 users (see section S3). The clustering is run 1000 times, and
the partition with the lowest distortion, defined as the sum of the
squared differences between the observations and the corresponding
parcel centroid, is returned. Once the nodes in a microgrid are
determined with k-means, we construct minimum-cost distribution
networks between them. To have a realistic approximation of
distribution networks, in agreement with the open- or closed-loop
radial networks with laterals, we construct tree topologies. The tree
topologies are constructed as Euclidean minimum spanning trees
(EMSTs); that is, first, the Delaunay triangulation is defined as the
underlying spatial topology between nodes and then the minimum
spanning tree that minimizes the total distance in the network is
calculated from this network. This gives us an approximation of small
microgrid topologies that are part of the distribution grid (Fig. 3A).
We sample the hourly demands of each node from the Cambridge
demand profiles modeled after smart grid data. Moreover, we define
a solar PV adoption rate of 20% and choose generator nodes indepen-
dently according to this adoption rate. The generator nodes have their
solar generation profiles sampled from Pecan Street solar generation
data. We assume that the typical solar PV installation size of the
homes in Cambridge urban microgrids is similar to that of houses
in the Pecan Street range, in the typical residential range of 3 to 5 kW.

Although microgrids, by definition, can operate in both grid-
connected and off-grid modes, because we consider only solar gener-
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
ation without grid storage for the scope of this work, we assume the
microgrid to be in grid-connected mode at all times. This means that
depending on the solar adoption ratio of a microgrid, and depending
on the hour of the day, the microgrid can either import power from
the grid or export power to the grid. As one of the main objectives of
microgrids is self-sufficiency and cost savings for the user, we quantify
the self-sufficiency of the microgrid in terms of the grid demand per
user as a function of time

GDM tð Þ ¼ 1

NM
PM
PCC tð Þ ð1Þ

where NM is the number of users in microgrid M and

PM
PCCðtÞ ¼ ∑

i∈M
PiðtÞ ð2Þ

is the total grid demand of microgrid M at time t. The reasoning be-
hind looking at the grid demand per user is that (i) because the gen-
eration is shared in each microgrid in a collaborative manner, the
collective benefit of its users must be considered, and (ii) because mi-
crogrids have a different number of users, a normalized metric is
needed.

In Fig. 3A, we show the hourly grid demand per user for all Cam-
bridge microgrids at 1 p.m., which is the peak solar production time of
the day. We use the no–solar adoption case as a baseline for comparison
with the 20% solar adoption rate. We observe that, overall, the city
shows a wide variability in grid demand of microgrids. Moreover,
under 20% adoption, most microgrids are able to reduce their grid
demand to almost zero, attaining self-sufficiency at midday. That said,
we also observe some microgrids that remain dependent on the grid
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Fig. 3. The role of microgrids in consumption of electric energy. (A) Proposed microgrids in Cambridge. The colors denote the grid demand per
user in the microgrid at 1 p.m. for the no–solar adoption (top) and the 20% solar adoption (bottom) case. (B) Distributions of grid demand for the 200

microgrids for the whole day (top) and daylight hours (bottom) for the no-adoption (red) and the 20% adoption (blue) case. The red and blue solid lines
indicate the lognormal fits for the no-adoption and 20% adoption cases, respectively. (C) Total flow in the microgrid as a function of time of day for no
solar adoption (top) and 20% solar adoption (bottom). The colors denote the total daily grid demand of each microgrid.
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despite their solar production, mainly attributed to their high levels of
consumption. To measure the statistics of the grid demand per user,
we plot in Fig. 3B the distributions over all microgrids for no-solar
and 20% solar scenarios, for the whole day (24 hours) and during
daylight hours (8 to 16 hours). We see that both distributions are
lognormal, and as can be expected, the difference between the distri-
butions of no solar and 20% solar becomes more pronounced during
daylight hours. Nevertheless, the overall daily savings is still considerable
between the two cases, amounting to nearly 5 kW of daily savings on
average for all microgrids.

As an important proxy of their resilience, we calculate the total
power flow in each microgrid given the real demands and generations
of users in them, as a function of time (Fig. 3C). This enables us to
monitor the time evolution of each microgrid’s total flow and gives us
an insight as to what level of flow they are expected to sustain on a
typical day. As we expect, the total flows in the no-solar scenario
roughly follow the average daily trend of individual demands, with
two major increases throughout the day in the morning and evening
hours, corresponding to when people wake up and come home from
work. In the 20% solar adoption case, however, we see the alleviating
effect of solar production on the flows during daylight hours, consid-
erably decreasing the total power flow in the microgrids. This is
because the solar production of homes with PV first meets their
own demands locally, decreasing their inflows from their network
neighbors in the microgrid. Unlike the curves in the no-solar case,
the flows in the 20% adoption case have a more erratic trend during
daylight hours, where some microgrids are able to decrease their total
flow considerably, whereas others have a smaller flow decrease because
of their solar production. Furthermore, we color code the microgrids
according to their daily total demand from the grid. Here, we observe
that although most microgrids’ total power flow is proportional to
their grid demand, there are also some outlier microgrids that are
able to sustain lower levels of total flow while being highly dependent
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
on the grid and some that are more self-sufficient, yet have higher
power flows.

Optimizing microgrids for resilience and
congestion mitigation
Congestion in power systems poses one of the greatest challenges to
power infrastructures as the demand and the share of renewables in
the grid increases. Although the term “congestion” is more gener-
ally used for the transmission grid, it also applies to the distribution
grid. The two main approaches in congestion management are (i)
the investment in additional grid infrastructure and (ii) demand
side management. The congestion mitigation strategy considered
in this work for microgrids is the increase of transfer capacity by
new cables, by a larger transformer, or by reconfiguring the topology
of the grid. Although demand response is currently a very hot topic
and has several applications, coming from the complex networks per-
spective, here we take the latter approach. The modification of the
distribution grid can be done permanently either by the addition of
lines (overhead or underground) or with a more modern approach,
by automatic breakers that allow remote and automated reconfiguration
(40). The existing distribution grid topologies are far from optimal,
considering their historical evolution and the exponential growth of
demand.

Our aim is to propose topologies that mitigate congestion in mi-
crogrids by minimizing the total absolute power flow in the network
by making minimal adjustments to the topologies given the demand
and generation on each node; that is, we seek

min ∑
ij∈E

jFijj ð3Þ

We propose a network rewiring scheme that uses a limited “budget”
(number of extra lines to add) and a single parameter a that modulates
the dependence of the probability of making a connection between
Fig. 4. Effects ofmicrogrid configurations in costs and energy flow. (A) Examplemicrogrid and the resulting optimized topologies for different rewiring
parameters a. The darker shade of red denotes higher load. (B) Distributions of flow ratio and cost for different values of a over all microgrids in Cambridge.

The solid red lines indicate the lognormal fits. (C) Total flow and cost with respect to different values of a for the 10 largest microgrids in Cambridge.
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nodes i and j on the distance between them such that p(eij) = d−aij,
where eij is the edge between i and j, and dij is the Euclidean distance
between i and j, similar to Li et al. (41). This scheme enables us to
account for the spatial constraints in building new infrastructure. A
high value of a strictly prohibits the addition of long-range links,
resulting in a spatial network, whereas an a close to zero effectively
allows for any connection regardless of the distance, resulting in a
random-like network.

In our simulations, we set our budget to 2; that is, we add two lines
at the beginning of the simulation. The optimization problem is solved
using simulated annealing where topologies minimizing the total
absolute power flow are sought, given a certain a (see Materials and
Methods). For each optimized topology, we measure the cost C of
building the network in terms of the total length of links and the
congestion mitigation as the flow ratio FR, defined as the ratio of the
final total power flow to the initial one; that is

C ¼ ∑
ij∈E

dij; FR ¼
∑
ij∈E

jFijjfinal

∑
ij∈E

jFijjinit
ð4Þ

In Fig. 4A, we show the results of this optimization on a sample
microgrid for different values of a, compared to the original topology.
The effect of lowering a is manifested as a less spatially constrained
network. This effect is accompanied by the observation that, with lower
a, demand nodes are more free to connect directly to generation
nodes. We see that this effect is the strongest in the dependency to
connect to the main supplier, which is the PCC at 1 p.m. for the
specific microgrid represented in the figure. For solar microgrids
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
without storage that are considered in the network, the microgrids
usually have to make up for their deficit from the PCC, which results
in a more central topology as shown here. However, we note that this need
not be the case where demand and generation are matched more evenly
and the demand nodes are free to connect to closer generation nodes.

To show the competing effect of cost and total flow as a function of
a, we plot the distributions of these metrics over all 200 microgrids in
Cambridge for different a values in Fig. 4B. It is clear from the figures
that decreasing a to zero results in a considerable shift of the flow ratio
toward zero, meaning that as the spatial constraints are relaxed in the
optimization, congestion levels in the network are reduced considerably,
resulting in a more resilient setup. On the other hand, this effect is
countered by an increase in the building cost of the microgrid. For
a = 4, which is similar to the initial topology, the building costs have
a mean of less than 1 km with little spread, whereas a = 0 results in
microgrids that have a mean around 2 km with a much greater spread.
Both cost and flow ratio distributions are well approximated by
lognormal distributions.

For a closer look into how individual microgrids behave in terms
of flow ratio and cost as a function of a, we plot these values for the 10
largest microgrids in our microgrid ensemble in Fig. 4C. Here, we
clearly see the increase in flows and decrease in costs as a is increased.
This points to the fact that microgrids constructed in this manner are
amenable to optimization with respect to cost and total flow.

Robustness of microgrids against overload failures
Resilience refers to the systems’ ability to recover from failures, whereas
robustness is usually used to mean their ability to survive failures. In the
previous section, we have assessed the resilience of microgrids in terms
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Fig. 5. Effects of microgrid configurations on their resilience. (A) Topologies and qc values of the 10 largest microgrids in Cambridge, MA. (B) Size
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of their total power flow. In this section, we study the robustness of
microgrids to overload failures. The robustness of small spatial networks
such as our proposed microgrids has recently been investigated from
the perspective of physical distances, under random failures governed
by a bond percolation process (29). Here, we follow a similar approach,
but rather than adopting the “falling tree” approach and assuming a
link failure probability proportional to the link length, we define the
link failure probability Qij that is dependent on the flow Fij on the link
such that

Qij ¼ q
Fij

〈Fij〉
ð5Þ

where 〈Fij〉 = ∑ij∈EFij/M, M is the number of edges, and q is the tra-
ditional bond percolation parameter denoting the fraction of nodes
that fail on average. That is, link failures are attributed to over-
loaded lines (15). We use the size of the second largest connected
component S2 to estimate the percolation threshold qc. In particular,
the q corresponding to the maximum of S2 is a proxy for the perco-
lation threshold qc. Here, we note that although, even in the DC ap-
proximation, percolation analysis for robustness offers a lower bound
on the actual network damage and in reality the purely structural re-
moval of links can potentially cause further network-wide cascades of
overload failures, it nevertheless provides a rich quantitative picture
on the microgrid perspective.

In Fig. 5A, we show the topologies of the 10 largest microgrids in
Cambridge as visual cues, along with their percolation threshold qc as
estimated from S2. We see that these microgrids have percolation
thresholds in the narrow range 0.07 to 0.11. This finding shows that
the original configurations of these microgrids are highly vulnerable to
overload failures, as they are both spatial and their topologies are not
optimized for lower levels of flow. We therefore optimize the 10 largest
microgrids for each a and perform simulations on the resulting networks
to see how our optimization scheme minimizing the total flow helps
with microgrids’ robustness. We plot S2 as a function of q for different
a values in Fig. 5B. We see that as a is decreased to zero, the per-
colation threshold qc increases, resulting in more robust configura-
tions. We remark that the increase in the robustness is notable
between a = 2 and a = 4. We also observe some variability in their
capability to increase their robustness with a. This is likely due to the
specific topologies and demand/generation distributions of each mi-
crogrid, although the behavior with respect to a follows the same pat-
tern. Next, to serve as a baseline for comparison with the real
microgrids in Cambridge, we construct synthetic microgrids of size
N = 50. We uniformly place the 50 nodes randomly over an area
compatible in size with the Cambridge microgrids and construct the
Delaunay triangulation and calculate the EMST as before. We then
sample the demands and generations from the demand and generation
distributions of Cambridge. For the original (unoptimized) topologies
of these synthetic microgrids, we plot the size of the largest connected
component S1 and the second largest connected component S2 as a
function of q in Fig. 5C. We see that these networks are again high-
ly fragile because of their spatial structure. For the microgrid shown
in the figure, qc = 0.06, which is slightly lower than the 10 largest
microgrids in Cambridge but generally in agreement with their range.
Moreover, as noted by McAndrew et al. (29), we see a departure
from the qc value predicted by the theory for random graphs with giv-
en 〈k〉 and 〈k2〉, that is, the value when 〈k2〉/〈k〉 = 2 (42). Over the entire
range of a considered here, the theoretical qc values run higher (be-
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
tween 0.20 and 0.40 on average, see section S4) than the ones approxi-
mated by S2. S2 is a good estimator for large networks, whereas our
microgrids are much smaller in size, resulting in finite-size correc-
tions. This is further compounded by the fact that these networks
are built under the conditions of the optimization and are not
connected at random as in the theory. Finally, we plot qc as a
function of a for the synthetic microgrids in Fig. 5D to see the detailed
behavior of robustness with respect to optimization. We see that as we
lower a from 4 to 0, the robustness reaches a plateau after 2, pointing
to the fact that even though lower a values favor lower total power
flows and therefore fewer failed lines, there is not much difference
in robustness between 2 and 0, although we had shown that the
cost of building the microgrid continuously increases. That is, a = 2
provides an optimal trade-off between robustness and cost. The data
can be fit with a four-parameter logistic function in the form

qc að Þ ¼ qnonspatialc − qspatialc

1þ ða=AÞB ð6Þ

where qnonspatialc ¼ 0:199 is the maximum asymptote, qspatialc ¼ 0:096 is
the minimum asymptote, A = 2.497 is the inflection point, and B =
7.720 is the steepness, for a budget of two lines. The same behavior
persists for different budget values, albeit with higher maximum
asymptotes. Moreover, we observe that this change of regime near
a = 2 coincides with the border between long-range and short-
range behavior. In particular, the average distance 〈r〉 reached by
a link in our case is proportional to ∫r−a+1dr, which is finite for
a > 2 and divergent for a ≤ 2. Thus, a > 2 signifies local (short-
range) behavior with lower robustness, whereas a ≤ 2 means a
more small-world (long-range) behavior with higher robustness.
DISCUSSION

Here, we have presented a comprehensive study on the feasibility of
solar-powered urban microgrids. By using the citywide demand and
generation profiles modeled after smart grid data, we have extended
the implementation of microgrids to the entire city to study self-
sufficiency and identify the savings in the proposed microgrids. We
have offered insights into optimal microgrid topologies that help
mitigate congestion and quantified the competing behavior of cost
and resilience with respect to the optimization parameter. Further-
more, we have investigated the robustness of these microgrids to load-
based failures using percolation theory. We have shown the existence
of two regimes in the robustness of microgrids as a function of the
optimization parameter, pointing toward a switch from short-range to
long-range behavior and an optimal balance between cost and robustness.

The study of microgrids is new to network science as it involves
small networks and takes place on the distribution grid. The proposed
modeling framework captures the essential requirements and charac-
teristics of microgrids such as spatial constraints, power flow equa-
tions, and realistic topologies while building on previous work in
network science on power systems such as percolation and congestion
mitigation. Hence, our aim is to bridge the gap between the large-scale
systems approach of complex networks and detailed approaches of
engineering.

There are many ways this work can be extended. When build-
ing microgrids, the partition of the entire city into microgrids can not
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only be made spatially but also based on demand. Data on actual distri-
bution grid topologies can easily be incorporated. Furthermore, we
limit ourselves to only solar generation within the scope of this work,
whereas solar generation, because of its intermittent nature, should
always be coupled with electrical storage within the microgrid context
if off-grid operation is desired. Further models of solar-powered urban
microgrids can incorporate grid storage elements. The detrimental
effects of excessive grid export can be explored in the high renewable
penetration regime. Finally, as smart grid projects become more
widespread, real-time demand data can be used to propose dynamical
models of urban-scale microgrids, paving the way for recommendation
systems for consumers, utilities, and regulators alike.
MATERIALS AND METHODS

DC power flow
In our microgrid simulations, we used the DC power flow approxima-
tion to calculate power flows between consumer and generator nodes.
In complex networks terminology, this corresponds to the flow dynam-
ics between sources and sinks. The DC power flows between nodes i
and j at time t

Fij ¼ qjðtÞ − qiðtÞ
xij

ð7Þ

were calculated according to

PDCðtÞ ¼ BqðtÞ ð8Þ

where PDC
i ðtÞ ¼ ∑jFijðtÞ is the power on node i at time t, qi is the

voltage phase of node i at time t, and B is an N × N matrix whose
elements are determined by the line reactances xij such that

Bij ¼ −1=xij;Bii ¼ ∑
k
1=xik ð9Þ

Each microgrid was assumed to be connected to the utility grid at
one point, namely, the PCC. We envisaged a dynamic control system
that can govern, using smart switches, the bidirectional flow be-
tween the two channels: the microgrid and the utility (distribution)
grid, while obeying voltage and frequency regulation concerns. This in-
herent interaction of the microgrid and the central grid comes into play
in the load-balancing part of the DC power flow calculation, where
load and generation are matched in every connected component so that

∑
i
Gi − Li ¼ ∑

i
Pi ¼ 0 ð10Þ

which is the criterion that ensures that the DC power flow equations
have a unique solution. This requirement of DC power flow forms the
basis of the interactions between the microgrid and the distribution
grid. At any time t in the day, before calculating the DC power flow
on each line in the network, we balanced load and generation in the
network in two ways:

(i) If ∑iLi(t) > ∑iGi(t), feed from the utility grid. In this case, the avail-
able generation is used up by the microgrid and the PCC acts as a
generator to make up for the deficiency in generation. Aside from
Halu et al. Sci. Adv. 2016; 2 : e1500700 15 January 2016
its own load LPCC(t) and generation GPCC(t) (if available) at time t,
it draws an amount equal to the difference

PPCCðtÞ ¼ ∑
i
LiðtÞ − ∑

i
GiðtÞ ð11Þ

from the utility grid.
(ii) If ∑iGi(t) > ∑iLi(t), feed into the utility grid. In this case, the

existing load is completely met by the microgrid and the PCC acts as
an extra load to relieve the microgrid of the excess in generation. Aside
from its own load LPCC(t) and generation GPCC(t) (if available) at time
t, it feeds an amount equal to the difference

PPCCðtÞ ¼ ∑
i
GiðtÞ − ∑

i
LiðtÞ ð12Þ

into the utility grid.
Hence, at each time t, that is, on an hourly basis, we assumed a

basic central control mechanism, compatible with the current re-
search on microgrid control, where a central microgrid switch
can collect the total load and generation information from the mi-
crogrid and adjust the grid interaction of the PCC with the micro-
grid according to the simple set of rules above.

Simulated annealing and rewiring scheme
The initial topologies of the microgrids were constructed according to
the rules described in the respective sections. After that, optimized
topologies were sought by the limited addition and subsequent rewiring
of links. The number of links to be added was constrained by the
budget, which was fixed as 2 in our simulations. Both the additions
and the rewirings were made with probability proportional to the
Euclidean distance between the nodes, such that p(eij) = dij

−a, where
the parameter a modulates the dependence of the addition/rewiring
on distance. Nodes i and j were chosen to avoid self-loops and
multiple edges. In the rewiring, it was ensured that the graph remained
connected for the DC power flow equations to have a solution; that
is, links that left the graph disconnected were not rewired. We note
that the initial addition of lines within the budget is required in tree
topologies as rewiring only is more likely to leave these networks
disconnected.

The optimization method used in searching for feasible topolo-
gies was simulated annealing. In our implementation of simulated
annealing, the Hamiltonian we sought to minimize was the amount
of total absolute power flow |Fij| over all the lines ij ∈ E in the
network

H ¼ ∑
ij∈E

jFijj ð13Þ

while keeping the original demand Li(t) and generation Gi(t) values of
the nodes. We sought to find configurations where congestion was
minimized, and hence, the resilience of the networks was improved.
Our simulated annealing schedule consisted of one addition or rewiring
at each step. Starting from a temperature T = 1, the system was cooled
down exponentially such that T(t + 1) = T(t) × 0.95 until T = 0.01,
with 103 Monte Carlo steps at each temperature. The link addition or
rewiring was accepted if it lowered H, but if it did not, it was accepted
with probability e−DH/kT and rejected otherwise, according to the
Boltzmann criterion. The network configuration with the lowest H
was retained at the end of the simulated annealing process, which,
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in most cases, was the same as the final configuration reached at the end
of the cooling process (after 9 × 104 steps); that is, our simulated
annealing algorithm was able to find the global minimum.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/1/e1500700/DC1
S1. Cambridge and Pecan Street data set selection
S2. DC versus AC power flow
S3. Microgrid size distributions
S4. Theoretical qc as a function of a
Fig. S1. The monthly usage distributions of Cambridge for January (triangles) and July
(circles).
Fig. S2. The hourly demand profiles of Pecan Street users for 17 months from December 2012
to April 2014.
Fig. S3. The hourly solar PV generation profiles of Pecan Street users for 17 months from
December 2012 to April 2014.
Fig. S4. The monthly usage distributions of Cambridge in July (circles) and Pecan Street for
17 months (squares) from December 2012 to April 2014.
Fig. S5. The topology of the building microgrid used in the power flow sensitivity analysis.
Fig. S6. The % error (Perr) between AC and DC power flow as a function of the X/R ratio for the
proposed topology for different values of R.
Fig. S7. Size distributions of the microgrids in Cambridge partitioned using k-means.
Fig. S8. Theoretical qc calculated over the whole range of a values, averaged over 10 realizations.
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