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Abstract
Type III epithelial–mesenchymal transition (EMT) has been previously associated with increased cell migration,
invasion, metastasis, and therefore cancer aggressiveness. This reversible process is associated with an important gene
expression reprogramming mainly due to epigenetic plasticity. Nevertheless, most of the studies describing the central
role of epigenetic modifications during EMT were performed in a single-cell model and using only one mode of EMT
induction. In our study, we studied the overall modulations of gene expression and epigenetic modifications in four
different EMT-induced cell models issued from different tissues and using different inducers of EMT. Pangenomic
analysis (transcriptome and ChIP–sequencing) validated our hypothesis that gene expression reprogramming during
EMT is largely regulated by epigenetic modifications of a wide range of genes. Indeed, our results confirmed that each
EMT model is unique and can be associated with a specific transcriptome profile and epigenetic program. However,
we could select some genes or pathways that are similarly regulated in the different models and that could therefore
be used as a common signature of all EMT models and become new biomarkers of the EMT phenotype. As an
example, we can cite the regulation of gene-coding proteins involved in the degradation of the extracellular matrix
(ECM), which are highly induced in all EMT models. Based on our investigations and results, we identified ADAM19 as a
new biomarker of in vitro and in vivo EMT and we validated this biological new marker in a cohort of non-small lung
carcinomas.

Introduction
Type III epithelial–mesenchymal transition (EMT) is a

reversible process that contributes to invasion and
metastasis. EMT is characterized by a downregulation of
epithelial markers and an increase in mesenchymal mar-
kers and in EMT-linked transcription factors1, but the
molecular mechanisms governing EMT remain poorly
understood. For the past decade, the role of epigenetics in
EMT regulation has clearly emerged. For example, the

histone methyl transferase (HMT) EZH2 was required to
downregulate miR211 and EMT induction in glio-
blastoma multiforme2, but, on the opposite, the histone
demethylase KDM6B induced SNAIL2 and EMT3. The
interaction of the transcription factor TWIST with
another HMT, KMT5/SET8, has also been associated
with the repression of CDH14. Although these publica-
tions strongly support a role for epigenetic modifications
during EMT, they all have been described in the same
subtype of cancer or a single EMT cell model. Moreover,
the high number of EMT markers described from one
model to another suggest that EMT is a complex
mechanism linked to different signaling pathways5 that
led us to the hypothesis of the existence of numerous
tissue- or cell-specific EMT.
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To further characterize the epigenetic mechanisms
regulating EMT, we decided to study overall gene
expression and their associated epigenetic modifications
in several EMT models. To do so, we used the A549 (non-
small cell lung cancer (NSCLC)), the ACHN (renal cell
carcinoma derived from pleural effusion), and the
immortalized breast MCF10A cell lines treated, or not,
with transforming growth factor beta (TGFβ)/tumor
necrosis factor alpha (TNFα) to induce EMT6. To confirm
that the observed effects were not linked to the use of this
combination of cytokines, we also used the breast cancer
(BC) MDA-MB-468 cells treated, or not, with epidermal
growth factor (EGF)7. As expected, using microarray and
chromatin immunoprecipitation (ChIP)–sequencing
(ChIP-seq) analyses, we showed that EMT-associated
genes were largely regulated by epigenetic modifications.
Our results also demonstrated, for the first time, that cell
origin and EMT inducer were associated with a specific
cellular response. However, the regulation of genes
involved in the degradation of the extracellular matrix
(ECM), in particular ADAM19 (ADAM Metallopeptidase
Domain 19) coding a metallopeptidase, was strongly
regulated by epigenetics during EMT, independently of
the EMT model, and we showed that epigenetic mod-
ifications were crucial for EMT in these cancer models.

Results
EMT-induced cell models
Our initial goal was to study the effects of EMT indu-

cers on cells issued from different organs (lung, kidney,
and breast). We then treated A549, ACHN, and MCF10A
cells with TGFβ/TNFα. TGFβ is a well-admitted EMT
inducer and TNFα has been described to potentiate EMT
induction by stabilizing SNAIL in a nuclear factor-κB-
dependent manner8,9. Following induction, a strong
mesenchymal-like phenotype with the loss of cell–cell
adhesion and an increase in cell elongation occurred
(Fig. 1a). We next observed using quantitative reverse
transcriptase–polymerase chain reaction (qRT-PCR) that
EMT markers were induced in the three cell lines but the
fold changes were dependent of the cell line (Fig. 1b). We
indeed quantified a strong decrease in epithelial markers
CDH1 and EPCAM and an increase in mesenchymal
markers SNAI1, VIM, ZEB1, and ZEB2 in the three
models but the increase in VIM, ZEB1, and ZEB2
expression was higher in A549 and MCF10A cells com-
pared to the ones observed in the ACHN cells, suggesting
that EMT induction is, at least partially, different in regard
to cell origin. Regarding MMP9 mRNA expression, an
increase was observed in the three cell lines during EMT
(Supp Fig. 1A/C). These data were confirmed at the
protein level since we detected a strong decrease in
EPCAM expression in these cell lines using flow cyto-
metry (Fig. 1c) and a significant decrease in E-

CADHERIN levels together with an increase of VIMEN-
TIN in A549 and ACHN cells using western blotting
(WB) and immunofluorescence (IF) (Supp Fig. 1B; Supp
Fig. 1C).

Transcriptome analysis of EMT-induced models
Next, we decided to compare the EMT-linked gene

expression in A549, ACHN, and MCF10A cell lines using
microarray. High (red) or low decreased (green) gene
expression was classified in regard to the cell line model
and TGFβ/TNFα treatment (Fig. 2a) (n= 4). In the A549
cells, 3636 probes were differentially expressed (DE) in
treated versus control conditions (1763 upregulated and
1873 downregulated). In the ACHN cells, 1141 probes
were DE (624 upregulated and 517 downregulated). In the
MCF10A cells, 4683 probes were DE (2092 upregulated
and 2591 downregulated) (Supp Table 1). Gene Set
Enrichment Analysis (GSEA) performed on the 258
TGFβ-/TNFα-regulated genes identified activated cano-
nical pathways related to ECM organization and remo-
deling, Beta1 integrin cell surface interactions, and focal
adhesion (Supp Table 1). A list of the 30 genes presenting
the highest fold change expression within the three cell
lines is reported in Table 1. Among these genes, the
expression of MMP1, MMP9, MMP10, ADAM19, or
ADAMTS6, a family of proteins involved in ECM remo-
deling10, presented a 126-, 114-, 43-, 27-, and 34-fold
increase, respectively. On the opposite, the expression of
CDH1 (41-fold decrease) was 1 of the only 2 genes
downregulated among our selected list of 30 (Table 1).
The induction of matrix metalloproteinase (MMP) pro-
tein levels (intracellular MMP9 by WB) and its activity
(zymography) were confirmed in the A549 model (sig-
nificant increase in excreted MMP2 (p= 0.002) and
MMP9 (p= 0.016); Supp Fig. 2). Altogether, these data
validated our EMT models as well as our protocol design
to search for new regulated genes during EMT.
We also confirmed (Fig. 1) that morphological mod-

ifications were related to EMT in our models, and then
the differential expression of the 12 main EMT markers
was quantified in each cell line (Table 2). As expected and
described above, CDH1 expression was highly sig-
nificantly decreased in the three cell lines following
TGFβ/TNFα treatment and similar results were obtained
for EPCAM, but the expression of other EMT markers
was not consistent throughout the three cell lines. For
example, ZEB1 expression was increased in both A549
and MCF10A cells but stable in ACHN cells (Table 2).
These data strongly suggested that different and inde-
pendent molecular signaling pathways might regulate
different model-linked EMT. We then established Venn
diagrams describing the distribution of upregulatedand
downregulated genes and we observed that only 73 genes
were concomitantly downregulated while 189 were
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Fig. 1 Transforming growth factor beta (TGFβ)/tumor necrosis factor alpha (TNFα) treatment induced epithelial–mesenchymal transition
(EMT) in the A549, ACHN, and MCF10A models. a A549, ACHN, and MCF10A cells were seeded in 6-multiwell dishes and treated for 5 days with
TGFβ and TNFα. The pictures presented are representative of at least three independent experiments. b Expression of epithelial gene markers (CDH1
and EPCAM), mesenchymal gene markers (CDH2, VIMENTIN) and EMT-linked transcription factors (ZEB1, ZEB2, and SNAI1) were measured by
quantitative reverse transcriptase–polymerase chain reaction (independent triplicates) in cells treated with or without TGFβ/TNFα for 5 days (white
bars: untreated; black bars: TGFβ/TNFα). c A decrease of the epithelial marker EPCAM was confirmed using flow cytometry in the 3 cell lines following
treatment with TGFβ/TNFα for 5 days
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concomitantly upregulated in the 3 cell lines during EMT
(Fig. 2b), with most of the dysregulated genes (up or
down) modified in only one or two models. Unsupervised
hierarchical clustering analysis of the probes displaying
the greatest variation among the samples (standard
deviation) showed that transcriptomes were first clustered
by cell line and then by TGFβ/TNFα treatment, con-
firming that differences in transcriptome profiles were
primarily due to cell origin and secondarily to EMT
induction (Fig. 2c).
To determine whether these different EMT phenotypes

were dependent of the time of TGFβ/TNFα treatment, we

performed a kinetic analysis from 24 to 120 h treatment
with TGFβ/TNFα or each cytokine alone in A549 and
ACHN cells (Supp Fig. 3). As expected, a progressing
mesenchymal-like phenotype was observed along the
course of treatment (Supp Figs. 3A and 3B) but the
phenotype was the most pronounced with both cytokines.
A progressive increase in VIMENTIN, ZEB1, and SNAI1
and decrease in CDH1 and EPCAM gene expression levels
were observed during the treatment and were further
increased with TGFβ/TNFα compared to each cytokine
alone (Supp Fig. 2C and Supp Fig. 4A). A VIMENTIN IF
confirmed these data at the protein level and it was more
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Fig. 2 Transcriptome analysis of genes regulated during epithelial–mesenchymal transition induction a Gene expression was quantified by
microarray in A549, ACHN, and MCF10A cells treated with or without transforming growth factor beta/tumor necrosis factor alpha for 5 days (n= 4).
b Venn diagrams showing the distribution of upregulated and downregulated genes in the three cell lines. c Cluster dendrogram of the different
transcriptomes
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pronounced in A549 cells compared to ACHN (Supp
Fig. 4B) and with the double treatment (data not shown).

Global modulation of epigenetic marks during EMT
We next wondered whether epigenetic modifications

occurred in these cells and whether the epigenetic
mechanisms were similar in these different models. To do
so, we used an enzyme-linked immunosorbent assay
protocol to quantify 21 posttranslational H3 modifications

in ACHN cells treated, or not, with TGFβ/TNFα (Fig. 3a).
This experiment suggested that global histone methyla-
tion of H3K4, H3K9, and H3K27 were highly modified
during EMT, while only low changes were observed for
acetylation or phosphorylation of H3, apart from
H3K14ac. We then performed IF (Fig. 3b, c) and flow
cytometric (Fig. 3d) analyses of global H3K4me2,
H3K9me3, and H3K27me3 in the three cell lines follow-
ing TGFβ/TNFα treatment and indeed confirmed an

Table 1 List of the 30 genes with the most important modification of expression after TGFβ and TNFα treatment

Gene p Value Up/down Fold Protein type/RNA Pathways

CCL5 4.2E−9 Up 131.8 Chemokine Immunoregulation

IL7R 9.7E−10 Up 149.4 Interleulin receptor Immunoregulation

MMP1 3.5E-1 Up 126 Matrix metallopeptidase Invasion

MMP9 2.2E−4 Up 114.1 Matrix metallopeptidase Invasion

C4orf26 1.0E−4 Up 100.1 Extracellular protein Mineralization

UBD 1.4E−5 Up 105.8 Ubuiquitin Protein ubiquitination/TNF pathway

LCE3D 0.0039 Up 99.2 Late cornified envelope Keratinization/development

INHBA 0.0040 Up 82.6 FSH secretion inhibitor Growth/differentiation factor

CSF2 0.0070 Up 66.5 Cytokine Immunoregulation

SLAMF8 3.9E−6 Up 60.4 Cell surface receptor Immunoregulation

ROBO4 2.0E−7 Up 62.4 Cell surface receptor Angiogenesis/migration

MROH3P 1.5E−6 Up 40.0 pseudogene

CDH1 0.0011 Down 40.8 Cadherin Cell adhesion

MMP10 1.5E−5 Up 42.6 Metalloprotease Invasion/metastasis

FAP 0.00389 Up 45.1 Cell surface protein Invasion/immunoregulation/tumor growth

lnc-C15orf48–1 1.9E−6 Up 45.2 Non-coding RNA

C15orf48 0.0012 Up 47.0 Metabolism

lnc-LRRC1–5 1.3E−5 Up 47.7 Non-coding RNA

LAMC2 2.1E−5 Up 47.8 Extracellular protein Adhesion/differentiation/migration/metastasis

FGFBP1 0.0014 Down 48.3 Extracellular protein Cell proliferation/diffentiation/migration

NLRP3 0.0039 Up 30.9 Cell signaling Inflammation/apoptosis

BMP2 0.0013 Up 33.6 Cytokine Differentiation

KANK4 0.0060 Up 34.0 Cell signaling Cytoskeleton remodeling

ADAMTS6 9.3E−5 Up 34.2 Metallopeptidase Migration/Invasion

DHRS2 2.0E−6 Up 38.9 Dehydrogenase/reductase

DCN 7.0E−5 Up 39.7 Proteoglycan Migration /TGFb signaling

LCE3E 0.0016 Up 29.8 Late cornified envelope Keratinization/development

CXCL8 7.3E−5 Up 29.6 Chemokine Inflammation

LINC01583 6.2E−6 Up 28.1 Non-coding RNA

ADAM19 9.3E−7 Up 27.4 Metallopeptidase Adhesion

List of 30 genes issued from microarrays analysis with the most important fold increase or decrease expression. All transcriptome profiles were simultaneously
analyzed (16 NT (A549 NT n= 4, ACHN NT n= 4, MCF10A cells NT n= 4) versus16 TGFβ/TNFα treated 16 NT (A549 treated n= 4, ACHN treated n= 4, MCF10A cells
treated n= 4). Name of the gene, p value, fold change, and molecular-associated mechanisms (except for genes with unknown functions) are indicated.
TGFβ transforming growth factor beta, TNFα tumor necrosis factor alpha
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Table 2 Expression of genes related to EMT after TGFβ and TNFα treatment

Gene Protein Cells p Value Up/down Fold Marker

CDH1 E-CADHERIN A549 1.6E−6 Down 250 Epithelial

ACHN 0.007 Down 105

MCF10A 8.1E−4 Down 2.6

EPCAM EPCAM A549 0.001 Down 14 Epithelial

ACHN 0.001 Down 2.8

MCF10A 1.7E−4 Down 32

CDH2 N-CADHERIN A549 3.9E−4 Up 5.2 Mesenchymal

ACHN 0.001 Up 2.0

MCF10A 1.8E−4 Up 6.3

VIM VIMENTIN A549 0.003 Up 2.0 Mesenchymal

ACHN —

MCF10A —

ZEB1 ZEB1 A549 1.6E−4 Up 2.6 EMT-ATF

ACHN —

MCF10A 0.001 Up 3.8

ZEB2 ZEB1 A549 6.3E−4 Up 2.8 EMT-ATF

ACHN —

MCF10A 0,001 Up 2.8

SNAI1 SNAIL1 A549 3.1E−5 Up 2.8 EMT-ATF

ACHN —

MCF10A 2.0E-4 Up 7.0

A549 0.0010 Down 2.4 Epithelial

OCLN OCCUDIN ACHN —

MCF10A —

ETS1 ETS1 A549 2.1E−5 Up 3.2 Mesenchymal

ACHN 0.0024 Up 2.5

MCF10A 2.7E−5 Up 11.85

FN1 FIBRONECTIN A549 2.2E−4 Up 11.7 Mesenchymal

ACHN —

MCF10A 0.0091 Up 68.4

SDC1 SYNDECAN-1 A549 3.0E−5 Up 2.8 Mesenchymal

ACHN —

MCF10A —

SNAI2 SLUG A549 3.5E−6 Up 17.6 EMT-ATF

ACHN —

MCF10A —

List of genes issued from microarrays analysis (n= 4) in A549, ACHN, or MCF10A cells. p Value and fold change are indicated for each cell line. Epithelial markers
(CDH1, EPCAM, OCLN, SDC1), mesenchymal markers (CDH2, VIMENTIN, ETS1, FN1), and EMT-ATFs (ZEB1, ZEB2, SNAI1, SNAI2) were analyzed
EMT epithelial–mesenchymal transition, TGFβ transforming growth factor beta, TNFα tumor necrosis factor alpha
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Fig. 3 Transforming growth factor beta (TGFβ)/tumor necrosis factor alpha (TGFβ/TNFα) treatment regulates histone H3 modifications.
a Histones were purified from ACHN cells treated with or without TGFβ/TNFα for 5 days. Twenty-one posttranslational modifications of histone H3
(acetylation: H3K9ac, H3K14ac, H3K18ac, H3K56ac; methylation: H3K4me1, H3K4me2, H3K4me2, H3K9me1, H3K9me2, H3K9me3, H3K27me1,
H3K27me2, H3K27me3, H3K36me1, H3K36me2, H3K36me3, H3K79me1, H3K79me2, H3K79me3; and phosphorylation: H3S10P, H3S28P) were
quantified using a multiplex enzyme-linked immunosorbent assay. Values were normalized to total H3 content in the same measurement. Each
bar represents the mean of two independent measurements and each one was obtained from a mix of two independent histone extractions.
b, c Increase staining of H3K4me2, H3K9me3, and H3K27me3 marks observed using immunofluorescence in A549, ACHN, and MCF10A cells treated
with or without TGFβ/TNFα for 5 days. Each picture is representative of a typical result from at least three independent experiments. d Increased
staining in H3K4me2, H3K9me3, and H3K27me3 marks quantified using flow cytometry in A549, ACHN, and MCF10A cells treated with or without
TGFβ/TNFα for 5 days (representative results of at least 3 independent experiments)
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important increase in these different marks during EMT.
These strong global histone modifications observed dur-
ing EMT suggested that epigenetics might play a pivotal
role in transcription reprogramming during EMT.

Genes involved in ECM degradation were regulated by
epigenetics in TGFβ-/TNFα-treated cells
Since >90% of the most DE genes in our models were

overexpressed during EMT, we decided to conduct ChIP-
seq analyses in A549 cells treated, or not, with TGFβ/
TNFα to target the H3K4me2 mark. Then we crossed our
ChIP-seq data with the transcriptomes (Fig. 4). We
detected 1952 H3K4me2 regions that were significantly
enriched in TGFβ-/TNFα-treated cells versus non-treated
cells (1740 upregulated and 212 downregulated) (Fig. 4a
and Supp Table 3), with most of these H3K4me2 regions
located in introns (46%) (Supp Fig. 5). BETA analysis
predicted an activating function of the H3K4me2 mark
with a cumulative fraction of genes significantly above
background for upregulated genes (Fig. 4b) and indeed
identified 614 upregulated genes potentially activated by
the H3K4me2 mark (Fig. 4a, Supp Table 4). Regarding
these genes, the H3K4me2 mark was predominantly
enriched in introns (81%) (Supp Fig. 5). Among the most
significantly activated canonical pathways, identified by
GSEA, we once again found genes linked to ECM orga-
nization, Beta1 integrin cell surface interactions, and focal
adhesion (Supp Table 3). Among the overexpressed genes
identified in the transcriptome analysis, 23% were found
in the 614 genes potentially activated by the H3K4me2
mark.
To confirm that the expression of genes involved in

ECM were indeed linked to epigenetic modifications
during EMT, we selected ADAM19 (22.6-, 4.5-, and 30.7-
fold increase in A549, ACHN, and MCF10A, respectively)
and MMP9 (187- and 1000-fold increase in A549 and
MCF10A, respectively, but no change in ACHN). The
SCNN1A gene (12- and 4.5-fold decrease in A549 and
MCF10A, respectively, but no change in ACHN cells) was
used as a negative control. First, we confirmed a pro-
gressive modulation of ADAM19, MMP9 and SCNN1A
expression during EMT (Fig. 4d and Supp Fig. 6A). Next,
we confirmed the epigenetic regulation during EMT using
ChIP analysis (Fig. 4e). TGFβ/TNFα-induced EMT was
clearly associated with an increase in the H3K4me2 mark
on the promoters of ADAM19 and MMP9 and a decrease
on the SCNN1A promoter. Moreover, ChIP targeting the
repressive mark H3K27me3 showed opposite profiles on
these promoters (Fig. 4e). We also established the pro-
gressive modification of these epigenetic marks during
TGFβ/TNFα treatment as illustrated by kinetic ChIP
experiments (Supp Fig. 6B). Since MCF10A cells are
unable to form tumors in vivo, we also confirmed the
induction of MMP9 and ADAM19 expression in MDA-

MB-157 induced in EMT (Supp Figs. 7A and 7B).
Moreover, no induction of these genes was observed in
MCF-7, which failed to initiate EMT, whereas a strong
expression of bothMMP9 and ADAM19 was quantified in
the mesenchymal MDA-MB-231 cells.

The epigenetic regulation of genes involved in ECM
degradation was independent of the EMT inducer
Even if we already used three different EMT models, we

next wondered whether these results could be reproduced
in a different and independent model to answer the fact
that our observations might only be dependent of the
TGFβ/TNFα treatment. We chose the epithelial MDA-
MB-468 breast cells in which EMT can be induced using
EGF7. After 2 days of EGF treatment, an important pro-
portion of cells presented an increased tubular shape
(Fig. 5a) together with an increase in the expression of
VIMENTIN and SNAI1 and a decrease in CDH1 (Fig. 5b).
EMT was also confirmed by increased VIMENTIN
staining in IF (Fig. 5c) and increased SNAIL-1 levels in
WB (Fig. 5d). We also confirmed a global increase in
H3K4me2 and H3K27me3 in MDA-MB-468 treated with
EGF (Fig. 5e). We next quantified the expression of our
ECM remodeling genes in this new model and described
that ADAM19 expression was upregulated following EGF
treatment (Fig. 5f). Moreover, this upregulation was cor-
related to an increase in the H3K4me2 mark on the
ADAM19 promoter together with a decrease in the
H3K27me3 mark (Fig. 5g).

In vivo confirmation of the regulation of genes involved in
ECM degradation in EMT
To address the question whether the genes involved in

the degradation of the ECM degradation was associated
with EMT and aggressive subtypes in vivo, we performed
a retrospective analysis using previously published tran-
scriptomes issued from NSCLC microarrays (Fig. 6a). We
also added the expression of EMT markers as well as the
expression of the genes of the ECM degradation signature
identified in A549 (upregulated: ADAM19, ADAMTS6,
MMP-1, MMP-2, MMP-10, MMP-9, IL32, down-
regulated: SCNN1A) on this graph. (Fig. 6a, c). As
expected, large ADK or squamous lung cancers, which are
associated with higher risks of metastasis compared to
adenocarcinoma, presented a high expression of the ECM
degradation genes and a low expression of epithelial
markers compared to normal tissues. These data con-
firmed that ECM degradation biomarkers induced in our
EMT models were associated with EMT and aggressive-
ness in vivo. Since we also confirmed the ECM degrada-
tion signature in our BC models, we analyzed 2627
transcriptomes from BC (Fig. 6b, d). The different sub-
types, Luminal A, Her2, Basal, or normal breast tissues,
were plotted on a three-dimensional diagram based on the
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Prediction Analysis of Microarray 50 (PAM50) classifi-
cation using ESR1, HER2, and KI67 gene expression11.
Interestingly, all genes found to be overexpressed (ECM
degradation signature) were correlated to mesenchymal
markers and to basal-like/mesenchymal subtypes (triple-
negative BC), which are associated with a higher risk of

metastasis and poor prognosis. On the opposite, the
SCNN1A gene was associated with normal breast or
Luminal A BC and to the expression of epithelial markers.
Moreover, we confirmed, in a cohort of 47 BC, an
increased expression of MMP9 and ADAM19 in aggres-
sive tumors as well as a decreased expression of SCNN1A
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(Supp Fig. 9A). Finally, a positive correlation could be
established between ADAM19 and VIMENTIN or MMP9
and VIMENTIN in these samples (Supp Fig. 9B). These
data confirmed that the regulation of genes involved in
the degradation of ECM was not specific of a particular
model, tissue, or pathology but seemed to be a reliable
biomarker of EMT in different cancers in vivo.

Characterization of ADAM19 as a new EMT marker in vivo
To investigate ADAM19 expression in vivo in EMT, we

quantified the expression of ADAM19 and SCNN1A in
NSCLCs by immunohistochemistry (IHC) (Fig. 7). Biopsies
were stained for VIMENTIN and 30 patients were sorted
according to their levels of VIMENTIN: high (EMT+) or
low (EMT−) VIMENTIN staining. These data confirmed
that ADAM19 was overexpressed in EMT+ tissues and
repressed in EMT− while SCNN1A expression was
repressed in the EMT+ tissues and increased in EMT−.

Discussion
Although epigenetic modifications have already been

associated with EMT12, most of the studies were based on
only one EMT model and one inducer. In order to
characterize the global role of epigenetics during EMT, we
performed an extended study on different EMT cell
models (A549, ACHN, MCF10A). The transcriptome
analysis revealed that most of the genes upregulated or
downregulated in EMT were different in these models
(downregulated in A549 alone: 1020/1497, in ACHN
alone: 205/432, in MCF10A alone: 1433/1834 and upre-
gulated in A549 alone: 652/1235, in ACHN alone: 178/
507, in MCF10A alone: 1033/1647, Fig. 2b). The lower
number of DE genes and the lower fold change of
expression in the EMT-induced ACHN model compared
to A549 and MCF10A suggested that TGFβ/TNFα sig-
naling was less pronounced in ACHN.
These data suggested that EMT signaling could be, at

least partially, cell-specific despite going through the same

pathway of EMT induction. Indeed, ChIP-seq analysis in
non-EMT models previously revealed that TGFβ-induced
specific recruitment of SMAD3 on target genes was
dependent of the cell type13. However, among these EMT-
modulated genes, some seemed to be similarly regulated
in our models (Supp Table 4 and Supp Table 5) and, in
particular, the previously identified EMT markers CDH1,
EPCAM, VIMENTIN, and MMPs. When comparing the
list of the ten most upregulated genes in MCF10A and
H358 treated with TGFβ/OSM (Oncostatin M) with our
data, we observed that four genes (GPR68, SERPINE1,
ADAM19, SLAMF8) were also found to be upregulated in
our models and three additional genes (FAP, MMP9,
SCG5) were upregulated in two out of three of our models
following TGFβ/TNFα treatment14. Moreover, 9/10 of
these genes were also previously reported as upregulated
in the EMT-induced A549 model15. These data strongly
suggested that few genes were similarly regulated in dif-
ferent EMT models. Moreover, ADAM19 and MMP9
were also highly expressed in the mesenchymal MDA-
MB-231 cells and strongly increased in the EMT-induced
MDA-MB-157 cells (Supp Fig. 7).
We also described several genes with high differences of

expression between control and EMT-induced cells in the
three models but that have never been related to EMT.
For example, the expression of the poorly described
C15orf48 lncRNA, which has already been associated with
cancer, was overexpressed (about 45-fold)16. DHRS2,
overexpressed in the 3 cell models (about 38.9-fold) and
encoding a dehydrogenase/reductase, has recently been
associated with gastric carcinogenesis and 5-FU resis-
tance17. On the opposite, the expression of PPFIBP2 was
downregulated in all our models (about 10-fold).
Although very few data are currently available, PPFIBP2
loci has been recently associated with increased prob-
ability of prostate cancer18. Altogether these data showed
that all these genes might be considered as new markers
of EMT in cancer.

(see figure on previous page)
Fig. 4 Chromatin immunoprecipitation (ChIP) and ChIP-seq analysis on the H3K4me2 mark following transforming growth factor beta
(TGFβ)/tumor necrosis factor alpha (TGFβ/TNFα) treatment. a Volcano plot of the 42,076 H3K4me2 merged islands. In red, the regions
significantly enriched in TGFβ-/TNFα-treated cells versus non-treated cells. FC: fold change treated versus non-treated. fdr: false discovery rate treated
versus non-treated. b Activating and/or repressive function prediction of H3K4me2 in A549 cells. BETA-basic integrates H3K4me2 differentially
enriched regions and transcriptome data on TGFβ/TNFα treated cells and non-treated conditions to identify upregulated (red) and downregulated
(purple) genes. The dashed line indicates the non-differentially expressed genes as background. Genes are cumulated by the rank on the basis of the
regulatory potential score from high to low. p Values represent the significance of difference in the upregulated or downregulated groups compared
with the non-differentially expressed group by Kolmogorov–Smirnov test. c Integration of transcriptome and ChIP-seq data for the A549 cell line. Top:
heat maps of read coverage from −5 kb to +5 kb around the transcription start site for TGFβ-/TNFα-treated (left) and non-treated (right) conditions.
Each line represents an upregulated gene identified by BETA. Genes are ordered according to their increasing rank product. Upper panels: read
coverage density plots. Bottom: Corresponding gene expression heat map for treated (n= 4) and non-treated conditions (n= 4). Black lines indicate
differentially expressed genes. d Increase expression of ADAM19 and MMP9 and decrease expression of SCNN1A in A549 cells treated with TGFβ/
TNFα (mean ± SD of at least 3 independent experiments). e Ratio of fold change (epithelial–mesenchymal transition: TGFβ/TNFα treated A549 versus
NT: untreated A549 cells) following ChIP against H3K4me2 and H3K27me3 marks on MMP9, ADAM19, and SCNN1A promoters. Dotted line= 1 (mean
± SEM of at least 3 independent experiments) *p < 0.05
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Fig. 5 Epigenetic regulation in epidermal growth factor (EGF)-induced epithelial–mesenchymal transition (EMT) in MDA-MB-468 cells.
a Representative images showing a change in morphology of MDA-MB-468 cells following 1–5 days of treatment with EGF (20 or 50 ng/ml).
b Validation of EMT markers by quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) in the MDA-MB-468 cell line treated or not
with EGF (20 or 50 ng/ml) for 3 days (mean ± SD of at least 3 independent experiments). c Increased change of morphology and intensity of
VIMENTIN staining using immunofluorescence (IF) in MDA-MB-468 cells treated or not with EGF (20 or 50 ng/ml) for 3 days. d Increased expression of
SNAIL1 in MDA-MB-468 cells treated or not with EGF (20 or 50 ng/ml) for 3 days. e Increased staining in H3K4me2 and H3K27me3 marks using IF in
MDA-MB-468 cells treated or not with EGF (20 or 50 ng/ml) for 3 days (representative pictures of 3 independent experiments). f Increased expression
of ADAM19 gene quantified by qRT-PCR in MDA-MB-468 cells treated or not with EGF (50 ng/ml) for 3 days. g Ratio of fold change (EMT: EGF treated
versus NT: untreated MDA-MB-468 cells) following chromatin immunoprecipitation against H3K4me2 and H3K27me3 marks on the ADAM19
promoter. Dotted line= 1 (mean ± SEM of at least 3 independent experiments) *p < 0.05 and **p < 0.01
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We identified a specific and concomitant increase in
positive, H3K4me2/3, and negative, H3K9me3 and
H3K27me3, histone marks following TGFβ/TNFα treat-
ment and we performed a ChIP-seq analysis targeting
H3K4me2, with a profile similar to active genes in verte-
brates19. We identified numerous genes whose regulation

could be explained by epigenetic modifications on their
promoters and we highlighted an epigenetic signature on
genes involved in ECM remodeling, such as MMP9 and
ADAM19, which was increased in A549, ACHN, and
MCF10A and also previously reported in another study14.
This was associated with an increase in the H3K4me2 mark

Fig. 6 Large retrospective transcriptome analysis in non-small cell lung cancer (NSCLC) or breast cancer (BC) subtypes. Expression of MMP9,
ADAM19, and SCNN1A mRNA was correlated to epithelial–mesenchymal transition (EMT) markers in a retrospective analysis using published
microarrays. Expression of MMP9, ADAM19, SCNN1A was correlated to EMT markers in a retrospective analysis using microarrays downloaded from
public datasets. Heat maps were drawn by hierarchical clustering of gene expression in different samples from lung (a) and breast (c) including
primary tumors and normal tissue (“Normal”). High transcript levels are marked in red and low levels are marked in blue. Correlations between these
markers were plotted in two dimensions after principal component analysis for NSCLC (b) and for BC subtypes (d)
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on their promoters during EMT. These results were con-
sistent with a study showing that MMP1/9/10 expression
belonged to a gene cluster that overlaps an active enhan-
cer15. We confirmed this analysis by showing a decrease of
the H3K27me3 mark on the promoters of MMP9 and
ADAM19. Our data were in agreement with previously
published results describing that the presence of these two
latter marks were inversely correlated to one promoter20.
To determine whether the epigenetic signature observed on
genes involved in ECM degradation was specific of EMT,

and not to TGFβ/TNFα treatment, we performed the same
set of experiments on an independent model (MDA-MB-
468 cells in which EMT was induced using EGF21,22).
Indeed, we observed a progressive decrease in CDH1
expression and an increase in VIM expression from day2.
Similarly, a strong increase in expression of SNAI1 was also
observed at day 2 and then progressively decreased at day 3.
The induction of SNAIL protein expression was only visible
at day 1, suggesting that SNAIL expression is thinly regu-
lated during EMT.
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EMT induction in this model also led to a large overall
epigenetic reprogramming, in particular in genes involved
in ECM remodeling. Indeed, we detected an enrichment
in H3K4me2 on the ADAM19 promoter. But, interest-
ingly, some of the genes involved in the ECM degradation
presented a different pattern in the MDA-MB-468 (Supp
Fig. 8). These results demonstrated that epigenetic pro-
grams and expression profiles linked to EMT differed
according to the model and the cytokine treatment.
We then established a list of seven new biomarkers of

EMT that presented a similar regulation in our different
models of EMT together with an enrichment of H3K4me2
on their promoter (Supp Fig. 8C and D). In this list, we
highlighted MYO10 and ADAM19, two genes linked to
tumor aggressiveness. MYO10 encodes a member of the
myosin superfamily, which has been associated with
metastasis23. ADAM19 encodes a metalloprotease that
belongs to the ADAM family associated with cancer
progression24. This protein has been associated with EMT
in a glioblastoma model where its silencing by the miR-
145 inhibited EMT25. Interestingly, the epigenetic sig-
nature of these seven genes was identical whichever the
cell model and the inducer used. We confirmed these
in vitro data in a cohort of 100 NSCLCs. We first selected
30 EMT-positive tumors presenting a high VIMENTIN
staining and confirmed that in vivo EMT was indeed
correlated to an overexpression of the ADAM19 protein
in NSCLCs. Interestingly, ADAM19 was one of the few
genes for which a strong upregulation was observed in our
5 different EMT models (5 different cell lines, 2 different
EMT inducers) and also found in independent studies
with similar or additional models14,15. Altogether these
data strongly supported the role of ADAM19 in EMT.
Finally, survival analysis of lung cancer patients using the
kmplot.com software showed that a high expression of
genes involved in ECM degradation, such as ADAM19 (p
= 3.3E−5), ADAMTS6 (p= 0.00032), or MMP9 (p=
0.04), was associated with a poor prognosis (Supp Fig. 10).
In conclusion, our data demonstrated, for the first time,

an epigenetic signature of genes involved in ECM remo-
deling during EMT. Our results suggested that ADAM19
expression and its epigenetic regulation could be con-
sidered as a robust new biomarker of EMT in vitro and
in vivo. Moreover, our work suggested that novel antic-
ancer therapies combining conventional drugs with epi-
drugs, targeting ADAM19 expression, might be tested in
future preclinical studies to reduce metastasis and
aggressiveness.

Materials and methods
Transcriptome analysis and qRT-PCR
Total RNA was isolated from cells using the Tri Reagent

(TR118, Molecular Research Center) according to the
manufacturer’s instructions and RNA quality was

controlled using the Experion Analysis kit (Biorad,
France). Transcriptome analysis was performed on
extracted RNA from A549, ACHN, and MCF10A cell
lines treated or not (control) with TGFβ/TNFα. This
analysis was performed on four RNA preparations for
each cell line and condition. RNA integrity (RNA Integrity
Number ≥ 8) was confirmed using an Agilent 2100 bioa-
nalyzer (Agilent Technologies, France). Then tran-
scriptome profiling was analyzed using the Agilent whole
human genome 8 × 60 K microarray (kit G4851C, Agilent
Technologies). Total RNA was labeled and hybridized
according to the manufacturer’s recommendations using
the LowInput QuickAmp Labeling Kit One-Color (Agi-
lent Technologies, 5190–2305), Gene expression Hybri-
dization Kit (Agilent Technologies, 5188–5242), RNA
Spike-in one Color Kit (Agilent Technologies,
5188–5282), and washing buffer (Agilent Technologies,
5188–5327). Raw intensity data were log2-transformed
and normalized (intra-array and inter-array scaling) using
the GeneSpring GX software (Agilent Technologies), then
gene expression were submitted to ArrayExpress reposi-
tory under accession number “XXXXX.”
Probes were selected according to their level of

expression (intensity above background in treated and/or
control conditions) and to their absolute fold change
(FCA ≥ 2) between treated and control conditions. For
each cell line, unequal variance t tests (Welch t test) were
performed to identify DE probes between treated and
control samples. Adjusted p values were calculated by
controlling the false discovery rate according to the
Benjamini and Hochberg procedure. Probes were con-
sidered as significantly DE if the adjusted p value was
<0.01. Venn diagrams were obtained using the http://
biopuce.insa-toulouse.fr/ExperimentExplorer/venn/
venn_graph.php software. Gene ontology was performed
using the PANTHER software26.
Reverse transcription was performed in a mix contain-

ing M-MLV (12 U, Sigma-Aldrich, M-1302) reverse
transcriptase, oligodT (0.25 µM, Eurogentec, Belgium),
random hexamers (1.25 µM, C118A Promega, France),
and total RNA (1.5 μg) according to the manufacturer’s
instructions (Sigma-Aldrich). Quantitative PCR were
performed as duplicate using the Step one Real-Time PCR
system (Applied Biosystems, France) and the Power SYBR
Green PCR Master Mix (Applied Biosystems) according
to the manufacturer’s instructions. Primers used in our
study were designed using the primer 3 software or
according to Gemmill et al.5 and are listed in the Supp
Table 8.

Cell culture
The A549 (NSCLCC) cell line was obtained from Dr

Christophe Borg (INSERM UMR1098, Besançon, France),
the ACHN (metastatic renal cancer) cells were obtained
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from Dr Viviane Gnemmi (INSERM UMRS995, Lille,
France)27, MCF10A (immortalized breast cells) cells were
obtained from Philippe JUIN (INSERM U1232, Nantes,
France), and the MDA-MB-468 (metastatic BC) cell line
were obtained from Dr Christine Gilles (Laboratory of
Tumor and Developmental Biology, Liège, Belgium).
A549 and ACHN cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) 1 g/l glucose (Dominique Dut-
scher, L0066, France) and MDA-MB-468 were cultured in
RPMI 1640 medium. Both medium were supplemented
with fetal bovine serum (5%) (Dominique Dutscher,
S1810), penicillin–streptomycin (50 U/ml) (Dominique
Dutscher, L0018), and amphotericin B (1.25 µg/ml) (PAA,
P11–001, France). Cells were cultured at 37 °C in 5% CO2,
and routinely used at 70–80% confluence. MCF10A were
cultured in DMEM-F12 supplemented with 20 ng/ml EGF
(Sigma-Aldrich, France), 100 ng/ml choleric toxin (Sigma-
Aldrich), 10 µg/ml insulin (Sigma-Aldrich), 0.5 µg/ml
hydrocortisone, and antibiotics as described above. Cells
were cultured at 37 °C in 5% CO2 and routinely used at
70–80% confluence. When indicated, EMT was induced
for 1–5 days using 4 ng/ml TGFβ (100–21, Peprotech,
France) (ACHN, A549 and MCF10A) and 20 ng/ml TNFα
(300–01 A, Peprotech) or 20–50 ng/ml EGF (MDA-MB-
468).

Epigenetics
Quantification of histone modifications
Histones were prepared from fresh cell pellets using the

EpiQuik Total Histone Extraction Kit (OP-0006, Euro-
medex, France) and the protein were quantified using the
Bradford Protein Assay (Biorad, 5000006). The efficiency
of histone extraction was controlled using migration (see
below) and detection of total histones by Coomassie
staining and then WB using an anti-H3 antibody. Histone
posttranslational modifications were quantified using the
EpiQuik Histone H3 Modification Multiplex Assay Kit (P-
3100, Epigentek) as per the manufacturer’s instructions.
Each histogram corresponds to the mean of 2 indepen-
dent experiments and each measure was obtained using a
pool of 100 ng of total histones issued from 2 independent
extractions (50 ng+ 50 ng).

Chromatin immunoprecipitation
Chromatin was prepared using the truChIP™ Chromatin

Shearing Kit (520154, Covaris, France) according to the
manufacturer’s instructions. Each sample was submitted
to a 8 min sonicated using the M220 Covaris sonicator.
ChIP were performed using the IP-Star Compact Auto-
mated System (Diagenode, Belgium) with the Auto iDeal
ChIP-seq Kit for Histones (C01010171, Diagenode) and 1
µg of ChIP-grade antibody or IgG (IG07–2, P.A.R.I.S.).
Libraries were prepared from 5 ng of ChIP DNA and
Input DNA with the NEBNext® Ultra™ DNA Library Prep

Kit for Illumina (E7370S, New England Biolabs, USA),
according to the manufacturer’s instructions. From each
library, 50 bp single reads were sequenced using an Illu-
mina Hiseq 1500 system (Illumina). Reads were filtered
according to their quality (Q Score ≥ 30) and adapter
sequences were removed using Cutadapt28. Reads were
aligned to the human genome (hg19) using the BWA
(version 0.7.10). We obtained a mean of 21 million (min
= 10M, max= 48M, sd= 6M) uniquely mapped reads
per sample. H3K4me2 differentially enriched regions
(peaks) were identified using SICER-df (g=w= 200 bp).
We considered two pairs of libraries: (1) TGFβ-/TNFα-
treated condition versus its input control, (2) non-treated
condition versus its input control. The basic strategy of
SICER-df is to identify significant islands using SICER.sh
in each of the two pairs, merge the two sets of significant
islands, and then determine the significance of changes by
comparing merged islands between the treated and the
non-treated condition29. A region was considered sig-
nificantly enriched between treated and non-treated
conditions if the adjusted p value (Benjamini and Hoch-
berg) was <0.01 and the FCA ≥ 2. We used the PAVIS
software to annotate the H3K4me2 marks with an
upstream/downstream interval of ±5 Kb from transcrip-
tion start site30. Integration of transcriptome and ChIP-
seq data was performed using BETA on the H3K4me2
differentially enriched regions31. A gene was considered as
potentially regulated by the H3K4me3 mark if its rank
product was <0.01. We then used the DeepTools suite to
generate heat maps of read coverage32, and we used GSEA
to search for enriched molecular signatures among
genes33. A gene set was considered as significantly enri-
ched if the Fisher exact test q-value was <0.001. Primers
used for the ChIP validations were designed using the
primer 3 software and listed in the Supp Table 8 and
antibodies are listed in Supp Table 9.

Western blotting
For the preparation of total protein extracts, cells were

scraped, harvested and lysed in RIPA buffer (50 mM Tris-
HCl, pH 8, 150mM NaCl, 1% Triton X100, 0.5% DOCA,
0.1% sodium dodecyl sulfate (SDS)) supplemented with
protease inhibitors (104 mM AEBSF, 1.5 mM pepstatin A,
1.4 mM E-64, 4 mM bestatin, 2 mM leupeptin, and 80 µM
aprotinin) for 30 min on ice, then sonicated for 15 s, and
centrifuged at 10,000 × g for 10 min at 4 °C. Proteins were
quantified using the Bradford method and then proteins
(25–40 μg) were separated on TGX acrylamide gels
(1610172, Biorad) at 300 V for 30min using and trans-
ferred onto Transblot turbo PVDF (1704157, Bio-Rad)
membranes for 10–15min with the Transblot turbo
(1704150, Biorad) according to the manufacturer’s
recommendations. Membranes were saturated in TBS-
Tween 20 0.1% supplemented with 5% milk for 1 h and
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then incubated with primary antibodies (listed in Supp.
Table 9) overnight at 4 °C. Membranes were washed 3
times with TBS-Tween 20 0.1% and incubated with sec-
ondary anti-rabbit or anti-mouse horseradish peroxidase
conjugate antibody according to the manufacturer’s
instructions (BI2407, BI2413C, P.A.R.I.S., France). The
membrane was then washed 3 times with TBS-Tween 20
0.1% and incubated with Clarity Western Cl substrate
(1705051, Biorad) and chemiluminescence was monitored
using a Biorad ChemiDocTMXRS+.

Zymography
Cells were cultivated for 3 days in complete medium,

with or without TGFβ/ TNFα, and then medium was
replaced by serum-free medium containing or not the
cytokines for 2 additional days. Five hundred µl of med-
ium was concentrated using Pierce Concentrator, PES
30K MWCO (88502, Thermo Scientific) columns at
15,000 × g for 5 min. Samples were diluted in 1× non-
reducing sample buffer (25 mM Tris-HCl, pH6.8, 0.8%
SDS, 4% glycerol, 0.002% bromophenol blue) and sepa-
rated in 7.5% SDS-polyacrylamide gel electrophoresis
containing 4 mg/ml Gelatin. The gel was washed 2 times
with washing buffer (50 mM Tris-HCl, pH 7.5, 2.5% Tri-
ton X-100, 5 mM CaCl2, 1 µM ZnCl2) for 30 min, rinsed
for 10min at 37 °C in incubation buffer (50 mM Tris-HCl
pH7.5, 1% Triton X-100, 5 mM CaCl2, 1 µM ZnCl2) with
agitation, and then incubated for 24 h at 37 °C in the
incubation buffer with agitation. The gel was stained for 1
h in 40% methanol, 10% acetic acid, and 0.5% Coomassie
blue, rinsed with water, and destained in 40% methanol
and 10% acetic acid before quantification.

Immunofluorescence
Cells were cultured for 24 h on coverslips and then fixed

with cold methanol for 20min at −20 °C and then
blocked with Blocking solution (82007, Olinkbioscience)
for 1 h at 37 °C. Incubations with primary antibodies were
performed overnight at 4 °C, and then cells were rinsed 3
times with TBS-tween 0.1%. Incubations with secondary
antibodies goat anti-rabbit and got anti-mouse AlexaFluor
488 or 555 (Life technologies) for were performed 1 h at
37 °C, and then cells were rinsed 3 times with TBS-tween,
stained with DAPI (4’,6’-diamidino-2-phénylindole), and
mounted using Fluoromount Aqueous Mounting Med-
ium (F4680, Sigma Aldrich). Images were acquired with
an Olympus FV1000 laser scanning confocal microscope
(×63 objective).

Flow cytometry
For membrane staining, cells were incubated with the

corresponding antibody for 30min at 4 °C, then washed
with phosphate-buffered saline and centrifuged for 10 min
at 300 × g. Ten thousands cells from each sample were

evaluated for fluorescence detection using BD FACS-
Canto cytometer (Becton Dickinson) and analyzed with
the FACS Diva software.

Tissue samples, IHC, and immunostaining assessment
Paraffin-embedded tissue biopsies of NSCLCs were

collected in collaboration with the Tissue Biobank of the
University of Liege (Liege, Belgium). This protocol was
approved by the Ethics Committee of The University
Hospital of Liège. The initial diagnosis of each case was
confirmed by experienced histopathologists. IHC analysis
was performed with a standard protocol detailed pre-
viously and the primary antibodies listed in Supp.
Table 934. Following IHC, samples were classified into two
groups: EMT-positive versus EMT-negative in regard to
the intensity of VIMENTIN staining (score (0–3) and
extent (0–3). As previously described35, the 2 scores were
multiplied to obtain a global score ranged between 0 and
9. All immune-labeled tissues were evaluated by two
experienced histopathologists.

Statistics
Mean comparison were analyzed using Student's t test

with the GraphPad Prism5 software. Correlation indices
were measured using Spearman test calculated with the
ImageJ software. Significant values are highlighted in bold
in each figure. Retrospective transcriptome analysis was
performed using the R software version 3.3.1, R Founda-
tion for Statistical Computing, Vienna, Austria. Tran-
scriptomes were built from Affymetrix series (GPL570
platform) after GC-RMA normalization. For BCs,
2830 samples were used from the following GEO series:
GSE12276, GSE12790, GSE18931, GSE2109, GSE22035,
GSE23720, GSE23994, GSE25407, GSE26910, GSE30010,
GSE3744, GSE5764, GSE17700, GSE26639, GSE16446,
GSE18864, GSE22513, GSE19615, GSE20685, GSE21653,
GSE23177, GSE9195, GSE6532. Samples were classified
with PAM50 method using 50 genes (genefu R package).
For lung cancers, 802 samples were normalized from the
following GEO series: GSE101929, GSE10245, GSE18842,
GSE22047, GSE30219, GSE32496, GSE37745, GSE43580,
GSE77803.
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