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Abstract

Reciprocal interaction between pancreatic stellate cells (PSCs) and cancer cells (PCCs) in the 

tumor microenvironment (TME) promotes tumor cell survival and progression to lethal, 

therapeutically resistant pancreatic cancer. The goal of this study was to test the ability of 

Palmatine (PMT) to disrupt this reciprocal interaction in vitro and examine the underlying 

mechanism of interaction. We show that PSCs secrete glutamine into the extracellular environment 

under nutrient deprivation. PMT suppresses glutamine-mediated changes in GLI signaling in 

PCCs resulting in the inhibition of growth and migration while inducing apoptosis by inhibition of 

survivin. PMT-mediated inhibition of (glioma-associated oncogene 1) GLI activity in stellate cells 

leads to suppression (collagen type 1 alpha 1) COL1A1 activation. Remarkably, PMT potentiated 

gemcitabine’s growth inhibitory activity in PSCs, PCCs and inherently gemcitabine-resistant 

pancreatic cancer cells. This is the first study that shows the ability of PMT to inhibit growth of 
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PSCs and PCCs either alone or in combination with gemcitabine. These studies warrant additional 

investigations using preclinical models to develop PMT as an agent for clinical management of 

pancreatic cancer.
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1. Introduction

Late stage diagnosis and lack of early detection markers contribute to the near equal rates of 

pancreatic cancer incidence and mortality. 20% patients are eligible for surgical resection 

and 3–4% remain disease-free following surgical resection while about 80% will relapse and 

die of the disease [1]. Gemcitabine (GEM)-monotherapy has been the standard of care for 

advanced pancreatic ductal adenocarcinoma (PDAC) for more than a decade although 

overall survival of patients on GEM is an average of 6 months. Therapeutic approaches 

based on combination of GEM with additional chemotherapy agents such as oxaliplatin, 

irinotecan, leucovorin and 5-FU (FOLFIRINOX) have provided modest survival benefit with 

significant toxicity, and is reserved for a select group of patients [2]. Therefore, there is a 

critical need for new agents that can effectively manage PDAC.

Uniquely, a dense stroma or desmoplastic reaction (DR) in the tumor microenvironment 

(TME) plays a critical role in tumor maintenance and in limiting therapeutic efficacy by 

decreasing drug delivery [3,4]. This constitutes about 90% of the tumor area and is 

comprised of a variety of cells including stellate cells (PSCs), fibroblasts, endothelial cells, 

myeloid cells, and extracellular matrix (ECM) components such as collagens [5]. PSCs, 

considered to be the driver of pancreatic fibrosis, are usually quiescent in the normal 

pancreas, but can be activated by a number of factors including inflammation. Once 

activated, these cells exhibit a myofibroblastic phenotype including expression of alpha 

smooth muscle actin (α-SMA), and collagen 1 type 1 alpha 1 (COL1A1) [6]. Pancreatic 

cancer cells (PCCs) also activate PSCs in a paracrine fashion by secreting a variety of 

cytokines and growth factors including Sonic hedgehog (SHH). Such paracrine interactions 

between PSCs and PCCs promote tumor progression by regulating a plethora of oncogenic 

processes including proliferation, migration, invasion and apoptosis of cancer cells [7-10].

Given the importance of DR in tumor progression and therapeutic resistance, our goal is to 

develop a strategy for PDAC using agents that inhibit growth of activated PSCs and PCCs as 

well as their synergistic interactions in the TME. In this study, we report the potential utility 

of palmatine (PMT) to inhibit growth of PSCs, PCCs and PSC-PCC interaction using in 
vitro models.

2. Materials and methods

2.1. Cell lines and chemicals

Human pancreatic cancer cell lines HPNE, MIA PaCa-2, CFPaC-1 and PANC-1 were 

obtained from ATCC (Rockville, MD). PSCs (obtained from Dr. Rosa, Hwang, UT MD 
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Anderson Cancer Center, Houston, TX) and PANC-1 cells were cultured in DMEM medium 

(Mediatech, Inc., Manassas, VA) supplemented with 10% fetal bovine serum (FBS), 100-

μg/mL penicillin-streptomycin, and 100-μg/mL amphotericin. HPNE, HPNE-Ras, and MIA 

PaCa-2 cells were maintained as previously described [11-13]. Palmatine (PMT) was 

obtained from LKT Laboratories Inc. (St Paul, MN) and all other chemicals were analytical 

grade.

2.2. Metabolomic profiling

PSCs were treated with 5 mM and 25 mM glucose under serum free conditions with 5 and 

25 mM mannitol used as osmotic controls. After 24 or 48 h of incubation, the cell 

supernatants were harvested; flash frozen for use in metabolomic profiling performed by 

Metabolon, Inc. (Durham, NC) using standard protocols.

2.3. Biochemical experiments

Cell proliferation was measured 24 and 48 h of incubation with PMT (10, 25, 50, 75, 100, 

150 and 200 μg/mL) using CellTiter 96 Aqueous One solution assay (Promega Corporation, 

Madison, WI) as described previously [11,12]. Apoptosis was measured using Annexin V 

Apoptosis Detection Kit APC (eBioscience, Inc., San Diego, CA) following treatment with 

PMT (30 h) as per manufacturer’s instructions. Etoposide (Etop) was used as a positive 

control. Colony forming ability was determined using crystal violet staining. Cell invasion 

assay was performed according to the manufacturer’s instructions (ECM556, Chemicon, 

EMD Millipore, Billerica, MA). Immunoblot analysis, Real-Time PCR and transient 

expression assays were conducted as described previously using either chemiluminescence 

or Infrared Imaging [11-13].

2.4. Statistics and ethics statement

All experiments were repeated at least 3 times using either duplicate or triplicate samples. 

Statistical significance was determined by two-way ANOVA or student’s t-test. Results were 

considered significant if the p value < .05.

3. Results

3.1. Palmatine inhibits sonic hedgehog pathway and growth of pancreatic stellate cells

Published studies from our laboratory identified palmatine (PMT) as a hydrophilic 

compound with potential with antitumorigenic activity [14,15]. PMT is one of the 

biologically active components of Nexrutine® which was reported to reduce fibrosis in an 

inflammation-driven pancreatic cancer mouse model (BK5-Cox-2) [11]. Since Hh signaling 

is active in both stroma and tumor cells and because GLI plays an important role in tumor-

stromal interaction, we examined the effect of PMT on the expression of Hh effector 

molecules, GLI1 and GLI2. GLI reporter activity and downstream targets including 

COL1A1, which is involved in collagen deposition and plays a critical role in aggressive 

behavior of PDAC was also examined. PMT treatment (48 h) decreased the expression and 

protein levels of GLI1 and GLI2 in PSCs (Figs. 1A and B and protein levels of GLI1 and 

GLI2 in PSCs; quantification data shown in S1A and B). A decrease in GLI reporter activity 

was also seen in response to PMT treatment (Fig. 1C). PMT-mediated decreased reporter 
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activity was reflected by the decrease in message and protein levels of downstream targets: 

PTCH1 (patched 1), IκBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) and 

COL1A1 (collagen type 1 alpha 1 chain; Figs. 1D and E; quantification data shown in S1C-

E). Inhibition of GLI1 and GLI2 using RNAi inhibited COL1A1 message suggesting that 

PMT reduces COL1A1 via GLI (Fig. 1F). These results taken together suggest that PMT 

inhibits SHH pathway in PSCs.

To determine the biological significance of these observations we determined the effect of 

PMT on cellular homeostasis by assessing growth, apoptosis, autophagy and invasive 

potential in PSCs. PMT caused dose-dependent decreases in proliferation and colony 

forming ability (measured by clonogenic survival assays) in PSCs with ~IC50 of 75 μg/mL 

(Figs. 1G and H). Treatment with PMT significantly reduced mRNA expression and protein 

levels of survivin (Figs. 1I and J). Despite decreased levels and expression of survivin, we 

did not observe changes in apoptosis as determined by PARP cleavage or Annexin V 

staining under these experimental conditions (Figs. 1K and S1F). It is well established that 

tumors grow in severe hypoxic, nutrient deprived microenvironments and show elevated 

levels of autophagy [16]. Since there was no significant change in apoptotic cells, we 

reasoned that PMT might use autophagy to regulate PSC growth. We determined changes in 

cell survival and turnover of LC3BII following PMT treatment in the presence and absence 

of chloroquine (CQ). Analysis of these data showed a marginal yet significant decrease in 

LC3BII turnover suggesting that it is not delivered to lysosome for degradation resulting in 

decreased autophagy in the presence of PMT (Figs. 1K, S1G, and S1H). Remarkably, PMT 

inhibited invasive ability of PSCs with no significant effect on migration (Figs. 1L and S1I). 

Trypan blue viability assessment of PSCs treated with PMT in the presence and absence of 

CQ corroborated our apoptosis data; that PMT does not induce apoptotic cell death (Fig. 

S1J). Collectively, these data suggest that PMT is a cytostatic agent with a propensity to 

inhibit clonogenicity, invasion and possibly autophagy-mediated survival of PSCs.

3.2. Palmatine inhibits growth of pancreatic cancer cells

To determine the effect of PMT on other pancreatic cells, we evaluated its effects on the 

growth of normal HPNE, mutant KRAS transformed HPNE (HPNE-Ras) cells, and PCC 

lines: MIA PaCa-2 and PANC-1. HPNE-Ras cells were sensitive to growth inhibitory effects 

of PMT with IC50 values of 50 μg/mL (Fig. 2A; dashed line). In contrast, HPNE cells were 

comparatively resistant to PMT treatment as doses of 150 μg/mL or greater were required to 

see growth inhibitory effects (Fig. 2A; solid line and data not shown). Similar to HPNE-Ras 

cells, PMT-mediated growth inhibitory effects were observed in the cancer cell lines, MIA 

PaCa-2 and PANC-1 (Figs. 2B and C). PMT reduced the protein levels of GLI2 and PTCH1 

in MIA PaCa-2 cells (Figs. 2D, S2A, and S2B). However, we did not observe these effects in 

PANC-1 cells (Figs. 2D, S2C and S2D). PMT treatment significantly reduced expression 

and levels of survivin in MIA PaCa-2, but not PANC-1 cells (Figs. 2D and E). Consistent 

with this observation, PMT treatment induced apoptosis in MIA PaCa-2 and not PANC-1 

cells as indicated by the appearance of cleaved PARP and Annexin V staining (Figs. 2D and 

S3A).
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Examination of autophagic activity following PMT treatment showed no significant effect 

on LC3B cleavage or p62 levels in MIA PaCa-2 and PANC-1 cells (Fig. 2F; quantification 

data is shown in Figs. S3B and C). Significant decrease in viability and induction of PARP 

cleavage was observed in MIA PaCa-2 but not in PANC-1 cells when autophagy was 

inhibited using CQ (Figs. 2F and G). These data suggest that autophagy primarily functions 

as a cell survival mechanism in these cells, which is consistent with published reports [17]. 

We believe that inhibition of autophagy using an autophagic inhibitor lowers the autophagic 

threshold in MIA PaCa-2 cells leading to decreased cell viability and induction of apoptosis 

(Figs. 2F and G). The effects of PMT on PANC-1 cells are not evident possibly due to a 

higher autophagic threshold (Fig. 2G right panel). Consistent with this speculation, basal 

LC3BII levels are significantly higher in PANC-1 compared to MIA PaCa-2 cells (data not 

shown). Interestingly, PMT marginally inhibited the migratory ability of MIA PaCa-2 cells 

with no effect on PANC-1 cells. In addition, PMT had no significant effect on invasive 

ability of PCCs under these experimental conditions (Figs. S3D, S3E, and data not shown). 

Taken together, these data suggest that PMT inhibits growth of cancer cell lines, albeit 

differentially possibly depending on the cellular context. It inhibits growth and induces 

apoptosis in MIA PaCa-2 cells and pharmacological inhibition of autophagy using CQ 

enhances PMT-induced apoptosis in MIA PaCa-2 cells. Additionally, although PMT reduces 

growth of PANC-1 cells, they are resistant to apoptosis induction.

3.3. PMT-mediated effects involve secretory factor

Although PSCs have invasive and migratory abilities, in conjunction with PCCs they acquire 

the ability to invade and migrate in a bi-directional manner [18]. Based on our data, we 

reasoned that PMT might hinder PSC-PCC communication. Therefore, we examined the 

migratory ability of PCCs following treatment with conditioned media from PSCs in the 

absence and presence of PMT (CM and PMTCM respectively). Intriguingly, CM from PSCs 

enhanced the migratory ability of both MIA PaCa-2 and PANC-1 cells (Fig. 3A and B, S4A, 

and S4B). Interestingly, PMTCM significantly decreased migratory ability of these cells 

(Fig. 3C and D, S4C, and S4D). It is noteworthy that PMT alone decreased migratory ability 

of MIA PaCa-2 cells approximately 20% with no effect on PANC-1 cells (Figs SF3D and 

SF3E). Intriguingly, CM-mediated enhanced migratory ability of MIA PaCa-2 and PANC-1 

cells was associated with increased levels of β-catenin in MIA PaCa-2 cells and SNAIL in 

PANC-1 cells (Figs. 3E and F, left panel). On the other hand, PMTCM decreased levels of 

these same markers (Figs. 3E and F, right panel). These results imply the involvement of a 

secretory factor(s) in mediating PMT-induced effects on migration in cancer cells and that 

the ability of PMT to inhibit migration of PCCs occurs possibly by reducing the level(s) of 

such secreted factor(s).

3.4. Palmatine inhibits glutamine-mediated PSC-PCC interaction in vitro

Physiologically tumors grow under hypoxic and nutrient deprived conditions and cancer 

cells survive in this hostile micro-environment in part through reprogramming their 

metabolic needs [19]. However, how PSCs growing under such conditions reprogram their 

metabolic needs to communicate with PCCs to promote their growth and survival remains 

undefined. To address this, we cultured PSCs in low glucose media (GLM; 5 mM) or 

glucose-rich media (GRM; 25 mM; generally used in cell culture media) over a time course 
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of 48 h and performed metabolite analysis using spent media and lysates (for intracellular 

metabolites). Analysis of metabolite profiling data reveled statistically significant alterations 

in both secretory (20 upregulated and 40 downregulated) and intracellular biochemicals (44 

upregulated and 120 down-regulated) involved in glycolysis, glutamine metabolism and 

TCA cycle (Table 1; Figs. 4A and B; hierarchical clustering of metabolite data is shown in 

S5A and B). Specifically, we observed reductions in the secreted levels of glucose, pyruvate 

and lactate (involved in glycolytic pathway) and significant increases in glutamine and 

glutamate (involved in glutamine metabolism). Interestingly, the levels of citrate increased 

while α-ketoglutarate (α-KG) and fumarate decreased with minimal effects on other TCA 

cycle intermediates (Fig. 4A). This could possibly be due to block in conversion of 

glutamate to α-KG mediated by glutamate dehydrogenase. Accordingly, we expected to see 

increased intracellular levels of glutamate. We observed significant decrease in the 

intracellular levels of biochemicals involved in glycolysis and increase in α-KG and 

glutamine (Fig. 4B). Box plots showing secreted and intracellular levels of α-KG, glutamate 

and glutamine are shown in Fig. 5A and B respectively. These data reveal that under low 

glucose conditions, PSCs utilize alternate carbon sources such as glutamine and glutamate to 

fuel TCA cycle, which is consistent with published findings [19-22]. These data also 

indicate that PSCs cultured under reduced glucose conditions secrete significant amounts of 

glutamine into the extracellular space relative to PSCs growing under glucose enriched 

conditions, which may facilitate their interaction with PCCs.

To test whether glutamine from PSCs affects PCC biological functions and affects the SHH 

pathway, we examined the effect of glutamine (GLN) and glucose (GLC) on cancer cell 

proliferation, migration, and SHH pathway (Fig. 5C–E). MIA PaCa-2 cells supplemented 

with either glucose or glutamine showed increased proliferation (Fig. 5C) and migration 

(Fig. 5D) as compared to cells deprived of both glucose and glutamine (Figs. 5C and D). 

Addition of both glucose and glutamine further increased their proliferation (especially at 48 

h) and migration indicating that both glucose and glutamine are involved in increasing 

proliferation of PCCs (Figs. 5C, D and S5C). Protein levels of GLI1, GLI2, SNAIL, and 

survivin increased significantly, albeit more prominent at 48 h following supplementation 

with both glucose and glutamine (Fig. 5E; quantification in S5D). In addition, treatment 

with PMT reduced the observed changes in the levels of these proteins especially SNAIL 

and Survivin (Figs. 6A and S5E). Further, under these experimental conditions, PMT 

inhibited glutamine- or glucose plus glutamine-induced proliferation of cells (Fig. 6B). 

Glucose, glutamine or combination also enhanced proliferation of liver metastatic CFPaC-1 

cells, however, PMT inhibited only glutamine but not glucose or combination-induced 

proliferation in these cells (Fig. 6C). These findings suggest that PSCs residing in the TME 

communicate with PCCs in part through glutamine and that glutamine and glucose have 

growth promoting effects on PCCs (possibly in a cell-specific manner), which is consistent 

with the published literature [23]. Furthermore, our results show the potential of PMT to 

disrupt glutamine-mediated effects on PCCs in vitro.
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3.5. Palmatine works synergistically with gemcitabine to inhibit growth of stellate and 
cancer cells

It is known that PSCs contribute to therapeutic resistance including GEM resistance by 

increasing fibrogenesis [1-8]. COL1A1 is involved in GEM resistance and survivin is 

increased upon treatment with GEM in PCCs [24-26]. These published observations coupled 

with the ability of PMT to decrease levels of GLI and COL1A1 in PSCs and survivin in 

cancer cells prompted us to test the hypothesis that PMT may potentiate GEM activity 

against human PSCs and PCCs. PSCs were treated with increasing concentrations of PMT 

(0–100 μg/mL) and GEM (0–0.5 μM) as single agents and in combination for 24 h before 

measuring proliferation. Both PMT and GEM alone or in combination decreased 

proliferation in a dose dependent manner with IC50 of 75 μg/mL for PMT and 0.25 μM for 

GEM (Fig. S6A). Data generated was subjected to combination index (CI) analyses using 

the Chou and Talalay method [27]. Isobologram analysis of these data indicate that the 

combination of PMT and GEM is highly synergistic with CI values reaching less than 0.5 

using lower doses of both compounds (0.1 μM GEM plus 25 μg/mL PMT; Fig. 7A). It 

should be mentioned that single agent dose of 75 μg/mL for PMT and 0.25 μM for GEM is 

necessary to inhibit proliferation of PSCs by 50%. A similar level of proliferation inhibition 

was achieved using lower doses of PMT plus GEM (SF6A). We also found that PMT 

potentiated GEM activity synergistically in MIA PaCa-2, but not PANC-1 cells (Figs. 7B, 

S6B, and S6C). However, PMT alone inhibited proliferation of PANC-1 cells (Figs. 7C and 

S6C). Furthermore, we observed a significant decrease in the levels of COL1A1 and survivin 

in the combination, but not in single agent group (P+G; Fig. 7D; quantification shown in 

S6D). In preliminary studies, we also observed that PMT decreased the colony forming 

ability of patient derived pancreatic cancers cells (data not shown). Taken together, these 

data suggest that PMT alone or in combination with GEM maybe effective against tumor-

associated stroma, a major therapeutic barrier as well as pancreatic cancer cells and warrants 

additional comprehensive investigations to further its clinical development.

4. Discussion

A reason for the high mortality of PDAC and development of GEM resistance could be that 

most therapeutic strategies are focused on targeting tumor cells alone. In this study, we 

examined the utility of PMT to inhibit growth of PSCs, PCCs and PSC-PCC interaction 

using in vitro models. Our studies show for the first time that suppressing COL1A1 with the 

novel hydrophilic agent, PMT, not only inhibits growth of PSCs but also potentiates GEM 

activity synergistically. PMT treatment affects cell fate by inhibiting growth of pancreatic 

cancer cells through downregulation of survivin and induction of apoptosis. Remarkably, 

PMT treatment potentiates GEM-induced growth inhibition in PCCs and inhibits growth of 

GEM-resistant PCCs. Based on our data we speculate that PMT inhibits GLI mediated 

activation of COL1A1 and survivin to suppress proliferation and invasion while enhancing 

sensitivity to GEM. Alternatively, PMT can inhibit PCC-mediated reprogramming of PSCs 

to secrete glutamine into the extracellular environment thereby preventing PSC-PCC 

interaction. Experiments using conditioned media and inhibitory effects of PMT on the 

frequency of colony formation support the possibility that PMT inhibits PSC-PCC 

interactions (please see hypothetical model in Fig. 8). Additional investigations including 
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preclinical studies are critical to demonstrate that PMT inhibits direct interaction between 

PSCs-PCCs.

PSC-secreted COL1A1 can promote invasion and migration of pancreatic cancer cells 

[28-30]. COL1A1 has also been shown to induce SNAIL and GLI signaling in PCCs 

[30,31]. Pancreatic cancer cells cultured on organotypic gels consisting of COL1A1, 

matrigel and stromal cells showed increased expression of β-catenin [32]. The association 

between survivin and poor prognosis in pancreatic cancer patients is well established and 

survivin inhibition is known to promote apoptosis and enhance GEM sensitivity [25,26]. 

Surprisingly we did not observe any evidence for induction of apoptosis despite 

downregulation of survivin in response to PMT suggesting a role that is independent of 

apoptosis induction. It is noteworthy to mention that silencing survivin along with XIAP 

caused partial mesenchymal epithelial transition and enhanced sensitivity to GEM in 

PANC-1 cells [33]. Increased SNAIL and β-catenin expression in pancreatic tumors was 

positively associated with lymph node invasion and distant metastasis [34]. Accordingly, it is 

possible that by down regulating survivin, PMT may influence EMT in PSCs. Given the 

reports showing that carbon and nitrogen from glutamate can be used to produce proline, 

which plays a key role in the production of extracellular matrix protein, collagen, we 

speculate that PMT possibly suppresses COL1A1 via glutamine [21]. Recently, it was shown 

that PSC-derived alanine functions as an alternative carbon source to support cancer cell 

growth in the tumor microenvironment [35]. Our observation that glutamine facilitates 

interaction between PSC-PCC is consistent with these published findings. Our results also 

demonstrate that PMT augments GEM-induced growth inhibitory activity in PSCs, PCCs 

and inhibited growth of inherently GEM resistant pancreatic cancer cells. Our findings 

strongly suggest that PMT alone or in combination with GEM may be beneficial in the 

clinical management of PDAC. Overall our results suggest PMT is a promising agent and 

warrants thorough investigations including preclinical testing to establish its use for 

management of PDAC.
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Fig. 1. Palmatine (PMT) modulates cellular homeostasis by inhibiting GLI, survivin, COL1A1 in 
human pancreatic stellate cells (PSCs)
A–B. Total RNA (A) and whole cell protein extracts (B) prepared from logarithmically 

growing human pancreatic stellate cells (PSCs) treated with 0, 75, or 150 μg/mL PMT for 24 

and 48 h. mRNA expression and protein levels of GLI1 and GLI2 were determined using 

Real-time PCR and western blotting respectively. β-actin was used as a loading control. C. 

Logarithmically growing PSCs were transfected with GLI-luciferase reporter (containing 8 

GLI binding sites) and Renilla luciferase plasmids. Following 24 h transfection, cells were 

treated with 75 and 150 μg/mL PMT for additional 24 h and luciferase activity was 

measured. Firefly luciferase normalized to renilla luciferase is shown. D–E. Total RNA (D) 

and whole cell protein extracts (E) prepared from logarithmically growing PSCs treated with 

0, 75, or 150 μg/mL PMT for 24 and 48 h was used to analyze mRNA expression by Real-

Time PCR and protein levels by immunoblot analysis of GLI downstream targets including 

IκBε, PTCH1 and COL1A1. β-actin was used as a loading control. F. PSCs were 
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transfected with scrambled or siRNA specific for GLI 1 or GLI2. 48 h after transfection, 

total RNA was prepared and used in Real-Time PCR to analyze expression changes of GLI1 

and COL1A1. Data presented is an average + sd of three or more independent experiments 

conducted in triplicate. G. Logarithmically growing PSCs were treated with increasing doses 

of PMT for 24 or 48 h and cell proliferation was measured using MTT assay as described in 

methods. Data presented is an average + sd of 2 independent experiments conducted in 

triplicate. H. Logarithmically growing PSCs were treated with PMT (50 and 75 μg/mL) for 

24 h. Following treatment, cells were washed and media replaced with no PMT. Cells were 

allowed to grow for 7–10 days and stained with crystal violet to monitor colony formation. 

Briefly, cells were seeded in 6-well plates at low density (500 cells per well). 24 h later cells 

were treated with PMT for 24 and 48 h. Following treatment with PMT, cells were washed 

with PBS and maintained for 7–10 days in complete media till colonies were formed. The 

colonies were fixed and stained with 1% methanol-crystal violet mixture. A representative 

picture of three independent experiments is shown. I–J. Total RNA (I) and whole cell 

protein extracts (J) prepared from logarithmically growing PSCs treated with 0, 75, or 150 

μg/mL PMT for 24 h was used to analyze Survivin mRNA expression by Real-Time PCR 

and protein levels by immunoblot analysis. β-actin was used as a loading control. K. Whole 

cell protein extracts prepared from logarithmically growing PSCs treated with 0, 75, or 150 

μg/mL PMT for 24 h in the absence or presence of 5 μM chloroquine (CQ) was used to 

analyze levels of LC3, p62 and cleaved PARP by immunoblot analysis. β-actin was used as a 

loading control. L. For cell invasion assay, 50,000 PSCs resuspended in serum-free media 

with or without PMT was added in triplicate to the top chamber of the invasion assay 

assembly. 150 μl of serum containing media was added to the lower chamber. The plate was 

incubated at 37 °C overnight. Following 24 h incubation, cells that had migrated to the 

bottom were lysed using detachment buffer and fluorescence was detected with a 

fiuorescence plate reader. Data presented is an average + sd of three independent 

experiments conducted in triplicate. Statistical significance was evaluated using student t-

test and p values < .05 was considered significant (* = p ≤ .05, ** = p ≤ .001). Western blots 

shown are representative blot of three independent immunoblot images. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the Web version of 

this article.) Source of antibodies are as follows: GLI2, PATCHED1 (Santa Cruz 

Biotechnology, Santa Cruz, CA), IKBKE, Survivin, LC3B (Cell Signaling Technology, 

Beverly MA), p62 (Enzo life Science, Farmingdale, NY), and GLI1 (Thermo Fisher 

Scientific, Rockford, IL). Odyssey® Infrared Imaging System was used for detecting GLI2 

and PTCH1 and IRDye® 800CW and IRDye® 680rd conjugated secondary antibodies (LI-

COR Biotechnology, Lincoln, NE) were used. Other proteins were developed using 

chemiluminescence as previously described. Forward (F) and reverse (R) primer sequences 

used are:

1. GLI (F- CTGGATCGGATAGGTGGTCT and R- 

CAGAGGTTGGGAGGTAAGGA)

2. GL2 (F-GCCCTTCCTGAAAAGAAGAC and R- 

CATTGGAGAAACAGGATTGG)

3. PTCH1 (F- TGACCTAGTCAGGCTGGAAG and R- 

GAAGGAGATTATCCCCCTGA)
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4. COL1A1 (F- AACATGACCAAAAACCAAAAGTG and R-

CATTGTTTCCTGTGTCTTCTGG)

5. GAPDH (F- ACCCACTCCTCCACCTTG and R- 

CTCTTGTGCTCTTGCTGGG)

6. IKBKE Taqman probe HS01063858

7. Survivin Taqman probe Hs00153353

8. GAPDH Taqman probe Hs02758991
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Fig. 2. Palmatine (PMT) inhibits growth of human pancreatic cancer cells through modulation of 
autophagy
A–C. Logarithmically growing HPNE (n = 3), HPNE-Ras (n = 2), MIA PaCa-2 (n = 3), and 

PANC-1 (n = 3) were treated with increasing doses of PMT for 24 and/or 48 h and cell 

proliferation was measured using MTT assay as described in methods. Data presented is an 

average + sd of 2–3 independent experiments conducted in triplicate. D–E. Whole cell 

protein extracts prepared from logarithmically growing human MIA PaCa-2 (30 h), and 

PANC-1 (48 h) cells treated with 0, 75, or 150 μg/mL PMT was used to analyze GLI2, 
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PTCH1, Survivin, Cleaved PARP by immunoblot analysis. β-actin was used as a loading 

control. Quantification of changes in survivin expression is shown in E. F–G. Whole cell 

protein extracts prepared from logarithmically growing MIA PaCa-2, and PANC-1 cells 

treated with 0, 75, or 150 μg/mL PMT for 48 h in the absence or presence of 5 μM 

chloroquine (CQ) to measure autophagic flux. Levels of LC3 and p62 as a measure of 

autophagy and cleaved PARP as a measure of apoptosis were analyzed using immunoblot 

analysis (F). β-actin was used as a loading control in immunoblot analysis. Cell viability 

using trypan blue exclusion assay is shown (G). Data presented is an average ± sd of three 

independent experiments conducted in triplicate. Statistical significance of the data 

presented is evaluated using student t-test and p values < .05 was considered significant (* = 

p ≤ .05, ** = p ≤ .001). Western blots shown are representative blot from three independent 

immunoblot images.
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Fig. 3. Palmatine (PMT) inhibits stellate-cancer cell communication
A–D. Conditioned media (CM) generated from PSCs increases migratory ability of 

pancreatic cancer cells MIA PaCa-2 and PANC-1 cells (A and B) while CM generated from 

PSCs treated with Palmatine (PMT) reduces their migratory ability (C and D) as evidenced 

by wound scratch assay. PSCs with 70% confluency were used for generation of CM. The 

media was then replaced with serum free media containing 25 mM glucose and cells were 

incubated for 48 h. The supernatant centrifuged for 10 min at 10,000 G to remove debris and 

stored at −80 °C until use as CM. Serum free CM was used for wound scratch assays. PMT 

conditioned media (PMT CM) was generated by treating PSCs with PMT in media 

containing 10% FBS. For wound scratch assays, following attachment of cells, a scratch was 

made using a 200-μl tip. The wells were then rinsed with PBS and fresh media containing 

PMT was added. Cells were incubated for 20–24 h and monitored for gap closure using a 

Zeiss Primo Vert microscope attached to a Sony Camera. Images captured were scanned and 

distance migrated was measured by a ruler. Percent migration was calculated based on 
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distance migrated by untreated cells, which was set at 100%. Data presented is an average ± 

sd of 3 independent experiments conducted in triplicate. E–F. Whole cell protein extracts 

prepared from MIA PaCa-2, and PANC-1 cells growing with CM generated from PSCs (left 

panel E and F) or CM generated from PSCs treated with PMT (75, or 150 μg/mL) for 24 and 

48 h was used to analyze protein levels of SNAIL and β-catenin by immunoblot analysis. β-

actin was used as a loading control. All data presented was derived from three individual 

experiments. WB images are representative images. (* = p ≤ .05).
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Fig. 4. Identification of glutamine and glucose as secretory factors involved in stellate cancer cell 
communication
Heat maps and representative box plots of secretory (A) and intracellular (B) metabolites. In 

the heat map, numerical values indicate relative fold change for the given comparison. Red 

(p ≤ .05) boxes represent significantly increased biochemicals. Green (p ≤ .05) boxes 

represent significantly decreased biochemicals. Pink and light green boxes represent 

biochemicals that are trending (.05 < p < .10) up or down, respectively. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the Web version of this 

article.)
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Fig. 5. Palmatine (PMT) inhibits Glutamine mediated effects in MIA-PaCa-2 cells derived from 
primary tumor and CFPaC-1 cells derived from liver metastasis
A–B. Box plots are used to convey the spread of the three key metabolites (α-ketoglutarate, 

glutamine and glutamate) with the middle 50% of the data represented by the shaded boxes 

and the whiskers reporting the range of the data. The solid bar across the box represents the 

median value of those measured while the + is the mean. Data are scaled such that the 

median value measured across all samples was set to 1.0. Any outliers are shown as dots 

outside the whiskers of the plot. Panel A and B represents secretory and intracellular 

metabolites respectively. C–D. Logarithmically growing MIA PaCa-2 cells were treated with 

10 mM glucose (GLC) or 2 mM glutamine alone (GLN) or in combination was used to 

determine proliferative© and migratory (D) ability following 24 and 48 h incubation. Data 

presented is an average + sd of 3 independent experiments conducted in triplicate. E. Whole 

cell extracts prepared from MIA PaCa-2 cells treated with 10 mM glucose (GLC) or 2 mM 

glutamine alone (GLN) or their combination for 24 and 48 h. Changes in levels of GLI1, 

GLI2, SNAIL and Survivin were determined by immunoblot analysis. β-actin was used as a 

loading control.
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Fig. 6. Palmatine (PMT) inhibits Glutamine mediated effects in MIA-PaCa-2 cells
A. Logarithmically growing MIA PaCa-2 cells were treated with 10 mM glucose (GLC) or 2 

mM glutamine alone (GLN) or their combination in the presence and absence of PMT (50 

and 75 μg/mL). 24 and 48 h after treatment, whole cell extracts were prepared to analyze 

changes in levels of GLI1, GLI2, SNAIL and Survivin by immunoblot analysis. β-actin was 

used as a loading control. All data presented was derived from three individual experiments. 

WB images are representative images. (* = p ≤ .05). B. Logarithmically growing MIA 

PaCa-2 cells were treated with 10 mM glucose (GLC) or 2 mM glutamine alone (GLN) or 
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their combination in the presence and absence of PMT (50 and 75 μg/mL). MTT assay was 

used to determine proliferation. Data presented is an average ± sd of 3 independent 

experiments conducted in triplicate. All data presented was derived from three individual 

experiments. WB images are representative images. (* = p ≤ .05). C. Logarithmically 

growing CFPaC-1 cells were treated with 10 mM glucose (GLC) or 2 mM glutamine alone 

(GLN) or their combination in the presence and absence of PMT (50 and 75 μg/mL). MTT 

assay was used to determine proliferation. Data presented is an average ± sd of 3 

independent experiments conducted in triplicate. All data presented was derived from three 

individual experiments. WB images are representative images. (* = p ≤ .05).
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Fig. 7. PMT potentiates gemcitabine (GEM) activity in PSCs and MIA PaCa-2 cells
A–B. PMT potentiates GEM-mediated growth inhibition in PSCs (A) and in MIA PCa-2 (B) 

cells. Respective cells were treated with increasing concentrations of PMT (0, 25, 50, 75 and 

100 μg/mL), Gemcitabine (GEM; 0, 0.05, 0.1, 0.25, 0.5 μM), or a combination of both PMT 

and GEM. 24 h later, cell proliferation was measured using MTT assay. Combination index 

analysis was used to calculate combinatorial growth inhibitory activity essentially as 

described in methods. A representative CI data from three independent experiments for each 

cell line conducted in triplicate is shown. C. PMT alone inhibits proliferation of PANC-1 

cells but does not potentiate Gemcitabine (GEM) activity. Experimental details are 

essentially similar to panel A. D. Logarithmically growing PSCs were treated with 25 μg/mL 

PMT alone, 0.1 μM GEM or combination of both PMT and GEM (doses that ware 

synergistic). 24 h later whole cell extracts were prepared and examined for changes in 
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COL1A1 and Survivin proteins by immunoblot analysis. β-actin was used as a loading 

control. A representative immunoblot from three independent experiments is shown.
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Fig. 8. Hypothetical model
In the tumor microenvironment glutamine secreted from stellate cells activates cancer cell 

survival possibly by up regulating Survivin. Glutamine also up regulates COL1A1 

transcriptionally via GLI in stellate cells leading to collagen accumulation. Palmatine 

inhibits GLI/COL1A1 in stellate cells and Survivin in cancer cells. Further, palmatine 

inhibits glutamine mediated stellate-cancer cell communication. These events possibly 

contribute to growth inhibition and sensitivity to gemcitabine. Pink circles represent 

glutamine. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the Web version of this article.)
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Table 1

Alteration in the levels of secreted and intracellular metabolites in PSCs.

Media ANOVA Contrasts Total number of biochemicals with p ≤ .05 Increased or decreased levels of secreted metabolites)

GLM/GRM 60 20 increased/40 decreased

Cells Total number of biochemicals with p ≤ .05 Increased or decreased levels of intracellular metabolites)

ANOVA Contrasts

GLM/GRM 164 44 increased/120 decreased

GLM: PSCs grown in low glucose media (5 mM).
GRM: PSCs grown in glucose rich media (25 mM).
Only significantly altered levels of metabolites shown.
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