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There has been increasing evidence of White Matter (WM) microstructural

disintegrity and connectome disruption in Autism Spectrum Disorder (ASD).

We evaluated the effects of age on WM microstructure by examining Diffusion

Tensor Imaging (DTI) metrics and connectome Edge Density (ED) in a large

dataset of ASD and control patients from different age cohorts. N = 583

subjects from four studies from the National Database of Autism Research

were included, representing four different age groups: (1) A Longitudinal MRI

Study of Infants at Risk of Autism [infants, median age: 7 (interquartile range 1)

months, n = 155], (2) Biomarkers of Autism at 12 months [toddlers, 32 (11)m,

n = 102], (3) Multimodal Developmental Neurogenetics of Females with ASD

[adolescents, 13.1 (5.3) years, n = 230], (4) Atypical Late Neurodevelopment

in Autism [young adults, 19.1 (10.7)y, n = 96]. For each subject, we created

Fractional Anisotropy (FA), Mean- (MD), Radial- (RD), and Axial Diffusivity (AD)

maps as well as ED maps. We performed voxel-wise and tract-based analyses

to assess the effects of age, ASD diagnosis and sex on DTI metrics and

connectome ED. We also optimized, trained, tested, and validated different

combinations of machine learning classifiers and dimensionality reduction

algorithms for prediction of ASD diagnoses based on tract-based DTI and

ED metrics. There is an age-dependent increase in FA and a decline in MD

and RD across WM tracts in all four age cohorts, as well as an ED increase in

toddlers and adolescents. After correction for age and sex, we found an ASD-

related decrease in FA and ED only in adolescents and young adults, but not in

infants or toddlers. While DTI abnormalities were mostly limited to the corpus

callosum, connectomes showed a more widespread ASD-related decrease

in ED. Finally, the best performing machine-leaning classification model

achieved an area under the receiver operating curve of 0.70 in an independent

validation cohort. Our results suggest that ASD-related WM microstructural
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disintegrity becomes evident in adolescents and young adults—but not in

infants and toddlers. The ASD-related decrease in ED demonstrates a more

widespread involvement of the connectome than DTI metrics, with the most

striking differences being localized in the corpus callosum.
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autism, age, diffusion tensor imaging, connectome, white matter

Introduction

Autism Spectrum Disorder (ASD) is a neuropsychiatric
condition characterized by impairments in communication
and social interaction, repetitive behaviors and stereotypical
interests (American Psychiatric Association [APA], 2013). ASD
prevalence is estimated at 1 in 54 among 8-year-old children
in the United States (Maenner et al., 2020). Difficulty of early
diagnoses in children, and evidence of incurred benefit due to
early and tailored treatment strategies highlight the need for
improving diagnostic algorithms and treatment planning. Many
etiological and pathophysiological theories of ASD involve
genetic and environmental factors (Autism Genome Project
Consortium et al., 2007; Chaste and Leboyer, 2012), as well
as morphological correlates in the central nervous system.
There has been increasing evidence of White Matter (WM)
microstructural disintegrity in ASD (Alexander et al., 2007;
Aoki et al., 2017; Payabvash et al., 2019b). Previous studies of
WM microstructure in children with ASD vary in cohort size
(n = 58—n = 213), mostly focus on specific age groups and are
therefore limited in their ability to make assumptions of WM
changes across the lifespan (Walsh et al., 2021).

In accordance with models emphasizing the abnormal
interhemispheric interactions in ASD (Travers et al., 2012),
many studies have identified the corpus callosum as the primary
location for WM disintegrity in ASD. However, results diverge
regarding the particular section within the corpus callosum
(Alexander et al., 2007). Findings range from alterations in the
whole corpus callosum (Shukla et al., 2010, 2011; Jou et al.,
2011) to isolated changes in the splenium or anterior body
(Brito et al., 2009; Kumar et al., 2010; Cheon et al., 2011).
In addition, many studies have reported more pervasive WM
microstructural disintegrity in the frontal and temporal lobes or
dominant tracts (Barnea-Goraly et al., 2004; Ameis and Catani,
2015). These inconsistencies could be in part due to age range
differences of participants across studies. Moreover, previous
evidence is limited as only few studies investigate Diffusion
Tensor Imaging (DTI)—the majority of neuroimaging studies
have focused on functional and structural MRI and show notable
variations in cohort composition, which could mask sex-, age-
and ASD-related effects (Walsh et al., 2021).

A more detailed knowledge of age-adjusted microstructural
correlates of ASD may improve diagnostic algorithms, facilitate
early therapeutic intervention, and provide potential objective
biomarkers to monitor treatment response. To draw more
robust and meaningful conclusions about age- and ASD-related
alterations of WM microstructure, we analyzed diffusivity
and tractography among subjects from four different age-
group study cohorts in the National Database of Autism
Research (NDAR). DTI and T1-weighted images were used
to assess voxel-wise and tract-based differences between ASD
patients and typically developing controls (TDC). In addition
to conventional DTI-driven measurements, we analyzed edge
density (ED) (Owen et al., 2015) as a representation of white
matter connectivity. Tract-based metrics were analyzed using
both conventional statistical methods as well as combinations
of several feature selection algorithms and machine learning
classifiers in a multimodal approach.

Materials and methods

Study cohorts

We retrieved all datasets from the National Database of
Autism Research (NDAR) that had DTI- and T1-weighted
imaging data available. Subjects from four study cohorts
were included, each representing a different age group: (1)
A Longitudinal MRI Study of Infants at Risk for Autism
(infants) (Piven, 2017); (2) Biomarkers of Autism at 12 months
(toddlers) (Courchesne, 2012); (3) Multimodal Developmental
Neurogenetics of Females with ASD (adolescents) (Pelphrey,
2017); and (4) Atypical Late Neurodevelopment in Autism: A
Longitudinal MRI and DTI Study (young adults) (Lainhart,
2012). We excluded subjects with genetic comorbidities such
as fragile X syndrome, insufficient clinical information, evident
artefacts on brain scans, and those with failures in image
processing, such as coregistration failure. Figure 1 depicts
all inclusion and exclusion criteria in a flowchart. Subjects
were allocated to ASD versus typically developing controls
(TDC) groups based on the Autism diagnostic schedule (ADOS)
diagnosis, which was assessed by age- and development-adjusted
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FIGURE 1

Flowchart of subject’s inclusion/exclusion.

TABLE 1 Study cohort demographics.

Study Median age (IQR) ASD/TDC Male (%)

Longitudinal MRI study of infants at risk of autism (n = 155) 7 (6–7) months 34/121 65.8%

Biomarkers of autism at 12 months (n = 102) 32 (25–36) months 57/45 73.5%

Multimodal developmental neurogenetics of females with autism (n = 230) 13.1 (5.3) years 106/124 50.9%

Atypical late neurodevelopment in autism (n = 96) 19.1 (10.7) years 67/29 99.0%

ASD, autism spectrum disorder; TDC, typically developing controls. Age is represented as median (interquartile range).

algorithms in the original studies. Detailed information about
the age and sex composition of each study cohort is listed in
Table 1.

Image acquisition protocols and
preprocessing

The acquisition protocols differed across studies. In the
infant cohort, T1-weighted imaging was conducted with a
repetition time (TR) of 2400 ms, time to echo (TE) of 3.16 ms,

field of view (FOV) of 256, matrix size 224 × 256, and slice
thickness 1 mm, diffusion weighted images were acquired in
26 variable b-values between 50 and 1000 s/mm2 increasing by
200 s/mm2 at each scan (25 gradient directions and one non-
weighted image with b = 0 s/mm2) image on 3T Siemens Tim
Trio, with TR = 12,800–13,300 ms, TE = 102 ms, FOV 190,
matrix size 190 × 190, and slice thickness of 2 mm. Toddlers’ T1-
weighted imaging was acquired with TR = 6500 ms, TE = 2.8 ms,
FOV = 240, matrix size 96 × 96, slice thickness 1.2 mm,
DTI included 51 images with b = 1000 s/mm2 and one
non-weighted b = 0 s/mm2 image acquired on 1.5 T GE Signa
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HDxt, TR = 13200 ms, TE = 80.6 ms, FOV 240, matrix size
96 × 96, and slice thickness 2.5 mm. Adolescents’ T1-weighted
imaging was acquired with TR = 5300 ms, TE = 3.3 ms, FOV
350, matrix size 192 × 192, slice thickness = 1 mm, DTI
included 46 images with b = 1000 s/mm2 and one non-weighted
b = 0 s/mm2 image acquired on 3T Siemens Magnetom TrioTim,
TR = 13,000 ms, TE = 93 ms, FOV 250, matrix size 192 × 192,
and slice thickness 2.5 mm. Adults’ T1-weighted imaging was
acquired with TR = 1800, TE = 1.93, FOV 256, matrix size
256 × 240, slice thickness 1 mm, DTI included 4 repetitions of
12 images with b = 1000 s/mm2 and followed by an image with
b = 0 s/mm2 acquired on 3T Siemens Magnetom TrioTim, with
TR = 7000 ms, TE = 91 ms, FOV = 256, matrix size 128 × 128,
and slice thickness 2.5 mm.

All images in DICOM (Digital Imaging and
Communication in Medicine) format were converted to
Nifti format using dcm2nii (Maenner et al., 2020) tool, with
extraction of diffusion gradient directions. Images in Medical
Imaging NetCDF (MINC) format were converted using
mnc2nii tool in the FreeSurfer software package (Fischl, 2012),
and diffusion gradient direction was extracted from header
information.

Diffusion tensor imaging processing
pipeline

We preprocessed all DTI images using FSL eddy current
correction and brain extraction tool (Smith, 2002; Smith
et al., 2004), and subsequently generated fractional anisotropy
(FA), mean- (MD), and axial Diffusivity (AD) maps using
FSL’s diffusion tensor fitting program (DTIFIT). FSLmaths
was used to derive radial diffusivity (RD) as the average of
the second and third eigenvalues. In order to obtain ED
maps, we first applied FSL Bayesian estimation of diffusion
parameters obtained using sampling techniques (BEDPOSTX)
on FA maps (Behrens et al., 2007), which can overcome
limitations of tensor-based representations of diffusivity by
identifying crossing fibers. BEDPOSTX results were then
fed into probabilistic tractography using FSL PROBTRACKX
(Behrens et al., 2003), which was then used for generation
of ED maps. We specified seed and waypoint masks as 48
cortical and 7 subcortical nodes per hemisphere as defined
in the Harvard-Oxford cortical and subcortical atlas (Frazier
et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein
et al., 2007) (list provided in Supplementary Material; 2.2
Harvard-Oxford Cortical Atlas as well as 2.3 Harvard-Oxford
subcortical atlas). These seed and waypoint masks were
registered to each individual’s native FA space using FSL’s
linear coregistration tool FLIRT (Smith et al., 2004). The
probabilistic tractography-derived ED maps reflect the density
of connectome edges (links) between nodes representing the

landmark anatomical structures of cerebral gray matter (Owen
et al., 2015).

Voxel-wise analysis using tract-based
spatial statistics

Voxel-wise analysis of diffusivity metrics was carried out
using FSL tract-based spatial statistics (TBSS) (Smith et al.,
2006). As described previously (Payabvash et al., 2019b), we
coregistered all FA maps to a common space by the standard FSL
TBSS pipeline, where all images were non-linearly coregistered
to a standard template, in this case the most typical subject in
each cohort (-n option). Then, we created a mean skeleton of
the highest FAs that represents the center of WM tracts. All FA
maps, as well as other diffusivity metrics in respective analyses,
were then non-linearly coregistered onto the mean FA skeleton
using the FSL non-linear registration tool before performing
cross-subject statistics. General linear models (GLM) were
used to assess the influence of age, sex and ASD diagnosis.
To minimize the effects of data heterogeneity, we conducted
analyses for each site separately as acquisition parameters
differed between study cohorts. For non-parametric voxel-wise
statistics, we applied FSL “randomize” (Winkler et al., 2014)
with 5000 permutations and family wise error (FEW) correction
of p-values followed by threshold-free cluster enhancement
(TFCE) (Smith and Nichols, 2009).

Tract-based analysis

To confirm the results of voxel-wise analysis, we also
evaluated the relationship of the averaged diffusion metrics
and ED in WM tracts with the age, ASD diagnosis and sex in
different study cohorts. We extracted FA, MD, RD, and AD
metrics of each of the 48 white matter tracts specified in the
John Hopkins University (JHU) white matter tracts labels atlas
(Wakana et al., 2007; O’Donnell et al., 2009) by determining the
non-zero mean of each individual’s image within the respective
tract. In order to provide similar analysis to voxel-wise method,
for tract-based analysis, measurements were performed in a
standard space of MNI-152. A list of all tracts considered is
given in SupplementaryMaterial (2.1 John Hopkins University
White Matter Label Atlas). Given that the brainstem was set as
termination mask in fiber tracking for generation of ED maps
(Owen et al., 2015), the averaged ED of corticospinal tracts,
medial lemnisci and pontine crossing fibers were excluded from
tract-based analysis. Tract-based metrics were evaluated for
the influence of ASD diagnosis, age, and sex using multiple
regression analyses followed by p-value correction using false
discovery rate (FDR) in R software (version 4.0.2) (R Core Team,
2020). We conducted analyses for behavioral measures for a
subset of adolescents in which ADOS (Lord et al., 2000) scores
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(n = 86) were available, as well as in a subset of the adult cohort
in which Wechsler Intelligence Quotient (IQ) (Saklofske and
Schoenberg, 2011) for 71 individuals (50 ASD, 21 TDC) as well
as Social Responsiveness Scale (SRS) (Constantino, 2013) scores
for 50 individuals (33 ASD, 17 TDC) were measures. Utilizing
a voxel-wise GLM, the influence of aforementioned scores on
diffusivity metrics were tested after adjustment for age.

Machine learning

To evaluate the feasibility of machine learning algorithms
for the prediction of an ASD diagnosis based on diffusion
and connectome-based metrics. Given the results of voxel-
wise and tract-based analysis, we included data from the
adolescent (n = 176) and adult (n = 74) cohorts (Table 2).
We applied combinations of six different classifiers and five
feature selection algorithms using FA, MD, RD, AD, and
ED of white matter tracts separately and combined as input.
The diffusion metrics from all WM tracts were included in
corresponding analysis pipeline—e.g., the averaged FA from 48
WM tracts were included as input for FA based analysis, and all
diffusion metrics were included in combination analyses. The
respective feature selection algorithms and classifiers are further
detailed in Supplementary Material (3. Machine Learning).
Machine learning analysis was based on a framework previously
described by Haider et al. (2020). Subjects were randomly
split into a training/cross-validation set (n = 250) and an
independent test set (n = 76) which was completely isolated
from training process, with similar ASD-to-TDC-ratio as study
cohort distribution. For each combination of classifier and
feature selection algorithm, we created a framework of 20
repeats of five-fold cross validation, stratified based on ASD
diagnosis, to perform hyperparameter optimization and identify
the best performing models. Using Bayesian optimization,
the hyperparameters of each machine learning model as well
as the number of features included in the model were fine
tuned. Upper and lower bounds of each hyperparameter
(which was optimized), and the number of tuning repetitions
are included in Supplementary Table 2. Subsequently, each
model’s cross validation framework was applied with tuned
hyperparameters to evaluate each model’s performance based
on the mean area under the curve (AUC) of receiver operating
characteristics (ROC) across validation folds, which reflects
on both the true-positive and false-positive rate and therefore
eliminates biases by original case-control distribution. Finally,
we trained the optimal model on the whole training/cross-
validation cohort (n = 250) with optimized hyperparameters
and evaluated the performance in the independent test set
(n = 76). We also determined sensitivity and specificity at
balanced prediction probability cutoff, using a confusion matrix.
All analyses were performed using R (version 4.0.2) (R Core
Team, 2020).

Results

Age-dependent alterations of white
matter microstructure and
connectome edge density imaging

In voxel-wise TBSS analysis, we examined the influence of
age on DTI metrics and connectome ED within each study
cohort, while correcting for ASD diagnosis as a covariate. There
was a pervasive age-related FA increase in infants, toddlers and
adolescents (Figure 2), as well as a corresponding decline in
MD, RD, and AD independent of ASD diagnosis status. In
adults, the age-related FA increase was predominantly along
the corticospinal tract (Figure 2). Supplementary Figures 3–5
demonstrate the age-dependent changes in DTI metrics among
different study cohorts. ED assessment of the brain connectome
showed an age-related increase in ED among toddlers and
adolescents (Figure 2). In toddlers, increasing age was associated
with higher ED in commissural tracts as well as frontal,
occipital and temporal association tracts. In adolescents, an age-
related increase in connectome ED was mainly localized to the
posterior corpus callosum. We confirmed findings of voxel-wise
analyses in multiple regression analyses of tract-based metrics
(Supplementary Table: 4 Tract-Based Multiple Regression).

Autism spectrum disorder-related
alterations of white matter
microstructure and connectome edge
density imaging

In voxel-wise analyses, after correcting for age, ASD
diagnosis was associated with lower FA in commissural tracts
within the corpus callosum among adolescents and adults
(Figure 3), but not in infants or toddlers. Corresponding
increases in MD and RD were found in adults, and a slight
decrease of AD was present in adolescents (Supplementary
Figure 6). Compared to DTI diffusion metrics, ED revealed
a more widespread reduction in connectome edges among
subjects with ASD in the adolescent and adult cohorts. Among
adolescents, ASD was associated with an extensive decrease in
the ED of WM tracts—except for the internal capsule—after
correction for age and sex as covariates. In the adult cohort, ASD
was associated with lower ED within the posterior commissural
and paraventricular WM tracts. Infants showed an isolated
decrease in ED in the left sagittal stratum which was related to
ASD. There were no significant changes in the toddler cohort
as assessed in a voxel-wise GLM correcting for age and sex.
Tract-based multiple regression analyses confirmed voxel-wise
findings with significant ASD-related alterations of white matter
diffusion metrics and connectome edges only found among
adolescents and adults adjusting for age and sex.
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TABLE 2 Distribution of subjects from each cohort among the training/cross-validation versus independent test set, using only data from studies
where we found significant ASD-related alterations.

Study Training Independent validation

No Age ASD/TDC No Age ASD/TDC

Multimodal developmental neurogenetics 176 155 (124–182) 82/94 54 162 (119–194) 24/30

Atypical late neurodevelopment in autism 74 242 (194–320) 52/22 22 211 (182–256) 15/7

ASD, autism spectrum disorder; TDC, typically developing children. Age is represented as median (interquartile range) in months.

FIGURE 2

Age-related pervasive decrease in FA and (to lesser degree) ED throughout WM tracts in voxel-wise analysis, independent of ASD diagnosis or
sex. Figure shows the standard MNI152 brain template overlaid with the mean FA skeleton resulting from TBSS (blue), as well as all significant
changes (p < 0.05) (red).
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FIGURE 3

ASD-related decrease in FA and ED in voxel-wise analysis after correction for age. Figure shows white matter tracts with significant difference in
red (p < 0.05) overlaid on the mean FA skeleton resulting from TBSS (blue).

Sex-related changes in white matter
microstructure

In the adolescent cohort, there was lower FA along
corticospinal tracts in females as compared to males when
correcting for ASD diagnosis and age (Figure 4). We could
not detect corresponding sex-related differences in the MD,
RD, and AD of white matter tracts. In the adolescent
cohort, ED revealed a more pervasive sex-related reduction
in connectome ED among females compared to males. Tract-
based multiple regression confirmed the results of voxel-
wise analyses. This effect could not be found in younger
cohorts after correcting for the covariate of age; the adult
cohort only included one female subject and could therefore
not be used to assess and make assumptions about sex-
specific alterations. Of note, there was no significant difference
between males and females regarding ADOS-scores in the
adolescent cohort in a two-sided t-test (t-statistic 1.46,
p = 0.148).

Machine learning classifiers predicting
autism spectrum disorder diagnosis
from tract-based diffusion tensor
imaging and connectomics

Figure 5 displays a heatmap demonstrating the mean
averaged AUC across validation folds from twenty repeats of
five-fold cross validation, considering data from the adolescent
and adult cohort (as mentioned above). The average AUC
values range from 0.55 to 0.73, with the highest performance
achieved using a support vector machine with radial kernel in
combination with hierarchical clustering as feature selection
applied to MD metrics. This combination model achieved 0.696
AUC (95% Delong CI 0.578–0.800), 63.2% accuracy, 56.1%

sensitivity, and 71.4% specificity in the independent validation
cohort.

Psychological/cognitive performance
and brain microstructure

We found no significant influences of ADOS (Lord et al.,
2000) scores on diffusivity metrics. In the adult cohort, there
was no significant influence of IQ and SRS scores on diffusivity
metrics after correction for age.

Discussion

Using, multicentric data from different age groups, we found
an age-related increase in FA and ED, and decrease in MD and
RD throughout most WM tracts. After correction for age and
sex, ASD diagnosis was associated with WM microstructure
disintegrity in adolescent and adult age groups primarily in
the corpus callosum. However, ED revealed a more pervasive
involvement of the brain’s connectome in adolescents and
adults with an ASD diagnosis. We also suggest a potential
role for applying machine learning classifiers to assist with
ASD diagnosis based on tract-based inputs from DTI scans.
Limited by the small numbers of female subjects in our study
cohorts, we found reduced FA in corticospinal tracts of female
adolescents compared with males after correcting for ASD
diagnosis and age.

Age-related alterations in diffusivity
and anisotropy metrics

We found a pervasive rise in FA with increasing age
throughout WM tracts in all study cohorts. In infants
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FIGURE 4

Sex-related changes in FA and ED as assessed in voxel-wise analysis after correction for age and ASD diagnosis. The white matter tracts with
significant difference are colored red (p < 0.05) and overlaid on the mean FA skeleton (blue).

and toddlers, these changes are likely related to increased
myelination of axon fibers and the microstructural maturation
of WM (Yu et al., 2020). Research about developmental
gradients in functional connectivity and WM microstructure
suggests that even though most of WM maturation is completed
during toddlerhood, further waves of myelination between
association cortices with corresponding DTI changes occur
in adolescence and adulthood (Sydnor et al., 2021), which
may explain our findings among adolescents and older adults.
ED can provide further insight into the brain connectome
by examining potential fiber tracts between cortical nodes
instead of mere assessment of directional water movement
by conventional DTI metrics. We found a significant ED
increase with age in toddlerhood and adolescence, which aligns
with brain maturation in these age groups. Our findings
highlight the necessity of adjusting the analysis of ASD-related
microstructural changes for a respective subjects’ age.

Autism spectrum disorder-related
white mater microstructural alterations
center in the corpus callosum

Our results suggest that microstructural disintegrity related
to ASD is likely more evident in adolescents and young adults,
but hardly detectable in younger age groups. These ASD-
related changes in WM microstructure are primarily in the
anterior and mid corpus callosum (Alexander et al., 2007;
Payabvash et al., 2019b). While existing literature presents
inconsistent results regarding WM alterations in the particular

location within the corpus callosum, our data suggests that DTI
abnormalities in the anterior corpus callosum are present in
adolescents, become more pronounced and extend to central
and posterior commissural tracts with increasing age. Notably,
the infants and toddlers age groups included in our analyses
are younger than most previous studies (Li et al., 2017). We
also found significant ED reductions in central WM tracts
related to ASD diagnosis, which were present across most
WM tracts in adolescents, but more concentrated to posterior
tracts in adults. These findings suggest a more pervasive
involvement of the brain connectome compared to what is
captured by conventional DTI metrics. Previous studies also
show ED alterations in periventricular WM associated with
ASD and other neurodevelopmental disorders (Payabvash et al.,
2019a,b). In addition, significant changes could be found in
a small area within the internal capsule of infants, but not
toddlers.

Sex-specific effects

We found significantly lower FA in association and
commissural tracts of female adolescents compared to males
after correcting for age and ASD diagnosis (Figure 4). Previous
studies suggested a correlation between sex and diffusivity
metrics, as well as sex-related differences in correlation between
DTI and behavioral measurements (Waller et al., 2017). A recent
review of MRI studies evaluating sex-related effects in ASD
also found that DTI metrics differ significantly between male
and female subjects (Walsh et al., 2021). The female protective
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FIGURE 5

Heatmap of mean AUC across 100 validation folds in machine learning analysis. Abbreviations see Table 2.

effect and extreme male brain hypothesis suggest that sex-
related characteristics of brain organization contribute to ASD
symptom severity (Werling and Geschwind, 2015).

There have been extensive discussions about sex-related
effects in ASD, as the influence of data assessment bias on
hypotheses of etiological aspects is hard to quantify. Bias persists
due to later diagnosis of females as stereotypical female behavior
aligns better with ASD symptoms and currently used diagnostic
algorithms might camouflage ASD diagnosis in females (Ratto
et al., 2018). The previously approximated male-to-female ratio
of 4:1 has been found to vary between 3:1 and 8:1 depending

on quality of ASD assessment, and is nowadays estimated to
trend toward a more equal sex distribution (Loomes et al., 2017).
We could not find a significant interaction between sex and
ASD diagnosis; however, our results underline the importance of
considering sex in the investigation of ASD-related alterations.

Machine learning analysis

Machine learning algorithms provide a statistically suitable
platform for the analysis of high-dimensional multimodal
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neuroimaging data, which may account for the complexity
of underlying neurobiological changes better than traditional
statistical methods. In this study, we showed the feasibility of
machine learning algorithms in assisting with the diagnosis of
ASD based on DTI metrics of WM tracts. Using a rigorous
cross-validation scheme, we optimized, trained, tested and
validated an optimal combination of feature selection model
and machine learning classifier to predict ASD diagnosis
based on average DTI- and connectome derived metrics of
WM tracts among adolescents and adults. Machine learning
algorithms can potentially evaluate large amounts of imaging
data and give detailed information about the individual’s
structural connectome. Therefore, algorithms could become a
useful tool to consolidate diagnostic algorithms, subsequently
improving ASD diagnosis and further differentiate ASD from
other neurodevelopmental abnormalities.

Limitations

While analyses of large, multicentric data is a strength of our
study, it also poses a limitation due to the heterogeneity of the
data and difference in image acquisition techniques. However,
given that voxel-wise and tract-based analyses were conducted
separately for each site, we minimized the effects of site-specific
differences. Of note, harmonization of diffusion MRI has been
proposed to mitigate the issue of data acquisition from different
scanners and centers (Pinto et al., 2020); but, given that the
four cohorts in our study differ in terms of scanner, acquisition
method, age of children, female-to-male ratio, and the rate
of ASD among subjects, an optimal and fair harmonization
technique might not be achieved. Moreover, although we could
include 197 female subjects in our analyses (see Table 1), the
majority of included individuals across different cohorts were
male (51–99%), which impairs the generalizability of these
results to female patients. We recognize that existing biases
in ASD diagnoses extends from original assessments to our
analyses. Some inaccuracies also come along with coregistration
in TBSS and VBM, especially for pediatric cohorts with high
variability in anatomy, motion, and head position. To mitigate
these limitations, we excluded all cases with motion artefacts
in a visual quality control. Finally, for our subjects, common
coregistration templates such as MNI152 are limited in their
accuracy, which is why we avoided using generic templates
and chose study-specific ones wherever possible. We accounted
for possible inaccuracies in voxel-wise analyses by confirming
findings in tract-based statistics.

Conclusion

Overall, our results portray a comprehensive assessment
of WM microstructure and connectome ED across a wide

age range. Based on a large multicentric dataset, we showed
age-specific microstructural and connectome abnormalities
of WM tracts in ASD. We found a ubiquitous age-related
FA increase and diffusivity decrease across different age
groups, which highlights the need for age adjusted assessments
of ASD-related microstructural alterations. We found an
increasing discrepancy between ASD and typically developing
individuals with regards to microstructural integrity of
anterior commissural tracts starting in adolescents and
becoming more pronounced in young adults. ED showed
even more extensive involvement of brain connectome
in adolescents and young adults with ASD. Additionally,
female individuals presented with lower FA values and higher
diffusivity in central cerebral white matter after adjustment
for age and ASD diagnosis. These findings support previous
literature about sex-related effects in DTI metrics and add
to sex-related hypotheses in ASD neurobiology. Finally,
we showed the feasibility of machine learning classifiers in
prediction of ASD diagnosis based on tract-based diffusion
and connectome metrics. This creates a foundation for the
future application of machine learning in DTI analyses,
where such models can integrate multi-modal data to build
more robust and generalizable statistical frameworks. Further
research is needed to adequately assess the interaction
between WM microstructural alterations and symptom
severity in ASD.
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