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Simple Summary: Developing therapeutic resistance to monoclonal antibodies (mAbs) causes
increasing failure in oral squamous cell carcinoma (OSCC) treatment. A clear understanding of the
molecular basis for drug resistance will pave the way for OSCC management and a new effective
therapeutic modality. This review elucidates the role played by EMT during the emergence of mAbs
resistance and the configuration of the tumor microenvironment. The cancer cells that undergo the
EMT process also cause significant energy substrate consumption which leads to a limited number
and function of effective T-cells, eventually leading to immune evasion. This review firstly reveals the
implicit crosstalk between the EMT, energy metabolism, and therapeutic resistance of mAbs. A focus
on the rebalanced energy homeostasis in cancer cells and T-cells may provide a new perspective on
the treatment of OSCC.

Abstract: Oral squamous cell carcinoma (OSCC) is a major type of cancer that accounts for over
90% of all oral cancer cases. Recently developed evidence-based therapeutic regimens for OSCC
based on monoclonal antibodies (mAbs), such as cetuximab, pembrolizumab, and nivolumab, have
attracted considerable attention worldwide due to their high specificity, low toxicity, and low rates
of intolerance. However, the efficacy of those three mAbs remains poor because of the low rate
of responders and acquired resistance within a short period of time. The epithelial–mesenchymal
transition (EMT) process is fundamental for OSCC growth and metastasis and is also responsible
for the poor response to mAbs. During EMT, cancer cells consume abundant energy substrates
and create an immunosuppressive tumor microenvironment to support their growth and evade
T cells. In this review, we provide an overview of the complex roles of major substrates and signaling
pathways involved in the development of therapeutic resistance in OSCC. In addition, we summarize
potential therapeutic strategies that may help overcome this resistance. This review aims to help oral
oncologists and researchers aiming to manage OSCC and establish new treatment modalities.

Keywords: oral squamous cell carcinoma; chemotherapeutic monoclonal antibodies; cetuximab;
pembrolizumab; nivolumab; epithelial–mesenchymal transition; tumor microenvironment

1. Introduction

Oral squamous cell carcinoma (OSCC), the main pathological type of oral cancer
(OC), accounts for at least 90% of cases of oral malignancy [1]. Although there have
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been many developments in cancer treatment, the overall 5-year survival rate for OSCC
remains low, at ~50–60% [2]. The standard treatments for OSCC are surgery, radiother-
apy, and chemotherapy. Unfortunately, adjuvant therapies such as chemotherapy do
not achieve satisfactory results, largely due to low target selectivity, severe side effects,
and drug resistance. Numerous studies have demonstrated that cancer cells tend to de-
velop chemoresistance after frequent use of high-dose chemotherapy [3].

Several phenomena, including the epithelial–mesenchymal transition (EMT) and
the accumulation of cancer stem cells (CSCs) and cancer-associated fibroblasts (CAFs),
are implicated in chemoresistance in OSCC [4]. The EMT is a common feature of various
types of cancer and is closely associated with CSCs and CAFs. During the EMT, a change
occurs in the molecular pathways of cancer cells, and gene reprogramming induces their
proliferation and invasiveness. Invasive cancer cells acquire mesenchymal features by
gradually losing cell polarity, tight intercellular junctions, and the ability to express epithe-
lial markers [5]. Numerous EMT-activating transcription factors (EMT-ATFs) participate
in this process, including Snail, TWIST, and ZEB. The EMT-ATFs specifically bind to the
promoter of E-cadherin through E-boxes and eventually suppress the expression of the
adherent junction protein E-cadherin [6]. The balance between the epithelial marker E-
cadherin and mesenchymal markers plays a pivotal role in the dynamic EMT process,
which affects subsequent cancer cell migration, metastasis, immune evasion, and resistance
to chemotherapeutic agents [7].

While primary tumor cells undergo EMT, those cells create an optimal tumor mi-
croenvironment (TME) by secreting various cytokines and proteases to facilitate their
survival and ability to evade the immune system. Stromal cells, which are affected by the
TME, are also activated to release several factors that trigger the EMT in primary tumor
cells [8]. Methods to inhibit the EMT and convert the TME into a normal stromal cell
microenvironment are needed.

Another problem for conventional chemotherapy is that cancer cells share similarities
with normal host cells, so it is difficult for therapeutic agents to achieve high levels of
selective cytotoxicity. However, in the last decade, monoclonal antibodies (mAbs) have
shown great potential for use against many hematological and solid cancers in humans [9].
The mAbs target cancer cells by specifically binding to cell surface antigens that are
necessary for cell proliferation or differentiation, or for immune meditation. Examples
of such antigens include the epidermal growth factor receptor (EGFR), programmed cell
death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and vascular
endothelial growth factor and its receptor (VEGF and VEGFR, respectively) [10–12].

According to the National Comprehensive Cancer Network, only three mAbs, cetux-
imab, pembrolizumab, and nivolumab, have been used as evidence-based therapeutic
regimens of mAbs for treating OSCC [13]. Although this new therapeutic approach of-
fers many advantages, it also has several limitations, including adverse effects and the
development of resistance, in addition to the high cost of producing the antibodies [14].
The development of resistance against mAbs, also seen in some OSCC patients, particu-
larly when used alone without other chemotherapeutic agents, remains problematic [15];
nevertheless, the engineering of mAbs represents a major milestone in cancer therapeu-
tics. To address this issue, we focused on the molecular pathways, proteins, and genes
that participate in the key processes that contribute to the development of resistance to
mAbs in OSCC patients, including the EMT process and energy metabolic homeostasis.
Furthermore, we proposed a hypothesis regarding the latent mechanisms involved in the
development of drug resistance to facilitate the identification of potential treatment targets.
We concluded that, with concerted global efforts, the breadth and quality of treatment
approaches using mAbs should improve significantly. A more specific, less toxic, and more
cost-effective mAb will benefit OSCC patients worldwide.
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2. Cetuximab: A mAb and EGFR Inhibitor
2.1. Rapid Response of Cancer Cells to Cetuximab Treatment

Cetuximab, an IgG1 mAb, is an inhibitor of EGFR. It is used for the treatment of lo-
coregionally advanced, metastatic, and recurrent cancers, including OSCC [16]. Compared
to EGF, cetuximab has a 5-fold higher affinity for EGFR, so can bind to EGFR prior to EGF
and block the interaction of the ligand with its receptor [17].

EGFR, also known as ErbB1 or HER1, is a transmembrane tyrosine kinase receptor
that binds to the EGF family of extracellular protein ligands. EGF stimulates OSCC cells
to undergo the EMT. Up to 90% of OSCC cells overexpress EGFR. Upregulated EGFR is
associated with poor prognosis, chemoresistance, and radioresistance [18]. Cetuximab
seemed to be a reasonable therapeutic strategy for OSCC, however, very few patients
responded to the treatment, and virtually all responders developed resistance within
a short period [19].

Based on the work of Kagohara et al. [20], a cetuximab-treated cell line developed
an early transcriptional response (within one day), and EGFR inhibition therapy induced
a significant transcriptional variation within five days compared to untreated cells. EGFR
inhibition therapy disrupts the homeostasis of cancer cells; therefore, the cells sponta-
neously progress to a state with activated heterogenetic hallmark pathways to overcome
EGFR inhibition. This could explain the immediate upregulation of vimentin seen when
cells were treated with cetuximab [20].

As well as vimentin, other EMT-ATFs such as LEF1, TWIST1, and ZEB1 were signifi-
cantly increased after treatment with cetuximab. Gene analysis of the same patients showed
that Wnt, TGF-β, and NOTCH1 pathway-related genes were significantly upregulated
following treatment with cetuximab. All of those genes were specifically involved in the
extracellular matrix organization, including cell adhesion, migration, and the inflammatory
response [21]. Five CAFs-associated genes, CXCL12, ACTA2, FAP, PDGFRB, and S100A4,
were also significantly upregulated in the cetuximab-treated group compared to the control
group. CXCL12, also known as stromal cell-derived factor-1α, binds to its receptor CXCR4
and activates the CXCR4/CXCL12 axis; this leads to tumor proliferation, vascularization,
and metastasis [22]. Activation of the CXCR4/CXCL12 axis has been shown to decrease
the levels of E-cadherin and increase those of vimentin and N-cadherin (Figure 1). These
findings imply that cetuximab may induce the EMT indirectly, as well as CAFs proliferation,
leading to the development of cancer cell resistance. The CXCR4 is expressed in multiple
cell types, including lymphocytes, hematopoietic stem cells, epithelial cells, and cancer
cells [23]. A recent study has demonstrated that CXCR4 may also play a role in CSCs in
OSCC [24]. Inhibitors of the CXCR4/CXCL12 axis are currently under development [25].
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Figure 1. CXCR4, one of the receptors of CXCL12, is expressed on multiple cell types, including lymphocytes, hematopoi-
etic stem cells, epithelial cells, and cancer cells [26]. The binding of CXCL12 to CXCR4 results in the activation of the 
CXCR4/CXCL12 axis and dissociation of the heterotrimeric protein complex (Gαβγ) to Gα and Gβγ subunits, which acti-
vate a number of signaling pathways including MAPK, PI3K/AKT, and NF-κB. Ultimately, cell growth, protein synthesis, 
and inflammation are upregulated. In addition to this change, the E-cadherin will be decreased and the expression of N-
cadherin and vimentin will be raised; simultaneously, those cells lose cell polarity and tight intercellular junction while 
gaining the features of a mesenchymal cell and the capability of migration and invasion. This positive feedback loop stim-
ulates more CXCL12 to be released into the TME to activate the CXCR4/CXCL12 axis. 

2.2. Cetuximab Mainly Targets OSCC with Epithelial Features 
In one study, cetuximab failed to block EGF-driven mesenchymal progression in 

transformed OSCC [27], suggesting a novel drug resistance mechanism. An earlier study 
reported that esophageal squamous cell carcinoma (ESCC) cells with mesenchymal fea-
tures displayed resistance not only to cetuximab but also to tyrosine kinase inhibitors 
(TKIs) such as erlotinib, albeit that both drugs were highly effective against ESCC cells 
with epithelial features [28]. 

The progression of OSCC is always associated with the release of extracellular vesi-
cles (EVs) from cancer cells into the milieu. The EVs usually contain CD9 and EGFR [29]. 
Earlier research showed that CD9-positive EVs were secreted more often by OSCC than 
epithelial cells [30]. Fujiwara et al. [31] reported that the transformation of normal epithe-
lial cells into spindle phenotype cells triggered by EVs secreted by OSCC was blocked by 
cetuximab, both the expression of vimentin and levels of EGFR were also downregulated 
simultaneously. Therefore, we hypothesized that cetuximab primarily targets EV-secret-
ing cancer cells, especially those with epithelial features rather than the completely trans-
formed mesenchymal cancer cells. This phenomenon could lead to new therapeutic strat-
egies. 

Most anti-tumor drugs target a single oncogenic signal or phase. However, during 
the EMT, the signaling pathways and features of cancer cells are completely different 
among the “epithelial”, “mesenchymal”, and “transition” stages. Therefore, instead of us-
ing single drug treatment that inevitably results in the development of resistance or re-
currence, multiple agents that tackle various pathways may yield better results. 

  

Figure 1. CXCR4, one of the receptors of CXCL12, is expressed on multiple cell types, including lymphocytes, hematopoi-
etic stem cells, epithelial cells, and cancer cells [26]. The binding of CXCL12 to CXCR4 results in the activation of the
CXCR4/CXCL12 axis and dissociation of the heterotrimeric protein complex (Gαβγ) to Gα and Gβγ subunits, which
activate a number of signaling pathways including MAPK, PI3K/AKT, and NF-κB. Ultimately, cell growth, protein synthesis,
and inflammation are upregulated. In addition to this change, the E-cadherin will be decreased and the expression of
N-cadherin and vimentin will be raised; simultaneously, those cells lose cell polarity and tight intercellular junction while
gaining the features of a mesenchymal cell and the capability of migration and invasion. This positive feedback loop
stimulates more CXCL12 to be released into the TME to activate the CXCR4/CXCL12 axis.

2.2. Cetuximab Mainly Targets OSCC with Epithelial Features

In one study, cetuximab failed to block EGF-driven mesenchymal progression in
transformed OSCC [27], suggesting a novel drug resistance mechanism. An earlier study
reported that esophageal squamous cell carcinoma (ESCC) cells with mesenchymal features
displayed resistance not only to cetuximab but also to tyrosine kinase inhibitors (TKIs) such
as erlotinib, albeit that both drugs were highly effective against ESCC cells with epithelial
features [28].

The progression of OSCC is always associated with the release of extracellular vesicles
(EVs) from cancer cells into the milieu. The EVs usually contain CD9 and EGFR [29].
Earlier research showed that CD9-positive EVs were secreted more often by OSCC than
epithelial cells [30]. Fujiwara et al. [31] reported that the transformation of normal epithelial
cells into spindle phenotype cells triggered by EVs secreted by OSCC was blocked by
cetuximab, both the expression of vimentin and levels of EGFR were also downregulated
simultaneously. Therefore, we hypothesized that cetuximab primarily targets EV-secreting
cancer cells, especially those with epithelial features rather than the completely transformed
mesenchymal cancer cells. This phenomenon could lead to new therapeutic strategies.

Most anti-tumor drugs target a single oncogenic signal or phase. However, during the
EMT, the signaling pathways and features of cancer cells are completely different among
the “epithelial”, “mesenchymal”, and “transition” stages. Therefore, instead of using
single drug treatment that inevitably results in the development of resistance or recurrence,
multiple agents that tackle various pathways may yield better results.
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2.3. Combination Treatment with Cetuximab

An effective regimen for refractory OSCC is the combination of cetuximab and cis-
platin. Several studies have demonstrated that this combination is beneficial in terms of
the tumor response and survival rate compared to single therapeutic agents [32,33].

It was proposed that cetuximab initiates cytoplasmic signaling through the autophos-
phorylation of intracellular domains [34]. Phosphorylated EGFR activated the MAPK
and PI3K/AKT/mTOR pathways, which are also involved in the therapeutic effects of
cisplatin [35]. However, cisplatin also induces cell apoptosis through the activation of the
mitochondrial signaling pathway and AMP-activated protein kinase signaling pathway
(AMPK) [36]. AMPK is a serine/threonine kinase that regulates intracellular energy home-
ostasis. The activation of the AMPK pathway could rapidly reprogram glucose metabolism,
inducing cells to switch from active ATP consumption to ATP production to restore energy,
potentially reversing the Warburg effect [37].

Cetuximab has been reported to have higher efficacy against K-RAS-type cancer
cells than cells harboring a K-RAS mutation [38]. As a molecular switch, activated K-
RAS is vital for stimulating the downstream signaling cascade via the Raf/MEK/ERK and
PI3K/AKT/mTOR pathways after extracellular ligands, such as EGF, bind to the membrane
receptor [39]. In OSCC patients, K-RAS frequently mutates into H-RAS, although the
reason for this is unknown (this mutation is frequently detected in smokers and betel
quid-chewing individuals [40]). Previous studies have demonstrated that the H-RAS
mutation plays a crucial role in treatment failure and the development of resistance to
cetuximab in OSCC, by stimulating downstream genes like c-MYC, BCL-XL, and BCL-
2 [41]. Accordingly, we hypothesized that regulating AMPK levels may compensate for the
cetuximab resistance caused by the K-RAS mutation. A study of colorectal cancer strongly
supports this hypothesis [42], but whether the same mechanism occurs in OSCC remains
to be proven.

The interaction between cetuximab and cisplatin may explain why these two drugs
provide better outcomes in combination than either alone. Both drugs reciprocally af-
fect the mitochondrial activity and energy homeostasis in cancer cells. During the EMT
process, the cells require tremendous amounts of energy; to counteract the effect of the
drugs, to switch from mitochondrial oxidative phosphorylation to cytosolic glycolysis to
enable the EMT to be completed in a timely manner, and to build up sufficient biomass
(by suppressing apoptosis and evading immunity) for resistance to anticancer therapy [43].
The Warburg effect may trigger the EMT and accelerate the glycolytic metabolism to gen-
erate sufficient ATP [44]. Lin et al. reported that when the respiratory enzyme citrate
synthase (CS) was knocked down in HeLa cells, the expression of EMT-ATFs such as Snail
and TWIST increased, and the MAPK signaling pathway was activated [45]. This EMT
phenotype induced by CS knockdown was modulated by ATP treatment and partially
reversed by the suppression of the MAPK pathway.

Altered energy homeostasis in association with the EMT may be responsible for
resistance to cetuximab. Currently, there are no therapeutics specifically targeting the
RAS mutation to restore energy homeostasis in cancer cells. An early study reported that
tipifarnib, a farnesyltransferase inhibitor, competes with RAS and, thus, suppresses its
activity; however, this effect is non-specific as other proteins such as centromeric proteins
were also inhibited [46].

Although cetuximab has a strong anti-tumoral effect, only certain types of cancer cells
respond to it. Unfortunately, OSCC patients with K-RAS mutations do not respond to
cetuximab. However, combining cetuximab with other antitumor drugs greatly improves
the overall response rate; therefore, oral oncologists should consider this strategy.

3. Immune Checkpoint Inhibitors
3.1. PD-1-Blocking Agents: Pembrolizumab and Nivolumab

One of the hallmarks of cancer is that the immune system does not mount an effective
antitumor response [47]. The PD-1 receptor is mainly expressed on the surface of T cells [48].
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When PD-1 binds to its ligands, including PD-L1 and PD-L2, the activation of cytotoxic
T cells (CD8+ T cells) is inhibited [49]. Cancer cells can, thus, evade the T cell-induced
antitumor activity.

Pembrolizumab was developed to block the interaction of PD-1 with its ligands and
inhibit immune evasion. Pembrolizumab is a highly selective monoclonal IgG4 isotype
antibody that impedes inhibitory signals in T cells [50]. This antibody was first approved
in the United States in 2014 [51] as a first-line treatment for metastatic bladder cancer
patients with high levels of PD-L1 and resistance to cisplatin-based treatment. In patients
with OSCC/head and neck squamous cell carcinoma (HNSCC), pembrolizumab is used as
a second-line treatment after platinum-based chemotherapy.

Nivolumab is another human IgG4 PD-1 immune checkpoint inhibitor antibody that
blocks PD-L1 by binding to PD-1 [52]. Both pembrolizumab and nivolumab have been
approved for patients with recurrent/metastatic OSCC who have previously undergone
platinum-based chemotherapy [53].

As an immune checkpoint inhibitor, nivolumab can achieve similar clinical outcomes
to pembrolizumab [54]. The two drugs have different affinity sites and bind to different
epitopes of the same receptor; however, the difference in pharmacokinetics between these
two drugs remains to be elucidated [55].

PD-1 binding of pembrolizumab is dependent on a flexible C’D loop, while nivolumab
targets PD-1 via the N-terminal extension and FG and BC loops (Figure 2). In a previous
study of the crystal structure of pembrolizumab and nivolumab, the epitope region of the
former was shown to have a much great affinity area to the PD-1 binding site than the
latter [55]. Intriguingly, the binding sites of these two drugs on the PD-1 molecule do not
overlap. These results imply that the two antibodies could act synergistically, thus, raising
the question of whether they should be co-administered. Preclinical and early clinical data
indicate that pembrolizumab and nivolumab can be used interchangeably [56].
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3.2. EMT-ATFs Participate in the Configuration of an Immunosuppressive TME

Compared to conventional chemotherapy, the overall survival rate of all cancer pa-
tients receiving immunotherapy is significantly higher. However, 30–50% of patients
remain unresponsive or less responsive to PD-1 blockade therapy [57].

A few patients initially responded to PD-1 blockade therapy but later became unre-
sponsive, possibly due to insufficient effector T cells [58]. In another study, patients were
unresponsive from the start of the treatment [59]. A recent study reported that in lung
adenocarcinoma, the levels of multiple immune checkpoint molecules, including PD-L1,
were increased, reflecting an EMT phenotype. This suggested that EMT could be associated
with immunosuppressive TME changes [60,61]. The EMT-ATFs not only interact with the
regulatory networks of microRNAs to promote cancer cell plasticity and maintain cancer
stemness but also play an essential role in configuring the TME [62].

In the TME, Snail induces stromal cells to undergo the EMT, which increases the
expression of immunosuppressive cells (such as CD4+ Foxp3+ Treg-like cells) [63]. Snail
was also found to induce the upregulation of chemokines such as CCL2 and CXCL2,
subsequently promoting the generation of immunosuppressive dendritic cells (DCs), Treg
cell infiltration, and the inhibition of CD8+ T cells. Under hypoxic conditions, cancer
cells can also secrete several chemokines that inhibit CD4+ and CD8+ T cell function [64],
thus, establishing an immunosuppressive environment [65].

TWIST is another transcription factor with immunosuppressive activities. It upregu-
lates PD-L1, which promotes the EMT and carcinogenesis in skin SCC [66]. TWIST was also
reported to downregulate NF-κB and TNF-α, thereby regulating inflammatory suppression
through type I interferons (IFNs) [67]. ZEB1 and ZEB2 were found to be involved in the
activation of DCs and immune evasion in cancer [68].

3.3. Interactions among Energy Metabolism, Immunosuppression, and the TME

In addition to the EMT-ATFs, a complex regulatory network consisting of noncoding
RNAs, epigenetic modifiers, post-translational regulators, and alternative splicing factors
has been implicated in the dynamic regulation of the TME [69,70]. All of these extracellular
factors promote a hypoxic, acidic, and inflammatory TME. Immune cells in the TME secrete
cytokines, inflammatory factors, and chemokines to drive the EMT in cancer cells. In turn,
cancer cells interact with immune cells to promote cell plasticity and the release of immuno-
suppressive substances or cytokines, which induce the infiltration of Treg cells or polarized
M2 macrophages into the TME; therefore, an immunosuppressive microenvironment is
generated, promoting cancer genesis and therapeutic resistance.

Cancer cells predominantly undergo glycolytic metabolism, which facilitates the
rapid generation of ATP and inevitably leads to the accumulation of lactic acid in the
milieu. T cells are similar to cancer cells in terms of their ability to recognize tumor
antigens. To meet the bioenergetic demand for rapid proliferation, T cells also switch to
glycolytic energy metabolism. Distinct from cancer cells, T cells produce pyruvic acid
rather than lactic acid as the byproduct of glycolysis [71]. In accordance with the similar
proliferation profile between cancer and T cells, the cells compete for energy sources and
substrates for anabolic pathways. Several studies have demonstrated that glucose and
tryptophan were excessively consumed by tumor cells, thereby restricting T cell glycolytic
metabolism, activation, and proliferation, which eventually led to T cell dysfunction or
depletion [72,73]. As a consequence, infiltration of T cells into the tumor mass was severely
reduced. Furthermore, there was a decrease in the nuclear factor of activated T cells and
natural killer (NK) cells, and in IFN-γ in the TME. These changes permitted cancer cells to
escape from antitumor immunity [74].

Energy metabolism is mainly regulated by two completely opposing energy sensors:
AMPK and mTOR [75]. The AMPK pathway regulates mitochondrial catabolism under
restricted energy and nutrient conditions. However, the mTOR pathway (mainly mTOR
complex 1, mTORC1) preferentially triggers anabolic metabolism [76,77]. Zhang et al.
revealed that mTORC1 inhibitors activated the AMPK pathway, suppressed the EMT
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process, and downregulated PD-L1 expression in lung cancer [78]. In another report, the
upregulated expression of PD-L1 was observed predominantly in patients with K-RAS
mutations [79]. The overexpression of RAS promoted the progression of EMT by decreasing
E-cadherin and increasing the expression of TGFβ, vimentin, and Snail, most likely via the
MAPK and PI3K/AKT/mTOR pathways in concert with mTORC1.

Accordingly, we hypothesized that the upregulation of PD-L1 is correlated with
cell energy metabolism (regulated by mTORC1) in the up and downstream pathways.
Kumar et al. [58] suggested that enhanced activity in the mitochondrial metabolic pathway
of CD8+ T cells may affect the PD-1 blockade. Therefore, it may be useful to explore ways
to improve the precision of the mitochondrial function of CD8+ T-cells.

4. Summary

In 1997, rituximab became the first mAb to be approved for treating cancer and
proven effective for the treatment of non-Hodgkin’s lymphoma. Following this success,
numerous mAbs have been developed and used for the treatment of various human
cancers [80]. Activated EGFR and its downstream signaling pathways were implicated in
the proliferation, apoptosis suppression, invasion, and angiogenesis of cancer cells [81].
Compared to hematological cancers, solid tumors such as OSCC had more than 80% higher
EGFR expression levels [82,83]. That may explain why cetuximab, as a novel treatment of
OSCC, has garnered considerable attention since 2004 and has been approved for clinical
use in Europe and the USA [84]. However, long-term use of cetuximab for OSCC often leads
to drug resistance, and an improvement in the overall survival time of only 2.7 months
compared to conventional chemotherapy alone [17,85,86].

In 2016, the FDA approved the use of pembrolizumab and nivolumab in patients
with platinum-resistant OSCC; however, less than 20% of the patients responded well
to those immunotherapies [87]. Moreover, approximately 50% of patients with OSCC
are in a late stage of disease and the 5-year survival rate remains below 60% [88,89].
The treatment options for OSCC patients are limited, particularly for advanced patients
who are refractory to chemotherapy. It is imperative to better understand the molecular
mechanisms underlying drug resistance so that more effective therapies can be developed.

In OSCC, precancerous mutations may develop in cells remote from the original
tumor [90]. This is known as field cancerization, whereby oral epithelial dysplasia and
oral intraepithelial neoplasia patients may progress to OSCC [91]. Premalignant cells,
over surgical margins, may develop into secondary tumors differing in clonality from the
primary tumor [90].

Premalignant cells can trigger the EMT, and release chemokines and transcriptional
factors to create a low-energy, hypoxic, and immunosuppressive TME to promote their
survival. This environment then activates the AMPK pathway [92]. The activation of AMPK
increases cell catabolism, and decreases anabolism, through the phosphorylation of key
proteins in several pathways, including mTORC1 [93]. AMPK is an attractive therapeutic
target in many diseases, including cancer and type II diabetes. Under energy-depleted
conditions, the activation of AMPK leads to a decrease in mTORC1 activity, which retards
cell growth and protein synthesis.

The mTORC1 exerts opposing effects on AMPK (Figure 3) [94]. When growth fac-
tors such as EGF and VEGF bind to their tyrosine kinase receptor on the cell membrane,
the PI3K/AKT pathway is activated. Furthermore, phosphoinositide-dependent kinase-1
activates AKT and mTORC1, which prompts the entire pathway to enhance cell prolifera-
tion. The MAPK pathway is also activated by these growth factors. Cytosolic glycolysis and
protein synthesis are enhanced, which provides more energy and, thus, promotes cancer
cell survival. As a member of the stress-activated protein kinase family, p38 is activated
during the energy depletion phase [93]. Interactions among p38, AKT, and NF-κB, trigger
the downstream expression of mTORC1, leading to an accumulation of reactive oxygen
species (ROS) and DNA damage (Figure 4) [95].
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Figure 4. Four p38 subfamilies have been identified: p38-α, -β, -γ, and -δ [96]. MAPK cascade is the main mechanism by
which the four p38 isoforms are activated in human cells [97]. Protein kinase activity of p38 is stimulated by oncogenic
TAK1 or ASK1 through its downstream mitogen-activated protein kinase kinases, MKK3 and MKK6, under conditions of
severe stress and inflammation (under mild stress, the ERK/MAPK pathway is activated) [98]. Activated p38 also interacts
with AKT and NF-κB, triggering downstream mTORC1 via the degradation of DEPTOR, or by suppressing the activation of
PPARα [95]. These changes promote cell proliferation, inflammation, protein synthesis, and decrease apoptosis, ultimately
leading to a hypoxic, acidic, and inflammatory TME.
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The overall response rate to the EGFR inhibitor cetuximab varies dramatically among
patients and cannot be predicted based on EGFR binding alone. Whether the downstream
pathway is normally regulated by K-RAS, but not by another mutated RAS, is an important
consideration. In OSCC patients, mutations are most common in K-RAS genes, including
H-Ras and N-Ras; these mutations were detected in over 30% of patients with OSCC in
Southeast Asia [99]. Mutated K-RAS genes can activate the MAPK and PI3K/AKT/mTOR
pathways, and regulate the expression of mTORC1; ultimately, OSCC cells become resistant
to cetuximab.

Such resistance can also develop to PD-1 blockers. Although pembrolizumab and
nivolumab can both interact with PD-1 to activate T cells, higher energy consumption
by CD8+ T cells and a lower concentration of energy substrates in the TME increase the
anabolism of T cells; this mainly depends on the activation of the mTORC1 pathway.
Increased p38 and ROS accumulation further damages the mitochondria in T cells, lead-
ing to an exhausted state [58]. The PD-1 blockade ultimately shortens the life span of
T cells. Furthermore, the elimination of T cells from the cancer field (by over-activating
them) may explain why most OSCC patients show an excellent initial response to pem-
brolizumab/nivolumab, but subsequently become unresponsive [100].

5. A potential Novel Combination Therapy

In this review, we showed that the EMT, which leads to a newly configured TME and
altered cell homeostasis, must be considered when developing novel treatments for OSCC.
Combining several anti-tumor drugs, which represents the current strategy, is not effective
over the long term.

5.1. Combined Use of the Small-Molecule Inhibitors MEK

Blocking the PI3K/AKT/mTOR and MAPK pathways by small-molecule inhibitors
may be effective for treating OSCC. To date, four small-molecule MEK inhibitors have been
approved by the FDA: trametinib, selumetinib, cobimetinib, and binimetinib [101]. Several
other inhibitors are also under development, such as PD184352 [102] and PD0325901 [103].
A recent open-label, three-arm phase III trial evaluated the safety and efficacy of encorafenib
and cetuximab, with or without binimetinib, for treating patients with BRAFV600E (a gene
that encodes B-Raf)-mutated colorectal cancer. The overall response rates were 26%, 20%,
and 2% for the triplet, doublet, and control arms, respectively. The progression-free survival
times were 4.3, 4.2, and 1.5 months, respectively [104,105].

The combination of a MEK inhibitor and immunotherapy was associated with a sat-
isfactory toxicity profile in BRAFV600E-mutant melanoma patients [106,107]. In a phase
II trial of the triple combination of trametinib, dabrafenib, and pembrolizumab, the ob-
jective response rate was 63.3% (38 out of 60 patients with BRAFV600E-mutated advanced
melanoma); 17 of these 38 patients (44.7%) had ongoing responses [108].

5.2. EGFR and PD-1 Inhibitors
5.2.1. EGFR-TKIs with a PD-1 Inhibitor

Preclinical studies indicated that the activation of EGFR not only stimulated tumor
growth but was positively correlated with the overexpression of PD-L1. Treatment of
EGFR-mutant non-small cell lung cancer (NSCLC) cell lines with EGFR-TKIs decreased the
expression of PD-1 and PD-L1 by inhibiting the NF-κB pathway [109–111]. These studies
provided a theoretical basis for the combination treatment of EGFR-TKIs and immunother-
apy. Haratani et al. reported that T790-negative patients with EGFR mutation-positive
NSCLC were more likely to benefit from nivolumab after EGFR-TKI treatment [112].
This result was attributed to the fact that NSCLC patients with certain types of EGFR
mutations may have a higher nonsynonymous mutation burden, such that they are more
responsive to PD-1 inhibitors. However, it should be noted that the trial mainly included
lung cancer patients rather than OSCC patients. OSCC is characterized by a higher tu-
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mor mutation burden, higher expression of PD-L1, and increased CD8+ T cell infiltration;
therefore, OSCC patients can be expected to benefit more from combination treatment.

5.2.2. EGFR-mAb with a PD-1 Inhibitor

A multi-center phase II study investigating the combination of the EGFR-mAb cetux-
imab and PD-1 inhibitor pembrolizumab was conducted from 2017 to 2019. The study
focused on recurrent and metastatic HNSCC; in 45% of patients, the primary tumor site was
in the oral cavity [113]. An overall response rate of 45% was achieved with combination
therapy, which exceeded the response rates for pembrolizumab (16–18%) and cetuximab
(6–13%) monotherapy [114]. We suggest that the resistance of cancer cells to cetuximab may
be associated with a K-RAS mutation. The activation of the MAPK pathway enhanced the
expression of PD-L1 and the infiltration of T cells and, thus, the response to immunotherapy.
Although its mechanism of action is yet to be fully elucidated, this combination therapy
has a promising future.

6. Conclusions and Perspectives

The use of two or more drugs for OSCC treatment inevitably leads to more severe side
effects and immunotherapy can cause immune-related adverse events [115]. Therefore,
combination therapy should be considered as an interim strategy while we wait for better
treatments to be developed.

Recent studies aiming to characterize the interactions among the EMT, energy metabolism
in cancer cells, immunity, and the TME have provided important results that should inform
future research. By further exploring the components and sub-pathways of the MAPK,
PI3K/AKT/mTOR, and AMPK pathways, as well as their interactions with other pathways,
we should be able to further improve evidence-based therapies of mAbs for treating OSCC.
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