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ABSTRACT

Target of rapamycin (TOR) operates as a hub of the signal transduction that integrates
nutrient and energy signaling to promote cell proliferation and growth through medi-
ating the transcriptional and post- transcriptional regulator networks in all eukaryotic
species. MicroRNAs (miRNAs) are widespread classes of small, single-stranded, non-
coding endogenous RNAs and are widely found in eukaryotes, which play a vital role
in regulating gene expression by degrading targeted mRNAs or translational repression
at post-transcriptional level. Recent studies found that there were necessarily close
connections between miRNA and TOR pathways in mammals. However, there is little
information about the interplay between the miRNA and TOR in plants. Thus, the aim
of this study was to identify potential TOR-miRNA-mRNA regulatory networks in TOR
signaling through global mRNA and microRNA expression profiling in potato. Based
on the previous high-throughput transcriptome sequencing and filtering, a total of
2,899 genes were significantly differentially expressed in potato under TOR inhibitors
treatment. Pathway analysis revealed that these genes were significantly enriched in
multiple metabolic processes. Similarly, in the present study, suppression of TOR
resulted in 41 miRNAs up-regulated and 45 down-regulated, revealing that TOR plays
a crucial role in the regulation of miRNA regulatory network. Furthermore, integrated
mRNA and miRNA expression profiling uncovered that these miRNAs participated in
large-scale metabolic process in the TOR signal pathway in potato, such as regulation of
autophagy and ubiquitination, and biosynthesis of secondary metabolites. Overall, the
results shed new insight into TOR related post-transcriptional gene regulatory networks
in potato and suggesting TOR-miRNA-targeting genes relevant networks as a potential
genetic resource for potato improvement.

Subjects Agricultural Science, Biotechnology, Molecular Biology, Plant Science
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INTRODUCTION

MicroRNAs (miRNAs) represent an extensive class of small (usually 21-24 nucleotides
length), non-coding, single-stranded, endogenous RNAs which are abundant in all
eukaryotes. Since the direct cloning of first plant miRNA from Arabidopsis (Arabidopsis
thaliana L.) (Park et al., 2002; Llave et al., 2002; Reinhart et al., 2002), more and more
miRNAs and their putative targets were identified in different plant species, such as
maize (Zea mays L.) (Zhang et al., 2009a), rice (Oryza sativa L.) (Zhang et al., 2017b; Peng
etal, 2011), barley (Hordeum vulgare L.) (Curaba et al., 2012), switchgrass (Panicum
virgatum L.) (Xie et al., 2014), wheat (Triticum aestivum L.) (Han et al., 2014), sweet
potato (Ipomoea babatas L.) (Bian et al., 2016), rapeseed (Brassica napus L.) (Jian et al.,
2018), sesame (Sesamum indicu L.) (Marakli, 2018) and radish (Raphanus sativus L.) (Liu
et al., 2018), and so on. In plants, the stem-loop secondary structure of RNA Polymerase 11
transcript (pri-miRNA) was cleaved by Dicer-like 1 (DCL1) protein to produce a hairpin
RNA molecule (pre-miRNA), which further cleaved by DCLL1 to result in a double stranded
intermediate RNA (Jones-Rhoades, Bartel ¢ Bartel, 2006 Zhu et al., 2013). The matured
miRNA, which could be incorporated into the effector complex (RISC-RNA Induced
Silencing Complex) can target messenger RNA to direct RNA degradation or translational
inhibition (Jones-Rhoades, Bartel ¢ Bartel, 2006; Zhu et al., 2013; Iwakawa ¢~ Tomari,
2013). MiRNAs were demonstrated to play versatile roles in plant growth, development
and responding to stresses, such as temperature, drought, salt, heavy metal stresses and
nutrient starvation in plants (Chen, 2009; Sun, 2012Zhang, 2015). Based on their functions
in development, growth, crop yield and stress responses, they are also considered as
important genetic resources in crop improvement (Liu ¢~ Chen, 2010; Tang & Chu, 2017).
As one of the world’s most important staple food, potato (Solanum tuberosum L.) is essential
to food security and human health all over the world, especially in solving the poverty
(Zhang et al., 2017a). In the last decade, a fast increasing number of potato miRNAs were
identified using comprehensive bioinformatic analysis of EST data, comparative genome
strategy, computational prediction, and high-throughput sequencing (Zhang et al., 2013;
Zhang et al., 2009b; Yang et al., 2016; Yang et al., 2010). Nevertheless, the number of the
potato miRNAs (219) deposited in miRBase (http://www.mirbase.org/) was still less than
that of rice (1519), Arabidopsis (664), cotton (Gossypium spp L.) (539) and maize (404).
The function of some potato miRNAs were also confirmed, for example, miR172 could
induce the potato tuberization (Martin et al., 2009), miR396, miR156a, miR157a and four
miR169s were drought-induced (Yang et al., 2016; Hwang, Shin & Kwon, 2011), miR156
could modulate potato architecture and tuberization (Bhogale et al., 2014), miR166 and
miR159 were responding to salinity (Kitazumia et al., 2015), miR482e could enhance plant
sensitivity to Verticillium dahliae infection (Yangetal., 2015), miR397-5P was involved
in the PVA infection (Lietal., 2017), miR164 could mediate the lateral root development
(Zhang et al., 2018), and miR160 was associated with local defense and systemic acquired
resistance against Phytophthora infestans (Natarajan et al., 2018). Herein, a large number
of miRNAs have yet to be discovered, and the functions of most miRNAs remain to be
investigated in potato.
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Target of rapamycin (TOR) was regarded as a central regulator in the signal transduction
network through integrating nutrient, energy and stress related cues to coordinate
cell proliferation and growth in all eukaryotic species (Xiong ¢» Sheen, 2014; Laplante
& Sabatini, 2012Loewith ¢ Hall, 2011). Many important downstream targets of TOR
kinase have been identified in different species, such as AKT, S6K, ATG13, 4EBP1, etc ().
TOR can influence gene transcription, protein translation, lipid synthesis, lysosome
synthesis, autophagy and energy metabolism through these substrates (Xiong ¢ Sheen,
20125 Laplante ¢ Sabatini, 20125 Van Leene et al., 2019). Recent studies revealed interplays
between the TOR signaling pathway and miRNAs during the occurrence and treatments
of diseases in mammals (Zhang et al., 2017b). Some miRNAs (miR-7, miR-99 family,
miR-101, miR-122, miR-126, etc.) could suppress the upstream signaling pathway of
mTOR, while some miRNAs (miR-21, miR-93, miR-96, miR-125b, etc.) could activate
the TOR pathway (see review; Zhang et al., 2017c). In addition, global miRNA expression
profiling suggested mTOR controls many miRNAs expression in chronic rapamycin (RAP,
a specific TOR inhibitor produced by Streptomyces hygroscopicus) treatment of cancer cells
and the mouse and human cells with inactivation of TSC complex (an essential repressor
of mTOR activation) (Ye et al., 2015; Totary-Jain et al., 2013; Jewell, Flores ¢ Guan, 2015).
In mammals, the miRNA biogenesis was regulated by mTORC1-Mdm2-Drosha axis in
response to amino acid- and glucose- deprivation (Ye et al., 2015). Moreover, several
individual miRNAs (miR-1 (Sun et al., 2010), miR-21 (Bornachea et al., 2012), miR-143
(Fang et al., 2012) and miR-125b (Ge, sun ¢ Chen, 2011)) have been confirmed to be
regulated by mTOR signaling, which are known to participate in some physiological
functions, including cancer.

Rapamycin (RAP) was the first generation of TOR inhibitor, which could inhibit the
activity of TOR only in the presence of 12-kDa FK506 binding protein (FKBP12) through
forming a ternary compound RAP-FKBP12-TOR in yeast and animals (Benjamin et al.,
2011). Due to the resistance of terrestrial plants to RAP, FKBP12 gene from Homo sapiens
L., Saccharomyces cerevisiae L. or Arabidopsis thaliana L. was introduced into plants to
generate RAP sensitive plants in the previous study (Deng et al., 2016; Sormani et al., 2007;
Ren et al., 2012; Deng et al., 2017; Xiong & Sheen, 2012). In addition to RAP, the second
generation of TOR inhibitors (asTORis: AZD8055, Torinl, KU63794 (KU) et al.), which
could selectively and efficiently suppress TOR by specifically targeting the ATP-binding
pocket of the TOR kinase domain, were also used in revealing the function of TOR in
plants (Xiong et al.,, 2017). In our previous study, a yeast FKBP12 gene was introduced
into potato to generate RAP sensitive potato (BP12-OE line), and we found that RAP
and asTORis showed synergistic effects on inhibiting potato growth and a great deal of
differentially expressed genes (DEGs) were observed in potato under TOR suppression
(Deng et al., 2017). MiRNA plays an important role in post-transcriptional gene regulation
in plants. Whether TOR is involved in post-transcriptional gene regulation through
miRNA remains unclear in potato. Herein, we chose RAP + KU and its control DMSO to
construct the potato SRNA libraries for identifying the miRNAs regulated by TOR. The
integrative miRNAs and mRNA analysis was done to explicate the biological functions of
TOR-miRNA-mRNA regulatory networks in potato metabolism.
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MATERIALS AND METHODS

Plant material and growth condition

In this study, the potato seedling of BP12-OE line was used for the sSRNA sequencing (Derng
et al., 2017). All plants were grown in Murashige & Skoog (MS) medium under 16 h light/8
h dark in growth chambers at 22 °C. Four-week-old potato seedlings growing on the MS

media for 48 h with TOR inhibitors (RAP + KU) and DMSO were collected for the SRNA
sequencing.

RNA extraction, library preparation and sequencing

The extraction method and quality control of total RNA were according to Deng et al.
(2017). The total amount of 3 ug RNA for each sample was used for small RNA library
construction. The NEBNext Multiplex Small RNA Library Prep Set for lllumina (NEB,
USA) was used to generate the sequencing libraries and the Agilent Bioanalyzer 2100 system
using DNA High Sensitivity Chips was used to assess the library quality. The cBot Cluster
Generation System using TruSeq SR Cluster kit v3-cBot-HS (Illumina) was used to cluster
the index-coded samples. And then, the libraries were sequenced on an Illumina Hiseq
2500/2000 platform. At last, total of 50 bp single-end reads were generated.

Data analysis
Quality control and mapping

Raw reads of fastq format were processed through python scripts and custom perl to remove
the low quality reads. The GC content, Q20 and Q30 of the raw reads were calculated. All
downstream analyses were according to a range of length of clean reads, such as 18-30
nt for plant. The small RNA tags were mapped to the reference potato genome sequence
(http://plants.ensembl.org/Solanum_tuberosum/Search/New?db=core) by Bowtie without
mismatch to analyze their distribution and expression on the reference (Xu et al., 2011;
Langmead et al., 2009).

Bioinformatic identification of known and novel miRNAs, and their
differential expression under TOR inhibitors treatment

The mapped small RNA tags were aligned to the miRNA precursor/mature miRNA of
plants and animals in the miRBase20.0 database for looking for known miRNA. The
potential miRNAs and their secondary structures were obtained using modified software
mirdeep2 (Friedlander et al., 2012) and srna-tools-cli (http://srna-tools.cmp.uea.ac.uk/).
The Custom scripts were used to analyze the known miRNA counts and their base bias
either on each position or on the first position with certain length.

The rRNA, tRNA, snRNA, snoRNA, repeat and protein-coding genes were deleted
from the small RNA libraries based on RepeatMasker and Rfam database. And then the
remaining sequences were used for predicting the novel miRNAs with the software miREvo
(Wen et al., 2012) and mirdeep2 (Friedlander et al., 2012) through exploring the secondary
structure, the minimum free energy and the Dicer cleavage site. The analysis of novel
miRNA counts and their base bias was the same as that of known miRNA.

All miRNA abundances were evaluated and normalized using the tags per million
reads (TPM) method through the following criteria (Zhou et al., 2010): TPM = number

Deng et al. (2021), PeerJ, DOI 10.7717/peerj.10704 4/26


https://peerj.com
http://plants.ensembl.org/Solanum_tuberosum/Search/New?db=core
http://srna-tools.cmp.uea.ac.uk/
http://dx.doi.org/10.7717/peerj.10704

Peer

of mapped miRNA reads x 10%/ number of clean sample reads. Differential expression
analysis between the treatment and control was performed using the DESeq R package
(1.8.3). The P-values were adjusted using g-value (Storey, 2003). /log,fold-change/ >1 and
the corrected P-value (g-value) <0.01 were set as the threshold for significantly differential
expression by default.

Prediction and annotation of target genes of miRNAs

The putative target genes of miRNAs were predicted by psRobot-tar in psRobot (Wu et al.,
2012) for plants. All the target genes were annotated in the NCBI nr database and potato
genome database (http://plants.ensembl.org/Solanum_tuberosum/Search/New?db=core).
For further annotating the target gene candidates of differentially expressed miRNAs,
Gene Ontology (GO) enrichment and the statistical enrichment of KEGG pathways were
implemented using GOseq based Wallenius non-central hyper-geometric distribution and
KOBAS, respectively (Mao et al., 2005; Young et al., 2010).

M RNA and miRNA validation by qRT-PCR

Four-week-old potato seedlings growing on the MS media were treated with TOR inhibitors
(RAP + KU) and DMSO for 48 h and were collected for qRT-PCR. The mRNA validation
was according to Deng et al. (2017). The primers for qRT-PCR designed by Primer
premier 5 software were listed in Table S1. To validate the expression of miRNA, 1 pg
of total RNA was reverse transcribed using Mir-X™ miRNA qRT-PCR TB Green™
Kit (Takara). The RT-qPCR analysis was performed according to the manufacturer’s
protocol (Mir-X™ miRNA qRT-PCR TB Green™ Kit). The miRNA-specific primers
were listed in Table S1 and reverse primers was provided by kit. Potato actin gene was used
as constitutive references (Nicot et al., 2005; Payyavula, Singh ¢ Navarre, 2013; Liu ef al.,
2015). All reactions were conducted with 3 biological replicates, and the relative expression
of genes was conducted using the 2~24¢() method.

RESULTS

sRNA sequencing

The basic information of sRNA sequencing data from potato (BP12-OE line) with or
without TOR inhibitor (RAP + KU) was shown in Fig. 1 and Table S2. The values of
Q30 (bases correct recognition rate >99.9%) of the raw data were more than 97%. After
removal of adapter contaminants, low quality reads, small reads and polyN, about 92.53%
and 95.76% reads in total raw reads were clean reads in two groups, respectively (Fig.
1A). Finally, about 79.18% and 80.61% of the total clean reads with 18—30 nt read length
could be mapped and matched to the potato genome sequence with bowtie, respectively
(Langmead et al., 2009). For avoiding some sSRNAs mapped to more than one annotation,
the mapped clean total sSRNAs were annotated according to the following priority rule:
known miRNA >rRNA >tRNA >snRNA >snoRNA >repeat >NAT-siRNA >gene >novel
miRNA >ta-siRNA (Fig. 1B). Most clean sSRNA reads ranged from 21 to 24 nt, with 24 nt
being the most abundant group of small RNAs, representing the typical length of Dicer-like
protein 3 (DCL3)-derived products (Fig. 1C). The dominance of the 24 nt read length
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Figure 1 The summary of basic information for the sSRNA data. (A) Statistical analysis of sequencing
reads. (B) The number and proportion of different kind of sRNAs, “exon: +”: exon sense strand, “exon":
exon antisense strand, “intron: +”: intron sense strand, “intro: -”: intron antisense strand, NAT: natural
antisense transcripts, repeat: repeat sequence, snoRNA: small nucleolar RNA, snRNA: small nuclear RNA,
TAS: ta-si RNA. (C) The length distribution of clean sRNA.

Full-size Gal DOI: 10.7717/peer;j.10704/fig-1

sRNA in potato is consistent with previous studies of other species, such as rice (Morin et
al., 2008), cucumber (Cucumis sativus L.) (Mao et al., 2012), tomato (Solanum lycopersicum
L.) (Cao et al., 2014), tobacco (Nicotiana tabacum L.) (Yin et al., 2015) and radish (Liu et
al., 2018). The second abundant group is 21-nt miRNAs, which have the canonical size
derivedfrom DCLI1 processing. Most of the first nucleotide from the 5/end of the known
and novel miRNAs was uridine (U), which was a bias for AGO1 (M et al., 2008), suggesting
the important character of miRNAs was not changed under the treatment of TOR specific
inhibitors (Fig. S1). In addition, in all the libraries, the total rRNA proportion was less than
60% which was used as a marker as the plant samples quality control.

Identification of known and potential novel miRNAs in potato

In order for identifying the known miRNAs from sRNA libraries in potato, we compared
the sSRNA information with the known, up-dated and mature plant miRNAs deposited
in the miRBase without any mismatching (Kozomara ¢ Griffiths-Jones, 2014). Based on
the blastn searches and further sequence analysis, the total of 193 known miRNA were
observed and 174 known miRNA exist both in the RAP + KU and control libraries (Table
S3). The read counts of the known miRNAs ranged from 0 to 24,000 in the RAP + KU
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Table 1 The known miRNA of more than ten thousand redundancies and novel miRNAs of more than

100 redundancies.

MiRNA RAP+KU DMSO MiRNA RAP+KU DMSO
stu-miR319a-3p 24000 13181 novel 188 6057 11099
stu-miR166a-3p 14823 15988 novel_1 5395 9175
stu-miR166b 10331 11160 novel_16 2209 4329
stu-miR398a-3p 3832 11553 novel_17 2169 2028
stu-miR162a-3p 4850 10908 novel_18 839 1656
stu-miR396-5p 5382 5157 novel_40 665 1026
stu-miR482a-3p 2292 4388 novel_15 487 940
stu-miR6022 4287 4798 novel_30 733 764
stu-miR319b 3656 1197 novel_34 604 711
stu-miR482¢ 1303 2880 novel_56 280 439
stu-miR4.2e—3p 1344 2470 novel_36 574 385
stu-miR1919-5p 1679 1703 novel_38 256 322
stu-miR156a 1446 1972 novel_59 162 298
stu-miR156d-3p 1357 2244 novel_67 119 216
stu-miR6149-5p 1062 1807 novel_60 138 195
stu-miR395a 1109 1526 novel_62 128 188
stu-miR482d-3p 1325 novel 137 137
stu-miR6027 1839 novel_84 118
stu-miR482b-3p 1609 novel_68 106
stu-miR384-5p 1209 novel_58 115

stu-miR8036-3p 1137

stu-miR6024-3p 1060

and control libraries, which showed high diversity. About 17 and 22 known miRNAs were
found to have more than 10,000 redundancies in the above groups, respectively (Table 1).
Among these miRNAs, the miR166a-3p and miR319a-3p had the most reads.

The available softwares miREvo (Wen et al., 2012) and mirdeep2 (Friedlander et al.,
2012) were integrated to predict potential novel miRNAs. Only those with stable hairpin
structures were considered, because this was an essential characteristic for identification of
novel miRNAs. Additionally, the binding locations of Dicer enzymes and free energies were
used to evaluate these candidate miRNAs. Ultimately, 79 novel miRNAs were discovered
from two potato libraries (Table S3). The novel miRNAs displayed lower expression
levels, ranging from 0 to 11,652, when compared with known miRNAs. In the RAP +
KU and control group, only 17 and 19 novel miRNAs were found to have more than 100
redundancies, respectively (Table 1). In general, many novel miRNAs discoveries in potato
enriched the plant miRNA dataset.

TOR regulates potato miRNA expression

After obtaining the readcounts of all the miRNAs, the quantification and normalization of
them were conducted by TPM (transcript per million) (Zhou et al., 2010) (Table S4). The
two treatments have the similar distributions of the expression levels of all the miRNAs,
and the high correlation (R?> = 0.873) of miRNA expression level showed the experimental
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Figure 2 The differentially expressed miRNAs between the treatment group (RAP + KU) and control
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entially expressed miRNAs. (D) Hierarchical clustering of the differentially expressed miRNAs.
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reliability and reasonable sample selection (Figs. 2A—2B). MiRNAs with TPMs over 60 were
regarded as expressing at a very high level and miRNAs with TPMs in the interval 0—1 were
deemed not to be expressed at very low levels. About 86% of the total miRNAs (272) were
expressed (TPM > 1) and more than 146 miRNAs were highly expressed (TPM > 60) in

the two treatments. Among them, one novel and 19 known miRNA were only observed in
the sRNA libraries from TOR inhibition (RAP + KU), while 2 novel and 19 known miRNA
were only detected in the control DMSO library, indicating TOR may completely inhibit

or induce these miRNAs expression in potato.

In order to identify the differentially expressed miRNAs, we compared the expression of
the known and novel miRNAs between the TOR inhibitors and control treatment samples
using the DEGseq (2010) R package. Total of 86 differentially expressed miRNAs were
detected in the RAP + KU vs DMSO group, including 41 up-regulated and 45 down-
regulated miRNAs (Fig. 2C). To obtain the miRNA expression patterns, we performed the
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hierarchical clustering of all the differentially expressed miRNAs based on the log;o (TPMs
+ 1) for the two sRNA libraries (Fig. 2D). The expression levels of all the differentially
expressed miRNAs were listed in Table 2 and these miRNAs (stu-miR5303c, stu-miR8010,
stu-miR8024a-3p and stu-miR8028-5p) had remarkable up-regulated differences, while
these miRNAs (stu-miR3627-5p, stu-miR7985, stu-miR156f-3p and stu-miR8013) had
remarkable down-regulated differences. The differential expression of about 1/3 of total
miRNAs suggested that TOR may play a crucial role in the regulation of miRNAs expression
1n potato.

The prediction of miRNA target genes

In order to investigate the function of all the previously identified miRNAs in different
biological processes, their potential target genes were predicted using psRobot_tar in
psRobot for plants (Wu et al., 2012). Overall, 192 miRNAs got total 4,127 predicted
target genes in 272 identified miRNAs (Table S5). Except the numbered EPISTUG
genes, all the rest (4081) numbered PGSC0003DMG genes were annotated in the website
(http://plants.ensembl.org/Solanum_tuberosum/Search/New?db=core) and listed in Table
S6. The number of potential targets in the potato is variable for each miRNA from 1 to
772, and most of them have multiple target genes, which are consistent with other reports
(Curaba et al., 2012; Xie, Frazier ¢ Zhang, 2011). The top three miRNAs are stu-miR7797a
(772), stu-miR5303h (751) and stu-miR5303g (743). The results indicated the single miRNA
might possess wide-ranging functions and involve in different kinds of signal pathways in
potato. The products of the target genes include functional protein, transcriptional factors
and enzyme, etc.

The putative function of differentially expressed miRNAs

Some differential expression miRNAs had been reported in other species, such as miR156
and miR169 etc., (Xiong et al., 2013, Jiao et al., 2010; Meng et al., 2011; Wu et al., 2009). In
addition to these miRNAs, there are a large number of miRNA functions that have not
been studied. In order to understand the regulatory functions of differentially expressed
miRNAs, we carried out the miRNA target prediction analysis and annotated the target
genes according to the website (http://plants.ensembl.org/Solanum_tuberosum/Search/
New?db=core) (Table S7). The putative miRNA target genes participated in many biological
processes such as cell wall modification, the cell cycle, photosynthesis, nutrient transport,
carbon and nitrogen utilization, autophagy, ubiquitination, senescence, protein and lipid
metabolism, chromatin structure, hormone metabolism, signaling and stress-related
processes. This result was also consistent with differentially expressed genes related to the
TOR-regulated pathways reported by previous transcriptome studies (Park et al., 2002;
Payyavula, Singh & Navarre, 2013; Xiong ¢ Sheen, 2014; Caldana et al., 2013). And then
Numerous GO functional and KEGG pathway enrichment of differentially expressed
miRNAs were detected, suggesting TOR regulated miRNAs participated in many biological
metabolic processes in potato (Tables SSA-S8B). These results suggest that miRNA may
play a vital role in the regulation of metabolic processes in TOR signaling.
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Table 2 The differentially expressed miRNAs in potato between the treatment of RAP + KU and

DMSO.
MiRNA Log2 Qvalve MiRNA Log2 Qvalve
(RAP +KU)/ (RAP + KU)/
DMSO DMSO

stu-miR3627-5p —6.01 9.80E—10 novel_36 1.03 1.08E—15
stu-miR7985 —4.69 6.26E—05 novel_99 1.04 5.16E—05
stu-miR156f-3p —4.69 6.26E—05 stu-miR8031 1.08 1.09E—06
stu-miR8013 —4.69 6.26E—05 novel 115 1.11 4.12E—05
novel 111 —3.69 2.74E—03 stu-miR4376-3p 1.19 1.56E—15
stu-miR169a-3p —3.69 2.74E—-03 novel_53 1.19 1.34E—03
stu-miR1886 h —3.69 2.74E—-03 stu-miR172¢-3p 1.19 1.34E—03
stu-miR1886i-3p —3.69 2.74E—03 stu-miR8032a-5p 1.32 5.10E—10
stu-miR477a-3p —3.69 2.74E—03 stu-miR319a-3p 1.32 0.00E+00
stu-miR7986 —3.69 2.74E—-03 stu-miR8033-3p 1.45 7.30E—03
stu-miR7998 —3.69 2.74E—-03 novel 117 1.45 1.01E—05
stu-miR8015-3p —3.69 2.74E—-03 stu-miR8020 1.45 8.78E—04
stu-miR8034 —3.69 2.74E—03 stu-miR399a-3p 1.60 1.48E—19
stu-miR8041a-5p —3.69 2.74E—-03 stu-miR8025-5p 1.78 3.42E—05
novel 154 —3.69 2.74E—-03 stu-miR399j-3p 1.98 1.74E—22
stu-miR7987 —3.69 2.74E—-03 stu-miR8030-5p 2.04 8.87E—07
stu-miR8023 —3.69 2.74E—-03 novel 161 2.04 2.93E—-09
stu-miR8050-5p —3.69 2.74E—03 stu-miR319b 2.06 0.00E+00
stu-miR7979 —3.69 2.74E—-03 stu-miR5304-5p 2.45 4.44E—06
stu-miR8004 —3.69 2.74E—03 stu-miR8008b 2.45 4.44E—06
stu-miR8045 —3.69 2.74E—-03 stu-miR7995 2.45 4.44E—06
stu-miR7122-5p —3.45 1.86E—21 stu-miR399g-3p 4.14 1.21E—03
novel_103 —2.40 8.42E—84 stu-miR8001b-3p 4.14 1.21E-03
stu-miR5303j —2.13 9.01E—07 stu-miR8014-3p 4.14 1.21E—03
stu-miR7984c-3p —2.13 9.01E—07 stu-miR8024a-5p 4.14 1.21E-03
stu-miR171d-5p —1.87 2.36E—05 stu-miR7990b 4.14 1.21E—03
novel 120 —1.87 5.85E-23 stu-miR167a-3p 4.14 1.21E—-03
stu-miR169f-3p —1.87 2.36E—05 stu-miR7983-5p 4.14 1.21E—03
stu-miR8032b-3p —1.87 2.36E—05 stu-miR166¢-5p 4.14 1.21E-03
stu-miR397-3p —1.59 6.32E—59 stu-miR8048-3p 4.14 1.21E—03
stu-miR164-5p —1.55 4.66E—04 stu-miR8012 4.14 1.21E—03
stu-miR7991a —1.55 4.66E—04 stu-miR5304-3p 4.14 1.21E-03
stu-miR8007a-3p —1.55 4.66E—04 stu-miR8018 4.14 1.21E-03
stu-miR8038a-5p —1.42 2.91E-07 stu-miR3627-3p 4.14 1.21E—03
novel 93 —1.33 3.38E—19 stu-miR6023 4.14 1.21E—03
novel_162 —1.28 3.82E—06 novel_182 4.14 1.21E-03
stu-miR7997a —1.28 3.82E—06 stu-miR8011a-3p 4.14 1.21E—03
stu-miR172d-5p —1.25 3.20E—-07 stu-miR5303c 5.14 1.01E—-05
stu-miR398a-3p —1.14 0.00E+00 stu-miR8028-5p 5.14 1.01E—-05

(continued on next page)
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Table 2 (continued)

MiRNA Log2 Qvalve MiRNA Log2 Qvalve
(RAP + KU)/ (RAP + KU)/
DMSO DMSO
novel 193 —-1.13 2.95E—-07 stu-miR8024a-3p 5.73 9.15E—08
stu-miR399a-5p —-1.13 5.49E—03 stu-miR8010 5.73 9.15E—08
novel_116 —1.13 1.58E—10
stu-miR5303 h —-1.13 2.39E-08
stu-miR7980b-5p —1.13 5.49E—03
novel_108 —1.01 7.44E—20

Integrative miRNA-mRNA expression and function analysis

In our previous study, our focus is on the relationship between auxin, TOR and adventitious
root formation (Deng et al., 2017). Our transcriptome data showed that a large number
of genes associated with root development were differentially expressed in potato seedling
under TOR inhibitor treatment. Loss of auxin signaling after TOR suppression results
in significant down-regulation of these genes (Morin et al., 2008; Deng et al., 2017). In
addition, a large number of genes related to biosynthesis and metabolism are differentially
expressed. How TOR affects the expression of these genes is still unclear. To further
determine the regulatory function of TOR at post-transcriptional level, we performed
miRNA-mRNA reverse correlation analysis to identify reliable miRNA and their targets.
In present study, thirteen up-regulated miRNAs and 14 down-regulated miRNAs were
corresponding to 47 down-regulated 82 up-regulated mRNAs, respectively (Tables S9A—
S9D). GO functional (Table SI0A-S10B) and KEGG pathway (Fig. 3) analysis showed that
the negatively correlated miRNA/mRNA interaction pairs participate in some key metabolic
processes such as lipid synthesis, amino acid metabolism, nitrogen metabolism, flavonoid
biosynthesis and so on. To validate the results of high-throughput sRNA sequencing, the
expression patterns of 8 miRNAs were analyzed by qRT-PCR. Meanwhile, to detect the
expression patterns of the targets identified by transcriptome analysis, 6 target genes were
selected for qRT-PCR analysis. The results showed that all the selected miRNAs and targets
shared similar expression tendency with the original results (Fig. 4).

Differentially expressed miRNAs were involved in some anabolic and
biosynthetic pathways

TOR, as a central regulator of anabolism, participates in many biosynthetic processes,
such as ribosome biosynthesis, and protein translation and synthesis. In the integrative
miRNA-mRNA data, DE miRNAs target genes also participate in many anabolism
processes. As shown in Fig. 3 and Table 3, differentially expressed miRNAs were involved
in phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis. On the other hand,
TOR also negatively regulates the synthesis of some metabolites, such as glucosinolates and
flavonoids. Suppression of TOR could up-regulated genes responsible glucosinolates and
flavonoids synthesis (Caldana et al., 2013). It was found that the differentially expressed
miRNAs target genes were also involved in the biosynthesis of flavonoids, suggesting that
TOR may regulate the biosynthesis of flavonoids relying on miRNAs. Interestingly, TOR, as
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Figure 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. (A) KEGG enrich-
ment based on down-regulated DEGs under the TOR inhibition. (B) KEGG enrichment based on up-
regulated DEGs under the TOR inhibition.
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Figure 4 Verification of the selected miRNAs and their potential target genes by qRT-PCR. Relative
expression levels of the selected six miRNAs (stu-miR8010, stu-miR5303c, stu-miR6023, stu-miR1886i,
stu-miR7985 and stu-miR3627) and their potential target genes (PGSC0003DMG400026112,
PGSC0003DMG400028214, PGSC0003DMG400008584, PGSC0003DMG400023703,
PGSC0003DMG402018257 and PGSC0003DMG401025397) were measured by RT-qPCR. U6 and
actin were used as internal control for miRNAs and mRNA RT-qPCR, respectively.

Full-size & DOLI: 10.7717/peerj.10704/fig-4

the core regulatory element of ribosomal biosynthesis, large number genes of ribosome was
differentially expressed in transcriptomics. But only few differentially expressed miRNAs
target genes were involved in ribosomal biosynthesis. These results indicated that miRNAs
are only part of TOR regulation networks in transcription and post-transcriptional level.
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Table 3 Differentially expressed miRNAs under the TOR inhibition in potato involved in catabolic process, anabolic process and biosynthetic

pathways.
MiRNA Target gene_id Log2FoldChange Pval Gene description
Ribosome
stu-miR8020 PGSC0003DMG400030153 —0.31601 1.55E—04 Ribosomal protein
L18a
Biosynthesis of amino
acids
stu-miR7983-5p PGSC0003DMG400022088 —0.40026 1.28E—07 Transketolase, C-
terminal
Cutin, suberine and
wax biosynthesis
stu-miR8011a-3p PGSC0003DMG400004844 —0.77456 4.95E—07 Glucose-methanol-
choline oxidoreduc-
tase, N-terminal
Phenylpropanoid
biosynthesis
stu-miR4376-3p PGSC0003DMG400020795 —2.9897 1.54E—06 Haem peroxidase,
plant/fungal/bacterial
stu-miR5303¢ PGSC0003DMG400003013 —0.60889 3.06E—04 Glycoside hydrolase
family 3
stu-miR7983-5p PGSC0003DMG400005872 —2.6826 2.42E—-19 Plant peroxidase
stu-miR4376-3p PGSC0003DMG400022541 —0.73675 1.21E—-03 Haem peroxidase,
plant/fungal/bacterial
stu-miR4376-3p PGSC0003DMG400020801 —3.3592 4.72E—10 Peroxidases heam-
ligand binding site
Ubiquinone and other
terpenoid-quinone
biosynthesis
stu-miR7997a PGSC0003DMG400021276 2.1196 3.17E—19 Pyridoxal phosphate-
dependent transferase,
major region, subdo-
main 1
stu-miR8045 PGSC0003DMG400017707 0.52448 3.78E—08 4-
hydroxyphenylpyruvate
dioxygenase
Phenylalanine, tyro-
sine and tryptophan
biosynthesis
stu-miR5303 h,stu- PGSC0003DMG400011282 1.4353 4.63E—03 Tryptophan synthase,
miR5303j beta chain, conserved
site
stu-miR7997a PGSC0003DMG400021276 2.1196 3.17E—19 Pyridoxal phosphate-

Isoquinoline alkaloid
biosynthesis

dependent transferase,
major region, subdo-
main 1

(continued on next page)
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Table 3 (continued)

MiRNA Target gene_id Log2FoldChange Pval Gene description

stu-miR7997a PGSC0003DMG400021276 2.1196 3.17E—19 Pyridoxal phosphate-
dependent transferase,
major region, subdo-
main 1

Pantothenate and CoA

biosynthesis

stu-miR5303 h,stu- PGSC0003DMG400013511 0.37163 1.54E—04 ATCOAA|Type II pan-

miR5303j,stu- tothenate kinase

miR7997a

Tropane, piperidine

and pyridine alkaloid

biosynthesis

stu-miR7997a PGSC0003DMG400021276 2.1196 3.17E—19 Pyridoxal phosphate-
dependent transferase,
major region, subdo-
main 1

Fatty acid elongation

stu-miR8004 PGSC0003DMG400014549 0.73372 1.65E—04 Thiolase-like

Carotenoid biosynthe-

sis

stu-miR5303 h,stu- PGSC0003DMG402018475 1.1371 1.49E—03 Cytochrome P450

miR5303j

Zeatin biosynthesis

stu-miR5303 h,stu- PGSC0003DMG400023732 1.0493 3.57E—08 UDP-

miR5303j glucuronosyl/UDP-
glucosyltransferase

Biosynthesis of unsat-

urated fatty acids

stu-miR8050-5p PGSC0003DMG400020620 0.40349 8.59E—06 ACX2|Acyl-CoA dehy-
drogenase/oxidase C-
terminal

Lysine degradation

stu-miR5303¢ PGSC0003DMG400001557 —0.33784 2.01E-03 Histone H3-K9
methyltransferase,
plant

Regulation of au-

tophagy

stu-miR5303 h,stu- PGSC0003DMG402022314 0.28852 2.09E—03 Ubiquitin-related do-

miR5303j,stu- main

miR7997a

stu-miR7997a PGSC0003DMG402012477 0.33886 3.04E—-04 Autophagy protein

Atg8 ubiquitin-like

(continued on next page)
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Table 3 (continued)

MiRNA Target gene_id Log2FoldChange Pval Gene description

Ubiquitin mediated

proteolysis

stu-miR5303 h,stu- PGSC0003DMG400003897 0.29401 1.31E—03 Zinc finger, RING-type

miR5303j,stu-

miR7997a

stu-miR5303 h,stu- PGSC0003DMG400019395 0.43331 9.66E—07 Ubiquitin-conjugating

miR5303j,stu- enzyme/RWD-like

miR7997a

Fatty acid degradation

stu-miR8050-5p PGSC0003DMG400020620 0.40349 8.59E—06 ACX2|Acyl-CoA dehy-
drogenase/oxidase C-
terminal

Valine, leucine and

isoleucine degradation

stu-miR5303 h,stu- PGSC0003DMG400011330 0.7956 4.46E—15 BCE2|Chloramphenicol

miR5303j acetyltransferase-like

domain

Differentially expressed miRNAs related to some catabolic processes
Catabolic pathways is another set of metabolism that breaks down large molecules (such
as lipids, polysaccharides, proteins and nucleic acids) into smaller unites (such as fatty
acids, monosaccharides, amino acids and nucleotides, respectively) which are either
oxidized to release energy or used in other anabolic reactions. Autophagy is a natural
regulated project of the cell that disassembles unnecessary or dysfunctional components
for turnover and recycling of intracellular macro molecules and whole organelles. In the
mammals, many miRNAs (such as miR-145, miR-181, miR-93-5p, miR-33 and miR-21)
(Zhang et al., 2017b) as the upstream regulator of TOR signaling pathway were shown
to modulate disease biogenesis through inhibiting autophagy. In this study, the KEGG
pathway “regulation of autophagy” was affected under the TOR suppression, and a total
of three down-regulated miRNAs as the downstream of the TOR signaling pathway were
targeting the autophagy-related genes (Table 3). Ubiquitination is a key posttranslational
modification carried out by a set of three enzymes: ubiquitin-activating enzyme (E1),
ubiquitin-conjugating enzymes (E2), and ubiquitin-protein ligase (E3). The “ubiquitin
mediated proteolysis” KEGG pathway was one of the most enriched pathways in the miRNA
data. A total of four differentially expressed ubiquitination-related miRNAs were observed
and three were significantly down-regulated (Table 3). These observations strongly support
the previous results in which TOR negatively regulated the catabolic process (autophagy
and ubiquitination) in yeast, mammals and plants (Xiong ¢ Sheen, 2014; Dong et al., 2015).
In previously studies, it has showed that suppression of TOR could lead to accumulation of
sugars and lipids in Arabidopsis (Caldana et al., 2013; Dobrenel et al., 2013). In this study, we
found that many miRNA targeted genes were involved in these metabolic processes. TOR
may influence the metabolic processes of sugars and lipids by regulating corresponding
miRNAs. Thus, our results showed that miRNAs may act as a bridge between TOR and
catabolism.
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DISCUSSION

MiRNAs play an important role in plant growth, development and stress response. Through
high-throughput sequencing technologies, many of the evolutionary conserved and novel
miRNAs were detected in different species. A large number of miRNAs are still unidentified
due to its low expression levels, tissue specificity or spatio-temporal expression specificity.
In this study, total of 193 known miRNAs and 79 novel miRNAs were identified, largely
increasing the number of miRNAs in potato. Furthermore, we found that the expression
of a large number of miRNAs was affected by TOR in potato. About 86 miRNAs were
differentially expressed between the libraries of TOR inhibition and the control, suggesting
TOR play a crucial role in regulation the expression of miRNA. The expression levels
of stu-miR5303c, stu-miR8010, stu-miR8024a-3p and stu-miR166¢-5p had remarkable
up-regulated differences, while that of stu-miR3627-5p, novel_111, stu-miR169a-3p and
stu-miR1886h, etc., had remarkable down-regulated differences. These data suggested TOR
plays a crucial role in regulation the expression of miRNA. The functions of these miRNAs
have been reported in other species, such as miR156, miR164 and miR319 et al. The role of
miR156 in controlling flower development is highly conserved in rice, tomato and maize
(Hong & Jackson, 2015). MiR164 can target to NAC transcription factors to modulate root
development and drought resistance in Z. mays and rice, respectively (Li et al., 2012; Fang,
Xie & Xiong, 2014). Zhao et al. (2015) showed that miR319/TCP4 module played a crucial
role in systemic defensive response in tomato. In addition, the role of these differentially
expressed miRNAs was partially revealed in potato as well, such as miR156, miR172 and
miR169. MiR156 and miR172 is involved in regulating developmental timing in Arabidopsis
(Wu et al., 2009). Consistently, miR156 and miR172 affect not only flowering time, but also
the timing of tuberization in potato. Similarly, miR169 is conserved related with salt stress
in potato and other species (Yang et al., 2016; Zhao et al., 2009; Luan et al., 2015). Indeed,
it has been reported that both TOR and miRNAs are involved in many different signaling
pathways to regulate plant growth and development in previous studies (Jones-Rhoades,
Bartel & Bartel, 20065 Shi, Wu ¢ Sheen, 2018). Whether TOR can regulate plant growth
and development through these known miRNAs identified in this study may be a field
worthy of research. In addition, many differentially expressed miRNAs identified in this
study are unknown function miRNAs. Integrated mRNA and miRNA expression profiling
will be helpful to predict the function of these unknown miRNAs. In this study, through
the combined analysis of miRNAomics and transcriptomics, the obtained RNA-miRNA
regulatory networks partially reveal the function of TOR in post-transcriptional regulation.
Our data revealed more than 120 miRNA-mRNA regulatory networks involved in TOR
signaling and thus provided circumstantial evidence for miRNAs involving in the role of
TOR in modulating gene expression at post-transcriptional level. These data will provide
valuable information for further investigation of the molecular mechanisms of miRNA
involved in the TOR signaling pathway.

TOR as a core regulator of cell growth can regulate the many biological process of the
organism at different levels such as: gene transcription, protein translation and synthesis
and metabolic processes. A number of transcriptome analyses have showed that TOR was
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involved in the regulation of genes expression at transcriptional level in plants (Dong ef al.,
2015; Caldana et al., 2013; Song et al., 2017; Xiong et al., 2013). It had found that some
transcription factors are involved in TOR signaling pathway in mammals, such as SREBP]I,
HIFla and YY1 (Laplante ¢ Sabatini, 2012; Zoncu, Efeyan & Sabatini, 2011; Li et al., 2011;
Porstmann et al., 2008; Cunningham et al., 2007). In addition, Xiong ¢ Sheen (2014) and
Xiong et al. (2013) had firstly found the transcription factors E2Fa and E2Fb which could
directly activate by TOR kinase in Arabidopsis. However, compared with the thousands
differential expression genes after TOR inhibition, transcription factors directly regulated
by TOR signaling pathway are very limited. In previous studies, it has shown that miRNAs
can target to signaling proteins, enzymes, transcription factors and other genes, and Cui et
al. declare that miRNAs preferentially target the downstream components of the adaptors,
which have potential to recruit more downstream components, such as TFs based on
bioinformatics analysis (Cui et al., 2006). In this study, we found that many differentially
expressed miRNAs can target to TFs, such as miR164, miR156, miR169, miR172 and so
on (Jiao et al., 2010; Wu et al., 2009; Zhao et al., 2009; Guo et al., 2005). In addition, we
also found that some function unknown miRNAs can target to TFs based on integrated
mRNA and miRNA expression profiling, such as miR5303j- PGSC0003DMG400028381 (a
WRKY transcription factor) module and miR8050- PGSC0003DMT400021748 (a GRAS
transcription factor) module. Furthermore, Cui et al. showed that variation of expression
of miRNA targets is significantly lower than that of other genes in different species
(Cui et al., 2007), implying that TOR-miRNA-mRNA(TF) module may be an important
complement to TOR- substrate and TOR-TFs pathway in TOR-related conserved functions
in eukaryotes, such as ribosome biosynthesis and lipid synthesis (Shi, Wu ¢ Sheen, 2018).
On the other hand, our data showed that differentially expressed miRNAs only participates
in part of the function of TOR, suggesting that the regulation of gene transcripts by
TOR signaling may rely on transcription factors at transcriptional level and other long
non-coding RNA at transcriptional or post-transcriptional level. As an important cash crop,
potato tubers contain abundant sugar, protein and other nutrients. TOR is a core regulator
of metabolism in eukaryotes. MiRNAs also play key roles in many biological processes
in animals and plants (Vaucheret, 2006; Shabalina & Koonin, 2008). How to modify these
signals to regulate potato metabolism and optimize the nutritional value of potato tuber
(secondary metabolites, lipid content and fatty acid composition, starch content or amino
acid content) is a future course. In our current study, we predicted multiple TOR-miRNA-
RNA regulatory networks for its relevance in biological metabolism. However, their roles
in potato growth and development and application values in crop improvement needs
further study.

CONCLUSION

In conclusion, we identified 86 miRNAs that are regulated by TOR signaling in potato.
Combined miRNAomics and transcriptomics analysis, more than 120 miRNA-mRNA
regulatory networks were identified. These miRNAs may participate in TOR-related

pathways including ribosome biosynthesis and lipid synthesis. Our results indicated a
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need for further experimental studies to reveal the role of TOR-related miRNAs in potato
improvement.
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