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Abstract
Coronavirus disease 2019 (COVID-19) is a current global illness triggered by severe acute respiratory coronavirus 2 (SARS-
CoV-2) leading to acute viral pneumonia, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and cytokine 
storm in severe cases. In the COVID-19 era, different unexpected old drugs are repurposed to find out effective and cheap 
therapies against SARS-CoV-2. One of these elected drugs is nitazoxanide (NTZ) which is an anti-parasitic drug with potent 
antiviral activity. It is effectively used in the treatment of protozoa and various types of helminths in addition to various 
viral infections. Thus, we aimed to elucidate the probable effect of NTZ on SARS-CoV-2 infections. Findings of the present 
study illustrated that NTZ can reduce SARS-CoV-2-induced inflammatory reactions through activation of interferon (IFN), 
restoration of innate immunity, inhibition of the release of pro-inflammatory cytokines, suppression of the mammalian target 
of rapamycin (mTOR), and induction of autophagic cell death. Moreover, it can inhibit the induction of oxidative stress 
which causes cytokine storm and is associated with ALI, ARDS, and multi-organ damage (MOD). This study concluded 
that NTZ has important anti-inflammatory and immunological properties that may mitigate SARS-CoV-2 infection-induced 
inflammatory disorders. Despite broad-spectrum antiviral properties of NTZ, the direct anti-SARS-CoV-2 effect was not 
evident and documented in recent studies. Then, in silico and in vitro studies in addition to clinical trials and prospective 
studies are needed to confirm the beneficial impact of NTZ on the pathogenesis of SARS-CoV-2 infection.

Keywords Acute lung injury · Acute respiratory distress syndrome · Anti-inflammatory · Antiviral · Oxidative stress · Pro-
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Background

Coronavirus disease 2019 (Covid-19) is a recent worldwide 
infectious disease triggered by severe acute respiratory 
coronavirus 2 (SARS-CoV-2). This virus could lead to 
various consequences including pneumonia, acute lung 
injury (ALI), acute respiratory distress syndrome (ARDS), 
and cytokine storm in severe cases. In general, Covid-19 is 
asymptomatic or presented with mild symptoms in 85% [1].

In the Covid-19 era, different unexpected old drugs are 
repurposed to find other alternatives with effective and cheap 
properties against SARS-CoV-2. One of these elected drugs 
is nitazoxanide (NTZ) which is an anti-parasitic drug with 
antiviral activity. It was effectively used in the treatment 
of protozoa and various types of helminths in addition to 
various viral infections. NTZ is commonly used in the 
treatment of Giardia intestinalis and Cryptosporidium 
parvum and has been reproduced for the management of 
influenza [2]. As well, NTZ is effective in the management 
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of hepatitis B virus (HBV) and has some efficacy against 
hepatitis C virus (HCV) [3].

History of NTZ

NTZ is a nitrothiazole benzamide derivative (2-acetyloxy-
N-5-nitro-2-thiazolyl) (Fig. 1). It was first used in 1975 as an 
anthelminthic agent against liver trematodes and intestinal 
cestodes as described by Jean Francois Rossignol [4].

It has been used worldwide mainly in Latin America 
as an anthelminthic drug since 1996. In 2002, Food and 
Drug Administration (FDA) approved NTZ as a therapy 
for diarrhea caused by Cryptosporidium species and G. 
intestinalis in children, and in 2004 for G. intestinalis in 
adults [4]. NTZ is also effective against anaerobic bacteria 
mainly Helicobacter pylori, Bacteroids, and Clostridium 
species [5]. The main mechanism of NTZ against anaerobic 
bacteria and protozoa is through inhibition of the pyruvate-
ferredoxin oxidoreductase (PFOR) enzyme, which is 
necessary for anaerobic energy metabolism, however, its 
main antiprotozoal mechanism of action is unknown [5].

Dosage forms and pharmacokinetic 
properties of NTZ

NTZ may be administered as an oral suspension 
(100 mg/5 mL) or tablet (500 mg), which are used twice 
daily for three consecutive days only. Absorption of NTZ is 

enhanced by food, 25% of the absorbed oral dose is excreted 
in urine and 75% by the bile [6]. Plasma concentration of 
NTZ following oral absorption is 2 mg/L within 2–4 h 
and its urinary elimination time is about 7.3 h. NTZ is 
characterized by high plasma protein binding (> 99%), and 
it is metabolized in plasma by the action of plasma esterase 
to form des-acetyl derivatives (des-acetyl-nitazoxanide) 
like tizoxanide (TTZ) which is also active [7]. TTZ then 
undergoes conjugation, primarily by glucuronidation to 
form tizoxanide glucuronide which is the major human 
metabolite of NTZ and it is known to retain some activity 
in its own right [8] as shown in Fig. S1. Different in vitro 
studies showed that NTZ and TTZ has no inhibitory effect 
on the cytochrome P450, therefore it is expected that no 
important drug interactions would occur when NTZ is 
co-administrated with other drugs [7].

Antiviral effects of NTZ

Different investigations and laboratory studies disclosed 
that NTZ has broad-spectrum antiviral activity, so 
remarkable efforts tried to apply this effect in clinical 
practice. Consequently, new pharmaceutical preparations of 
controlled-released NTZ to deliver this drug are developed. 
It has been shown that NTZ and its active metabolite TTZ 
inhibit the replication of 16 strains of influenza H1N1 
and one strain of influenza B [9]. A previous study [10] 
illustrated that NTZ synergized the effect of oseltamivir 
against influenza A HINI and avian A H5N9. The anti-
influenza mechanism of NTZ is through inhibition of the 
maturation of viral hemagglutinin at the post-translational 
step. However, NTZ had no effects on viral neuraminidase, 
M2 protein, viral entry, viral adsorption, and infectivity [11]. 
Moreover, NTZ potentiates the production of interferon-
alpha (IFN-α) and beta from the fibroblasts, which also have 
inhibitory effects on the maturation of influenza H1N1 [12].

NTZ is also effective against norovirus and rotavirus 
that can cause viral gastroenteritis. It was illustrated that 
NTZ alone or in combination with ribavirin represents an 
effective promising therapeutic modality against norovirus 
gastroenteritis mainly in immunocompromised patients [13].

Different clinical trials and studies revealed that NTZ is 
efficient against HBV and HCV infections. A clinical trial 
involving 12 adults having chronic HBV treated by NTZ 
for one year showed that eight patients became HBV-Ag 
negative and four patients were still HBV-Ag positive. Then, 
within three months, three of the four HBV-Ag positive 
patients became HBV-Ag negative [3]. Similarly, Nikolova 
et  al. [14] reported that NTZ is considered a potential 
alternative drug alone or when added to the standard 
protocol for the management of chronic HCV. NTZ inhibits 
HCV through activation of protein kinase which is important Fig. 1  The chemical structure of NTZ
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for innate immune response. Moreover, it can attenuate 
the HCV-induced cytopathic effect and disrupt the viral 
structural proteins via depletion of the intracellular  Ca2+ 
store in the endoplasmic reticulum [15]. In addition, NTZ 
can suppress the replication of Flaviviridae viruses such as 
dengue virus, yellow fever virus, and Japanese encephalitis 
virus via inhibition of the viral adsorption and entry. Of 
interest, NTZ may synergies drugs that are used against 
human immune deficiency virus (HIV), mainly reverse 
transcriptase and integrase inhibitors. It may reduce the 
infectivity of HIV through attenuation of the viral entry and 
reverse transcription [11].

Antiviral effects of NTZ analogs

Moreover, because of the possible biological properties, 
structurally adapted NTZ-based analogs or structurally 
connected molecules were synthesized and investigated 
for their biological activity. Besides, recently synthesized 
analogs of NTZ seemingly have protuberant antiviral 
activity even in some cases better than the parent drug 
NTZ itself [16]. Though NTZ and some of its analogs 
were examined for a wide variety of biological activities, 
heteroaryl amide analogs were not screened for several 
bioactivities. Furthermore, NTZ-based analogs might be 
effective as antiviral agents against SARS-CoV-2 and, 
therefore, the synthesis of new series of molecules could 
be effective in the management of COVID-19 [17]. As well, 
second-generation nitazoxanide derivatives: thiazolides are 
effective inhibitors of the influenza A virus. Thiazolides are 
the most common derivatives of NTZ, the mode of action of 
the thiazolides is under ongoing investigation, but there is 
no evidence that they are acting directly against viral RNA 
or protein. In the case of influenza A, it has been shown 
that thiazolides act at a post-translational level after entry 
into the cell, between the endoplasmic reticulum and the 
Golgi apparatus, preventing the maturation of the viral 
hemagglutinin [18]. Intracellular transport and insertion 
into the host plasma membrane are thereby both impaired. 
Since thiazolides are selectively acting on hemagglutinin 
without targeting neuraminidase, it might be expected that 
they would retain good activity against influenza A virus 
strains resistant to amantadine or oseltamivir. Certainly, both 
in vitro and clinical trials referred to a good synergy between 
nitazoxanide and oseltamivir is observed, and the lack of 
direct action against viral RNA or protein should lessen the 
development of resistance. In support of this, we note that 
in the case of hepatitis C as well as IAV (PR8 strain) it was 
shown that generation of resistant strains was not observed 
following challenge with nitazoxanide; indeed, susceptibility 
toward other directly acting antivirals was unaffected. 

These results are consistent with a cell-mediated, not virus-
mediated, effect of NTZ [19].

NTZ and COVID‑19

Coronaviruses (CoVs) are enveloped, positive-sense single-
strand RNA viruses, and characterized by a large genomic 
size ranging from 27 to 34 kb. CoVs triggering mild human 
respiratory tract infections include HCoV-22E, HCoV-NL63, 
HCoV-OC43, and HCoV-HKU1 [20, 21]. However, highly 
pathogenic beta-CoVs including SARS-CoV and the Middle 
East Respiratory Syndrome CoV (MERS-CoV) led to 
pandemic and epidemic serious diseases [11, 22]. Various 
studies reported that NTZ could inhibit the replication of 
canine CoV-S378, bovine CoV, murine CoV, and human 
enteric CoV. Both NTZ and its active metabolite inhibit 
MERS-CoV cultured in LLC-MK2 cells [23, 24].

SARS-CoV-2 has a genomic similarity with MERS-CoV 
in about 50% and with SARS-CoV in about 79%. However, 
SARS-CoV-2 has lower pathogenicity but with higher 
transmissibility rate compared with SARS-CoV [25, 26]. 
Therefore, drugs that were effectively used in the control 
of both SARS-CoV and MERS-CoV like NTZ might be 
effective as a therapeutic approach for COVID-19 [27].

In COVID-19, SARS-CoV-2 binds to the highly 
expressing angiotensin-converting enzyme 2 (ACE2) 
receptors on certain cells such as pulmonary alveolar type 
II pneumocytes, endothelial cells, and lung macrophages 
(Al-Kuraishy et al.,2021i). The binding of SARS-CoV-2 
to the ACE2 receptors is facilitated by the host cellular 
trans-membrane protein serine 2 (TMPRSS2) via trimming 
of SARS-CoV-2 spike protein (SP) [28]. Entry of SARS-
CoV-2 into the affected cells induces cytopathogenic 
effects and immunological reactions with subsequent 
induction of pyroptosis and release of damage-associated 
molecular patterns (DAMPs) [29]This process is detected 
by specific toll-like receptors (TLR) 7 and 8 on the nod-
like receptor pyrin 3(NLRP3) inflammasomes which acts as 
RNA sensor. Activation of cellular NLRP3 inflammasomes 
stimulates the release of nuclear factor kappa B (NF-κB), 
which triggers alveolar macrophages for the production and 
discharge of pro-inflammatory cytokines as interleukins 
(IL-6 and IL-8), macrophage inflammatory protein-1 alpha 
(MIP-1α), and tumor necrosis factor-alpha (TNF-α) [30]. 
These pro-inflammatory cytokines activate the immune 
cells such as monocytes, macrophages, and activated T 
cells for the elimination of SARS-CoV-2 (Al-Kuraishy 
et al.,2021 l). This process is controlled by type I interferon 
(IFN) response to diminishing the viral replication and the 
cytopathic effect in the early phase of COVID-19 [31]. 
Nevertheless, down-regulation of type I IFN by SARS-
CoV-2 leads to immunological escape with overproduction 
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of pro-inflammatory cytokines and abnormal immune 
response [32]. This unbalanced immune response triggers 
the synthesis and discharge of the pro-inflammatory 
cytokines and induction of cytokine storm-induced ALI, 
ARDS, and MOD [33] (Fig. 2).

NTZ prevents SARS-CoV-2-induced IFN down-
regulation; thereby it suppresses the immunological escape 
and development of cytokine storm. Precisely, non-structural 
protein-1 (NP1) of SARS-CoV-2, inhibits mRNA of IFN-
β, while NP15 and N proteins block the IFN pathway. In 
this concern, NTZ prevents SARS-CoV-2-induced IFN 
reduction with the activation the endogenous IFN synthesis 
and release [13] IFN pathway is necessary in the prevention 
of different viral infections, mainly in the case of SARS-
CoV. It was stated that SARS-CoV with defective NP15 
did not affect host-innate immunity, while SARS-CoV with 
competent NP15 leads to lethal immunological reactions 
due to reduction of IFN in mice [13, 34]. SARS-CoV NP15 
has a 90% similarity with that of SARS-CoV-2, therefore 
inhibition of SARS-CoV-2 NP15 by antiviral agents or 
attenuation of its inhibitory effect on the IFN pathway by 
the action of NTZ might be an advantageous modality in the 
control of COVID-19 [34]. NTZ may cause severe reduction 
in case of SARS-CoV-2 infection through intensification of 
IFN pathway, augmentation of cytoplasmic RNA sensing, 
depleting of ATP-sensitive  Ca2+ store, phosphorylation 
of protein kinase, inhibition of cellular translation, and 
impairment of viral replications [35].

Similarly, NTZ can reduce the inflammatory burden and 
development of cytokine storm during SARS-CoV-2. This 
could be attained via inhibition of the pro-inflammatory 
cytokines like IL-1β, IL-6, IL-13, and TNF-α with activation 
of the anti-inflammatory cytokines like IL-10 [36]. Miner 
et al. [37] illustrated that NTZ has an important effect in 
the management of various respiratory illnesses such as 
asthma and other chronic obstructive pulmonary diseases. 
They stated that NTZ can inhibit  Ca2+ activated  Cl− channel 
(TMEM16A); therefore, NTZ may prevent SARS-CoV-
2-induced bronchoconstriction and other respiratory 
complications. Cadegiani et al. [38] experimental study 
illustrated that NTZ derivatives attenuate ALI via inhibition 
of the discharge of the pro-inflammatory cytokines and 
oxidative stress. Thus, NTZ might be an effective drug in 
the management and prevention of SARS-CoV-2-induced 
ALI similar to that of chloroquine and ivermectin [38]. Thus, 
the combination of NTZ and hydroxychloroquine is used in 
managing COVID-19 to overcome SARS-CoV-2-induced 
deregulation of the innate immune system [39]. Besides, 
restoration of the activity of the innate immune system is 
achieved in COVID-19 cases through using a combination 
of NTZ and azithromycin [40].

Taken together, NTZ alone or in combination with other 
immunomodulating agents may affect the COVID-19 course 
through up-regulation of the immune response, down-
regulation of SARS-CoV-2-induced immune dysfunction, 

Fig. 2  Abnormal and normal 
immune response in SARS-
CoV-2 infection. The binding 
of SARS-CoV-2 to ACE2 
expressing cells is facilitated by 
cellular TMPRSS2. SARS-
CoV-2 leads to cytopathic 
effects which are mitigated 
through activation of type I IFN 
immune response leading to 
resolution. However, inhibition 
of type I IFN immune response 
by SARS-CoV-2 leads to 
immunological escape with the 
development of ALI, ARDS, 
and MOD. NTZ blocks the 
inhibitory effect of SARS-
CoV-2 on the type I IFN 
response
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and attenuation of cytokine storm-induced ALI and ARDS 
[16, 40].

NTZ has a large safety profile in a dose-dependent 
manner and it is marginally safe in pregnancy (category 
B). Therefore, NTZ therapy was elucidated for managing 
COVID-19 in pregnant women in Mexico. A prospective 
study in Mexico involved 20 hospitalized pregnant women 
with COVID-19 treated with NTZ 600 mg for five days and 
illustrated that NTZ is effective in the control of COVID-
19 pneumonia [41]. In the bargain, Rocco et  al. [42] a 
randomized and placebo-controlled trial involving 392 
patients suffering from mild symptoms of COVID-19, of 
these 198 were treated by placebo and 194 were treated 
with NTZ 500 mg/day for five consecutive days. Following 
the five days, the viral load was reduced significantly in the 
NTZ-treated group only when compared to the placebo. 
However, the secondary outcomes weren’t significantly 
different, suggesting that NTZ is effective against COVID-
19 pneumonia but doesn’t accelerate the resolution. Besides, 
a randomized clinical trial was done in December 2020 
to illustrate the effect of hydroxychloroquine alone or in 
combination with NTZ on the outcomes of the mechanical 
ventilation in the severe illness of COVID-19 [43].

Immunological effects of NTZ in COVID‑19

NTZ in addition to its modulator effect on the IFN pathway, 
is regarded as a potent autophagy activator. It has been 
reported that autophagy activators, like ivermectin, have an 
important role in inducing the cytoplasmic degradation of 
SARS-CoV-2 infected cells [44]. Induction of autophagic 
cell death is beneficial in regulating and controlling the 
duration and level of inflammation. As the necrotic cells 
are regarded as potent activators of the inflammatory 
response in the neighbored immune cells, thus, removal of 
the necrotic cells as part of the autophagic function may 
prevent the inflammatory reaction and inhibit the discharge 
of the pro-inflammatory cytokines [45]. Hence, induction 
of autophagic death by NTZ might be behind its beneficial 
impact in COVID-19.

Of note, both mitogen-activated protein kinase (MAPK) 
and NF-κB are activated by SARS-CoV-2 proteins causing a 
trigger of the pro-inflammatory cytokines and inflammatory 
burst [46]. Shou et al. [47] illustrated that NTZ is regarded as 
a potent inhibitor of MAPK and NF-κB signaling pathways; 
thereby it may mitigate the inflammatory reactions in 
COVID-19.

In addition, the mammalian target of rapamycin 
(mTOR) is activated by SARS-CoV-2 infection causing 
severe inflammation in the lung and facilitating the 
binding of SARS-CoV-2 to the ACE2 with progress to 
lung lymphangioleiomyomatosis [48]. As well, the mTOR 

pathway is regarded as a negative regulator of the cell 
autophagy which might enhance the viral infection-induced 
inflammatory reactions [49]. Lam et al. [50] illustrated that 
NTZ inhibits autophagy through suppression of mTOR, 
thereby NTZ might have a potential effect on mitigation of 
SARS-CoV-2 pathogenesis and its associated inflammatory 
illnesses. Furthermore, NTZ has also shown noteworthy 
immunomodulation activities, inhibiting macrophages 
activity and production of pro-inflammatory cytokines 
[51]. Different recent studies recognized that macrophage 
activation syndrome and the high pro-inflammatory 
cytokines may be driven by SARS-CoV-2 infection causing 
the progress to ALI and ARDS [52].

On the other hand, IL-6 is regarded as a potential 
predictor of severity of COVID-19 and is often correlated 
with ALI and ARDS [53]. NTZ may reduce the severity of 
COVID-19 via inhibition of IL-6 [54]. The mechanism of 
this inhibition is unidentified and believed to be through the 
suppression of autophagy [55].

In addition, SARS-CoV-2 infection induces direct 
oxidative stress injury due to acute infection or indirectly 
through augmentation of Ang II level and reduction of Ang 
1–7 levels [56]. It is well-known that Ang II is regarded 
as nicotinamide adenine dinucleotide phosphate (NADPH) 
enhancer while Ang1-7 is NADPH inhibitor [57]. Besides, 
the high oxidative stress that is usually occurring in case of 
SARS-CoV-2 infection is related to the activity of protein 
disulfide isomerase (PDI) which is an important regulator of 
oxidative stress. So, the reduction of PDI is accompanying 
an increased COVID-19 severity [58]. It has been shown that 
NTZ has a significant antioxidant effect and it can reduce 
endothelial dysfunction and the endoplasmic reticulum 
(ER) stress [59]. Thereby, it may reduce the oxidative stress 
brought by SARS-CoV-2 infection. The net effects of NTZ 
on the inflammatory process and the immunological profile 
in patients suffering from COVID-19 are summarized in 
(Fig. 3).

Taken together, in virtue of its anti-inflammatory, 
ant ioxidant ,  and inhibi t ion  of  inf lammator y 
signaling pathways, NTZ inhibits the propagation of 
immunoinflammatory disorders in patients with SARS-
CoV-2 infection. The direct anti-SARS-CoV-2 effect of NTZ 
was not confirmed, though a recent study revealed that NTZ 
may interfere with N-glycosylation of SARS-CoV-2 spike 
protein [60]. Likewise, Riccio et al. [61] observed that NTZ 
blocks the maturation of SARS-CoV-2 spike protein and 
fusion activity with ACE2 with an effect independent of 
emergence spike variants (Riccio et al., 2022). Therefore, 
NTZ might be an effective agent used in the prophylaxis and 
treatment of mild to severe SARS-CoV-2 infection including 
the variant strains.

The present study had several limitations including; 
limitations of the molecular and immunological studies that 
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confirm the potential role of NTZ. Therefore, in silico and 
in vitro studies as well as, clinical trials and prospective 
studies are recommended for evaluating the effect of NTZ 
on the pathogenesis of SARS-CoV-2 infection.

Conclusion

NTZ has important anti-inflammatory and immunological 
properties that could mitigate the complications induced 
by SARS-CoV-2 infection. Despite the broad-spectrum 
antiviral properties of NTZ, the direct anti-SARS-CoV-2 
effect was not evident and documented in the recent studies. 
Therefore, more future studies are needed to evaluate the 
beneficial outcomes of NTZ in COVID-19.
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