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Abstract: Biopolymers have several advantages for the development of drug delivery systems, since
they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their
most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers
have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite
charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional
versatility. Although only one natural polycation—chitosan has been widely explored until now, it
has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among
others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage
forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary
potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both
local and systemic treatments. The advantages observed for these formulations include the increased
bioavailability or residence time of the formulation in the administration zone, and the avoidance of
invasive administration routes, leading to greater therapeutic compliance.

Keywords: naturally occurring polyelectrolyte; mucoadhesion; polyelectrolyte complex; drug deliv-
ery systems; polyelectrolyte multilayers

1. Introduction

Naturally occurring polymers can be obtained from renewable natural sources such
as animals, plants, or fungi. These biopolymers can be divided into proteins, such as
albumin and zein, and polysaccharides, including chitosan and pectin [1]. Interest in
biomacromolecules for medical applications has grown in recent years as they are nontoxic,
non-immunogenic and can be degraded by in vivo enzymes. Their metabolites have low
toxicity to organisms, and they are also capable of controlled drug release due to their
swelling capacity. Another advantage is that these polymers can generally be chemically
modified thank to the moieties on the chains of these biomacromolecules, which gives
them a great versatility for medical objectives [1].

Many biopolymer-based healthcare materials have recently been explored, such as
drug delivery designs; some of them have already been approved for clinical use, and
biopolymers are widely employed as excipients in the pharmaceutical industry [2]. Fur-
thermore, most of the natural polymers are mucoadhesive, which makes them interesting
candidates for the development of drug delivery systems intended for the sustained release
of drugs in the different mucous membranes (i.e., ocular, nasal, buccal or vaginal) [3].
Moreover, biopolymers have proven capable of biomimicking the native extracellular
matrix and a judicious choice of the processing method may enhance this feature. Accord-
ingly, different techniques, such as electrospinning or 3D printing, are presently being

Polymers 2021, 13, 2241. https://doi.org/10.3390/polym13142241 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-8188-5001
https://orcid.org/0000-0003-4151-1758
https://orcid.org/0000-0001-9925-5051
https://doi.org/10.3390/polym13142241
https://doi.org/10.3390/polym13142241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13142241
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13142241?type=check_update&version=1


Polymers 2021, 13, 2241 2 of 27

explored for the manufacture of biopolymer-based healthcare materials, including wound
dressings or scaffolds for tissue engineering [4–6]. Furthermore, biopolymers have been
used as coating agents in tissue engineering with numerous advantages, such as the
improvement of osteogenic expression or the inhibition of biofilm formation while pro-
viding anti-inflammatory effects. Interestingly enough, these coatings can be loaded with
drugs and nanoparticles, acting as drug delivery systems [7]. Pectin or chitosan are some
representatives of this application for biopolymers [8,9].

However, the use of biopolymers in tissue engineering or as drug carriers is compli-
cated due to their broad molecular weight distributions, their batch-to-batch variability and
their short shelf-life [5,10,11]. To overcome these drawbacks, the introduction of functional
moieties onto the polymer backbone is a widely studied strategy. For instance, reactive
groups of chitosan allow different derivatives to be obtained, such as acetylated chitosan,
alkylated chitosan or carboxylated chitosan, among others. These modifications lead to
alterations in the physicochemical characteristics that can be exploited for the development
of healthcare materials. Although to a lesser extent, other biopolymers have been modified
to the same end, such as xanthan gum, guar gum or pectin [12–14]. Nonetheless, biopoly-
mer derivatives that arouse the most interest in the field are thiomers, also known as
thiolated polymers, which are obtained through the immobilization of sulfhydryl-bearing
molecules onto the polymer chain [15]. Both anionic and cationic biopolymers can be
thiolated, including chitosan, alginate or pectin [13,16–18]. Biopolymer-based thiomers are
known to be promising polymer derivatives, as there are different properties that can be
improved compared to the native polymer, such as mucoadhesion or mechanical properties.
These features are valued for the development of drug delivery systems, as they can result
in sustained drug releases and longer residence times in the release zone [19]. On the other
hand, natural polymers can be combined into polyelectrolyte complexes (PECs), which
are the result of the interaction of an anionic and a cationic polymer. These structures
also make it possible to optimize the properties of biopolymers, which is why they are
increasingly being investigated in the development of healthcare materials [20].

In this manuscript, (i) the main characteristics of the most commonly used naturally
occurring polyelectrolytes are detailed, (ii) the main properties, methods of manufacturing
and applications of biopolymer-based polyelectrolyte complexes based on natural polymers
are described and (iii) the scientific literature based on the use of polyelectrolyte complexes
for the manufacture of mucoadhesive drug delivery systems is reviewed.

2. Naturally Occurring Polyelectrolytes

Naturally occurring polyelectrolytes (PEs) are linear or branched biopolymers in
which a substantial proportion of the constituent units are ionizable or ionic groups. These
macromolecules can therefore dissociate on dissolving in a polar solvent such as water,
resulting in the charge of the backbone and generating a polyion. The charge on the
repeating units of the PE is neutralized by oppositely charged smaller counterions which
preserve the electroneutrality, so after dissociation, these counterions are released into the
medium. The polymer chains are generally observed to extend upon dissociation, due to
the repulsion between electrostatic forces. Adding a counterion to the medium (in the form
of a salt) leads to the screening of the electrostatic interactions, and hence to the contraction
of the polymer coils [21,22].

PEs are neutral macromolecules in their native form but have unique properties after
dissociation due to their electrostatic interactions, which translates into great potential for
their application in the field of drug delivery [20,23]. These properties include particularly
their water solubility, ionic conductivity, strong intrachain and interchain interactions,
interaction with ions (small molecules or PEs), and surface activity [24]. With this backdrop,
various combinations of PEs have been explored: oppositely charged PEs, PE–micelles,
PE–protein or oppositely charged block copolymers [25].

Both polycations and polyanions can mucoadhere through different mechanisms.
Mucoadhesion in polycations, which are protonated at physiological pH, takes place
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mainly by electrostatic interactions with mucin, negatively charged due to the presence
of sialic acid. Although electrostatic repulsion could be expected in the case of anionic
polymers, Van der Waals, hydrogen bonds and hydrophobic interactions all play a vital
role in the mucoadhesion process [26].

2.1. Classification

PEs can be classified into different groups:

1. Depending on the ionizable groups:

a. Polyanions
b. Polycations
c. Polyampholytes

i. Annealed
ii. Quenched
iii. Betainic

2. Depending on the dissociation ability:

a. Strong
b. Weak

3. Depending on the charge location:

a. Integral
b. Pendant

4. Depending on the composition:

a. Homopolymers
b. Heteropolymers or copolymers

5. Depending on the origin:

a. Natural (biopolymers or biopolyelectrolytes)
b. Semisynthetic
c. Synthetic

The main division is based on their ionizable groups. These groups can be either acidic–
commonly known as polyacid or polyanion—or basic—called polybase or polycation. If
the macromolecule contains both acidic and basic groups along their backbone, these PEs
are called polyampholytes [23], which can be sorted into three classes: annealed, quenched
and betainic (also known as zwitterionic). If the acidic and basic monomers are ionized de-
pending on the pH of the medium, the polyampholyte is described as annealed. If charged
cationic and anionic monomers retain their respective charges independently of the pH, the
polyampholyte is classified as quenched. Betainic—or zwitterionic—polyampholytes con-
tain identical numbers of fully charged anionic and cationic groups in the same monomer
units. These macromolecules therefore compensate the cationic–anionic monomer pairs,
without the need for counterions [27].

PEs dissociate in aqueous media under appropriate conditions determined by each
PE. PEs can be classified into strong or weak depending on their degree of dissociation in
aqueous media. Strong PEs generally dissociate independently of the pH of the medium,
whereas the dissociation of weak PEs is strongly conditioned by the pH [23].

Another interesting classification is based on the location of the charge; if the charged
groups are integrated into the backbone chain, the PE is classified as integral; and if the
charged groups are attached as side groups, the PE is described as pendant [23].

According to the characteristics of the molecule, if the macromolecule is composed of
only one type of repetitive unit (or monomer), it is called homopolyelectrolyte; and if two
or more monomers form the backbone of the PE, it is classified as heteropolyelectrolyte or
copolyelectrolyte [20].

Lastly, PEs can be divided according to their origin as either natural PEs (biopolymers
or biopolyelectrolytes, such as proteins or polysaccharides), semisynthetic PEs (such as
carboxymethylcellulose) or synthetic PEs (such as sulfonated polystyrene) [24].
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2.2. Biopolycations
Chitosan

Among the industrially relevant natural polysaccharides, chitosan is the only high
molecular weight cationic biopolyelectrolyte; the other naturally occurring polysaccharides
for industrial uses are either neutral or anionic [28,29].

Chitosan, composed of glucosamine and N-acetyl-glucosamine, is the name given
to a group of naturally occurring polysaccharides which can be directly extracted from
various fungi [30], although it is usually produced by the alkaline deacetylation of chitin
obtained from the exoskeleton of crustaceans [31]. A low degree of deacetylation leads
to an increase in the solubility and viscosity of the gel formed, while a high molecular
weight can decrease the solubility and increase the viscosity of chitosan [32]. The chemical
structure of chitosan is shown in Figure 1. The chemical properties of C6-OH and C2′-NH2
can be exploited to introduce other functional groups, which can improve its physical and
chemical properties, and broaden its applications and relevant fields of research [33].
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Chitosan has the unique feature of adhering to mucosal surfaces thanks to the presence
of hydroxyl and amino groups in its structure, which can interact with the mucus through
electrostatic interactions and hydrogen bonds [34]. Owing to its nontoxic, biodegradable
and biocompatible properties, chitosan has already been approved by FDA for use in
wound dressings. Chitosan-based drug delivery systems have aroused great interest since
the early 1990s, and several works have reported on chitosan and its potential applica-
tion in biomedical fields, including wound dressing, tissue engineering and therapeutic
drug delivery.

Chitosan is insoluble in both water and organic solvents but can dissolve in aqueous
solutions of acids due to the presence of amine groups in its structure. The protonation of
the polymer chains produces a polycation, which implies that a higher deacetylation leads
to an increase in free amino groups and therefore to higher solubility in acidic media [35].
Although acetic acid is frequently used for chitosan solubilization, other acids such as
lactic acid, tartaric acid and citric acid are currently being explored. These acids have good
organoleptic properties compared to acetic acid, whose taste and odor can induce rejection
for biomedical applications. The acid used for the solubilization of chitosan also modifies
its characteristics in terms of its rheology, pH and film-forming properties [36].

2.3. Biopolyanions

Most natural polysaccharides are neutral or negatively charged, and there are multiple
references in the literature to the use of biopolyanions to form PECs [37]. This review will
focus on those that have been used to develop mucoadhesive dosage forms, but it should
be noted that any other biopolymers could be used in the future for the development of
PEC-based mucoadhesive systems.
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2.3.1. Alginate

Alginate is the name given to the natural polysaccharides commonly extracted from
three species of brown algae including Laminaria hyperborean, Ascophyllum nodosum, Macrocys-
tis pyrifera and Saccharina japonica, but it can also be isolated from Azotobacter vinelandii and sev-
eral Pseudomonas species such as Pseudomonas aeruginosa and Pseudomonas mendocina [38,39].
This polymer represents up to 40% of the dry weight of these algae, and is found in sea-
weeds neutralized with counterions such as magnesium, strontium, barium and sodium [40];
alginates can also be found commercially in the form of sodium, potassium or ammo-
nium salts [41].

Alginate is an unbranched polymer composed of (1→ 4)-linked β-D-mannuronic acid
(ManA) and α-L-guluronic acid (GulA), which have a pKa of 3.65 and 3.35, respectively. It is,
therefore, negatively charged across a wide range of pH, displaying chain homosequences
(GulA blocks and ManA blocks) interspersed with heterosequences (GulA-ManA blocks)
(Figure 2), with molecular weights between 60 KDa and 700 KDa [41,42].
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Alginate can form a gel independently of the temperature, mainly via two methods,
although other procedures are being explored:

1. Acid gelation: Alginic acid gels are obtained when the pH of the medium is lower
than the constant of dissociation (or pKa) of the polymer. A rapid decrease in pH
implies the precipitation of polymeric aggregates, while a progressive drop in pH
leads to the formation of a continuous gel. Acid gels from alginate are stabilized by
hydrogen bonding, with residues of ManA blocks playing a major role in the gelation
process. Gel strength is known to be correlated with the content of GulA blocks in the
alginate chain [41].

2. Ionotropic gelation: Alginate can form ionic gels in the presence of multivalent
cations, which are being widely explored for biomedical applications such as drug
encapsulation and cell immobilization. Alginate affinity towards cations is directly
dependent on the number of G-blocks present in the alginate structure, and increases
in the order of Mn < Zn, Ni, Co < Fe < Ca < Sr < Ba < Cd < Cu < Pb. It should be
noted that some of these cations are toxic, and cannot be considered for biomedical
application; Pb, Cu, and Cd exhibit high toxicity. Calcium alginate gels, which are
highly biocompatible, are the most commonly used for the development of biomedical
devices. The gelation of alginate occurs through the binding of divalent cations and
the GulA blocks by dimerization of GulA residues. Thus, Ca ions cause the two
GulA blocks to bind on opposite sides, forming a diamond-shaped hole consisting
of a hydrophilic cavity that binds the Ca ions to the oxygen atoms of the carboxylic
groups. This tightly bound polymer conformation has been described as an egg-
box-like structure, where each cation binds with four G residues in the egg-box
formation to form a 3-D network. The binding of trivalent cations with alginate is
generally enhanced compared to divalent cations, as they are able to interact with
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three carboxyl groups from different alginate biopolymers at the same time, forming
a three-dimensional bonding structure that produces a more compact network [41].

3. Non-conventional methods: Other methods worth highlighting are cation-free cryo-
gelation, ionotropic cryogelation, non-solvent induced phase separation and carbon
dioxide induced gelation, among others [43].

The mucoadhesive character of alginate may enhance its usefulness as a potential
vehicle for prebiotic and probiotic bacteria and drug delivery in mucosal tissues. Studies
have shown that polymers with charge density can serve as good mucoadhesive agents;
hence alginate, which is an anionic polymer thanks to its carboxylic groups, is a good
mucoadhesive biopolymer. Alginate’s capacity to adhere to mucosal surfaces allows
microorganisms or drugs to be retained on these surfaces, thus improving the effectiveness
of probiotics or drugs [39]. Alginate has also been studied for tissue engineering thanks to
some of its properties such as porosity, mechanical strength, cell proliferation, excellent
mineralization and osteogenic differentiation [44].

2.3.2. Pectin

Pectins are weak polyanionic heteropolysaccharides found in the cell walls of land
plants, and are frequently obtained from fruit such as apple or citrus peel. They are also
present in green algae. Structurally, three pectic polysaccharides have been isolated from
primary cell walls. Homogalacturonan is composed of a chain of α-(1→4)-D-galacturonic
acid (GalpA) (≥65%). The carboxyl groups in C-6 can be partially methylesterified and the
free acid groups may be partly or fully neutralized with sodium, potassium or ammonium
ions. Pectins may also be O-acetylated on C-2 or C-3 [45,46]. Rhamnogalacutonan-I is a
backbone of GalpA and rhamnopyranosyl (Rhap) in the repeating dissacharide [→4)α-D-
GalpA-(1,2)-α-L-Rhap-(1→] which represents 20–35% of pectin. The backbone residues
of GalpA may be O-acetylated on C-2 and/or C-3. Rhap residues are substituted at
C-4 with neutral and acidic oligosaccharide side chains such as arabinose and galactose,
forming arabinan, galactan and arabinogalactans in the side chains. Other less frequent
residues may also be present, as well as ferulic or coumaric acid (Figure 3) [46–48]. Finally,
rhamnogalacturonan-II is the most structurally complex pectic domain, and represents
10% of pectin. Its structure is widely conserved across plant species and consists of a
highly branched homogalacturonan backbone. The side chains contain 11 rare sugars
in over 20 different linkages. Rhamnogalacturonan-II is usually found in plant walls as
homodimers crosslinked by a 1:2 boratediol ester [48,49].
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Pectins are classified according to their degree of esterification (also known as degree
of methoxylation) according to the proportion of carboxyl groups esterified with methyl
groups, which is directly related to the gelling mechanism and, in general, with the
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properties of the polymer. Pectins are considered high methoxyl if more than 50% of the
carboxyl groups are esterified, and low methoxyl if this figure less than 50% [45,46].

As an ionic branched macromolecule with high molecular weight, pectin has interest-
ing properties for drug delivery, such as its mucoadhesiveness and the ability to dissolve in
basic environments and to form gels in acidic media. This polymer is generally considered
biocompatible, nontoxic and biodegradable, and a good option for the development of
drug delivery systems or tissue engineering [1]. The abundant carboxyl groups on the
pectin chains can ionically cross-link with calcium ions to form an “egg-box” structure, and
the proportion of calcium ions in the pectinate calcium structure conditions the process of
drug release [50].

2.3.3. Xanthan Gum

Xanthan gum is a highly hydrophilic natural heteropolysaccharide produced by the
bacteria Xanthomonas campestris. It is a branched polymer with high molecular weight in the
range of 2000 KDa to 20,000 KDa. Its primary structure is a repetitive pentasaccharide: the
backbone is a linear (1→ 4)-linked-D-glucose, with a trisaccharidic side chain containing
varying proportions of acetyl and/or pyruvyl on the mannose residues, with a varying
degree of substitution (Figure 4). Due to the pyruvyl residues, xanthan gum is a natural
anionic PE with a pKa = 3.1, which makes it a suitable candidate for the development of
PEC-based devices [51–53].
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Figure 4. Schematic representation of the chemical structure of xanthan gum.

It has been demonstrated that xanthan gum takes a helical secondary structure in
aqueous medium, which undergoes an “order-disorder” transformation from helix to
coil structure depending on several factors (i.e., pH, ionic strength, nature of the ions in
the medium, acetyl and pyruvyl contents). The secondary structure can be obtained by
high temperatures and low salt concentrations; the rigid ordered state at low temperature
becomes more flexible in the disordered state when the temperature rises, producing a
conformational transition of the solution. Salts stabilize the order conformation, which
is responsible for the extraordinary stability of this biopolymer. Xanthan gum chains
interact with bivalent cations to form three-dimensional networks. Low pyruvyl content is
known to lead to low viscosity, while high pyruvate content promotes gel behavior through
macromolecular association; high acetyl content hinders the gelation of the polysaccharide
in aqueous solution [52,54,55].

Xanthan gum solutions are formed in aqueous medium in two steps; first, water
penetrates the polysaccharide, which imbibes it and swells. The xanthan gum macro-
molecules then diffuse and dissolve in the medium, so the polymer dissolves slowly. The
solution formed is known to have a non-Newtonian rheology, with a shear-thinning be-
havior under an increasing shear rate. It has a proven ability to form a highly viscous
solution at low shear forces even at low concentrations with high pseudo-plasticity. Xan-
than gum solutions are stable over a wide range of temperatures and pH, up to 90 ◦C
and a pH between 2 and 11. Xanthan gum solutions also exhibit little change in viscosity,
depending on the salinity, and have a high resistance to mechanical degradation [52,56,57].
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Another feature of xanthan gum is its great mucoadhesivity, thanks to the large
number of hydroxyl groups that can form hydrogen bonds with other moieties, enabling the
polymer to interact with the mucin on the mucosal surface. Xanthan gum has been reported
to exhibit a better mucoadhesion performance than other known highly mucoadhesive
polymers such as tragacanth gum, chitosan and hydroxypropylmethylcellulose [58,59].

2.3.4. Gum Arabic

Gum arabic is a complex polysaccharide exuded from acacia trees (mainly Acacia
Senegal and Acacia seyal) composed of three distinct fractions with different protein contents
and molecular weights: the arabinogalactan fraction, the arabinogalactan–protein fraction
and the glycoprotein fraction [60]. Arabinogalactan is the major component (≈88 wt.%)
and consists of a highly branched β-(1 → 3)-galactose backbone with sidechains com-
posed of L-arabinose, L-rhamnose, D-glucuronic acid and 4-O-methyl-D-glucuronic acid
(MW = 300 KDa). Due to the two last residues, it is negatively charged above pH 2.2 [61,62].
Arabinogalactan protein, a smaller fraction (10 wt.%), is a high molecular weight arabinogalactan–
protein complex (MW = 1000–1500 KDa). The protein represents 10 wt.% of the fraction [60,62].
Glycoprotein is the smallest fraction(1–2%wt), and is also an arabinogalactan–protein com-
plex, but with 50 wt.% protein content [62].

Gum arabic is known to exhibit a wide variation in the molecular weight distributions
of the fraction, conditioned by the origin, species and age of the tree. Processing conditions
may also modify the composition of the gum. A variety of molecular mass values have
been observed for gums exuded from different parts of the same tree, implying an inter-
and intra-tree variation [63].

One of the most important properties of gum arabic is its function as a highly effi-
cient emulsifier and long-term stabilizer in products containing oil–water interfaces. The
arabinogalactan–protein complex appears to be responsible for these properties, stabilizing
the interface in the oil-droplets. However, the adsorption affinity of this polymer is low,
which explains the high concentration of gum required to efficiently cover the oil–water
interface and achieve effective emulsification and stabilization [61].

Gum arabic solutions have been found to have very low viscosities, due to the fact
that compared to other biopolymers, the highly branched structure of gum arabic has low
intermolecular interactions and does not generate a three-dimensional structure [64]. Hy-
drogels based on gum arabic therefore have limited mechanical and rheological properties,
and are often brittle [65].

2.3.5. Carrageenan

Carrageenan is a group of sulphated natural polyanions obtained from red algae. The
interest in these polymers lies in their structural diversity and unique physical proper-
ties. They are water-soluble linear polysaccharides composed of repeating disaccharide
units with alternating 3-linked β−D-galactopyranose and 4-linked α-galactopyranose or
3,6-anhydro-α-galactopyranose with an average molecular weight of between 100 and
1000 KDa. The structural diversity of CG is due to the location and percentage of the
sulphate groups (15–40%) or the presence of 3,6-anhydro-D-galactose [66,67]. At least
15 different carrageenan structures are known today, with varying chemical structures and
degrees of sulphation. However, three types of carrageenan are most important to industry:
κappa (κ), ιota (ι) and lambda (λ) carrageenan (Figure 5) [68].

κ and ι types are generally obtained from algae of the Eucheuma and Kappaphycus
genera, and λ type is extracted from the family Gigantinaceae [69]. I-carrageenan has
proved able to form brittle gels, while λ-carrageenan forms softer paste-like gels. In
aqueous solutions, both forms undergo a reversible conformational arrangement at higher
temperatures, and a network formation through sulphate groups and 3,6-anhydro-D-
galactopyranosyl rings at lower temperatures. They can also gel in the presence of cations,
a process that is influenced by the polymer and cation concentrations. The nature of the
cation also affects the gelation process; for instance, the formation of stronger κ-carrageenan
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gels has been confirmed in the presence of KCl as compared to other salts, while for ι-
carrageenan, the storage modulus is rapidly increased with a divalent salt concentration
but slowly with a monovalent salt concentration. It has been proposed that carrageenan
chains form gels via coil-to-helix transition, after which these helices aggregate in parallel
with the sulphate groups towards the outside; this structure is stabilized by hydrogen
bonds. Unlike the other two forms described, λ-carrageenan does not have the ability to
thermogel, but can gel using trivalent cations [67,70].
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Carrageenans are widely used as emulsifiers and gelling, thickening and stabiliz-
ing agents in pharmaceutics and food technology. They also have inflammatory; im-
munomodulatory and anticoagulant properties, anticancer activity, and immunomodu-
latory, anti-hyperlipidaemic and antioxidant properties. They exert a protective activity
against bacteria and fungi and inhibit some viruses such as herpes and papillomavirus.
However, carrageenans are mainly used as excipients in drug delivery, tissue engineering
and regenerative medicine [69,71].

2.3.6. Hyaluronic Acid

Hyaluronic acid is an anionic biopolymer, a major component of the extracellular
matrix present in the connecting tissues of all vertebrates [72]. Presently, it is frequently
obtained from natural sources such as bovine vitreous, shark skin, rooster combs, and
numerous microorganisms [73]. Its chemical structure is a linear glycosaminoglycan
composed of repeating units of N-acetyl-D-glucosamine and D-glucuronic acid, linked via
alternating β-(1→ 3) and β-(1→ 4) glycosidic bonds (Figure 6) [74]. It can be found in a
wide range of molecular masses (from 100 to 8000 KDa) [75].
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At physiological pH, hyaluronic acid is negatively charged, and highly hydrophilic,
so intra- and intermolecular hydrogen bonds are formed in aqueous media. This prevents
the rotation of the molecule which causes the chains to have a rigid position, so hyaluronic
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acid gels show high viscosity and viscoelasticity. It has been reported that these parameters
increase as the molecular weight of the polymer rises, whereas a rise in temperature or the
addition of electrolytes can increase the mobility of the chains by reducing the viscosity
in solution [73].

Hyaluronic acid is biocompatible, biodegradable, non-inflammatory, nontoxic and
non-immunogenic, which is why it has aroused interest in various fields of medicine,
such as drug delivery, visco-supplementation, eye surgery and bone-tissue engineering,
among others [74,76]. Unfortunately, the greatest drawback of hyaluronic acid for its use in
medicine is its short half-life, which limits the use of the pristine polymer, so modifications
such as chemical reactions or the formation of PECs have been proposed to improve its
molecular stability [37,77].

3. Polyelectrolyte Complexes

PECs form through an electrostatic interaction between the polymer cation and the
polymer anion when they are mixed in a solvent, where they spontaneously interact
and form the complex. It has been demonstrated that the formation of the complex is
largely driven by electrostatic interaction between the counter polyions, but also involves
hydrogen bonding and Van der Waals interactions [78,79]. Although electrostatic charge
compensation produces the ordering of two oppositely charged polyions to a complex
molecule with conformational changes favorable for both counter polyanions, the chaotic
aggregation of polyanions and polycations also seems to occur, with only partial mutual
charge compensation. Several ionic sites are therefore still charge-compensated by low
molecular weight counterions [80].

The mechanism of PEC formation can be summarized in three main steps: the first,
which occurs immediately, is the establishment of secondary binding forces after mixing
oppositely charged PE solutions; the second involves the formation of new bonds and/or
the correction of the distortions of the polymer chains, leading to a new conformation;
and the last is the aggregation of the complexes formed through hydrophobic interactions,
which are generally insoluble in the medium [80,81]. It has been suggested that the com-
plexation process may result in a ladder-like or scrambled-egg-like PEC. Ladder-like PECs
are formed by hydrophilic single-stranded and hydrophobic double-stranded parts. These
phenomena are the result of mixing PEs with weak ionic groups and large differences in the
size of their molecules, which produces higher viscosity and an electromagnetic shielding
effect compared to the constituent PEs. In contrast, due to precipitation by aggregation,
scrambled-egg-like PECs exhibit lower viscosity than their constituent PEs [81,82]. How-
ever, considering their mechanism of formation, PECs can be regarded as a combination of
both with different ratios depending on the characteristics of the polyions [80] (Figure 7).

The interaction between the polycation and the polyanion usually produces a macro-
scopic phase separation, and the resulting complex is accompanied by structural and
dynamic features. Strong electrostatic attractions usually lead to the formation of a solid
precipitate, whereas weak pairs of PEs are more likely to form coacervates [83]. However,
some PECs have proved capable of forming a turbid colloid or even dissolving in the
medium when the PEs are small [81]. The formation and properties of the PECs depend
on factors such as the molecular weight, ionic strength, hydrophobicity, charge density,
concentration and chain rigidity of the polymers and the pH of the medium, among others.

Due to their versatility, PECs are useful for increasing the structural, mechanical
and thermal properties of PEs, which can enhance the performance of the devices (such
as allowing longer drug release times or improving the resistance of scaffolds for tissue
engineering) and facilitate manufacturing processes by improving the mechanical char-
acteristics (increasing tablets’ resistance to fracture or allowing the formation of fibers by
electrospinning) [21,82,84]. The pH-dependent ionization of the constituent PEs can be
leveraged to design PECs whose assembly and disassembly capacity is pH-dependent, and
used to develop smart drug delivery systems, for example [36,78]. Another possibility is
the use of PECs for drug vectorization and targeting thanks to their ability to bind and pen-
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etrate cells through different types of interaction, particularly electrostatic interactions [81].
PECs have therefore attracted considerable interest for their importance in basic research,
but also in biological and technological applications.
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3.1. Polyelectrolyte Complex-Based System Production Methods

PEC-based hydrogel production methods vary depending on the polymers used. In
general, hydrogels containing either the polyanion or polycation are prepared separately,
ensuring the pH of the medium allows the formation of PEs. For instance, acetic acid is
commonly used to ensure the protonation of chitosan. Once both hydrogels are obtained,
they are blended and the PEC-based hydrogel is formed [85,86]. However, the combination
of biopolymers in a tablet for in situ gelation has also been previously reported; after
hydrating in an aqueous medium, the hydrogel forms spontaneously [84]. PEC-based
hydrogels can be further processed to obtain other systems such as inserts by freeze-drying
or films by the solvent casting method [87,88]. On the other hand, the combination of
polyanions and polycations leads to the formation of insoluble polydispersions under
specific conditions, which leads to the formation of PEC-based nanoparticles. Some of
this conditions are the location and strength of the ionic sites, the presence of precursor
chemicals, the pH or environmental factors such as temperature or stirring intensity [81].

Layer-by-layer (LbL) is a method for preparing highly tunable thin multilayer polymer
films, known as polyelectrolyte multilayers (PEMs). As in the case of PECs, PEMs self-
assemble by electrostatic interactions between sequentially deposited alternately charged
PE films (Figure 8). The properties of PEMs can be optimized by controlling several param-
eters such as the pH or ionic strength of the PEMs, the number of layers or the order in
which the layers are deposited [89]. This simple and versatile technique produces not only
thin films but also coatings, even in substrates with complex surfaces. Additionally, this
technique rarely requires organic solvents or extreme processing conditions, making LbL
an attractive technique for biological-based applications [90]. It has therefore been widely
studied in recent years and applied to thin film coatings, micropatterning, nanobioreactors,
artificial cells, drug delivery systems, and even electronic devices. Multilayered films can
also act as drug protective reservoirs; APIs can be embedded in the multilayer, thus preserv-
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ing their bioactivity and increasing the stability of drugs up to the time of administration.
However, the field of practical clinical applications remains to be explored [90,91].
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3.2. Properties of Biopolymer-Based PECs

The advantages of biopolymers, such as their mucoadhesion and high swelling capac-
ity due to water uptake, have been widely explored. These properties can be improved
by forming PECs that combine two biopolymers, as the formation of PECs produces
several modifications in the physicochemical properties of the system compared to the
separate constituent PEs, and these properties can be decisive in the performance of several
medical devices.

Biopolymers are known to entrap large amounts of water within their structure,
in a phenomenon known as swelling. When the biopolymer chains are combined by
electrostatic interactions, this combination has higher resistance to the penetration of
aqueous media and moderate swelling ratios compared to the biopolymers separately; it
has been confirmed that the water uptake of PECs is not equal to the sum of the swelling
behavior of the constituent PEs [84]. Swelling is directly related to most of the properties of
PECs, and the swelling of the PECs can be a determining factor in the performance of the
formulations. Drug release subsequently occurs more slowly due to the entanglement of
the compact structure generated after immersing the drug delivery system in an aqueous
medium [84]. Interestingly, it has also been observed that low swelling ratios lead to more
efficient mucoadhesion (Figure 9) [59].
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Mucoadhesion can be described as the ability of many polymers to bind the molecules
of the mucus layer. Although it is hard to discern whether the interaction occurs on the cell
surface or between the molecules of the polymer and the mucus layer [92], five theories are
commonly presented to explain this phenomenon. Although none of these theories alone
can explain mucoadhesion, several can be combined to describe the process [93,94]:

1. Electronic theory: electron transfer occurs upon contact between the polymer and
the mucus surface due to different electronic charges in their structure. This leads to
the adhesion of the surfaces through the formation of an electrical double layer at
the interface.

2. Adsorption theory: the polymer binds the mucus by weak chemical interactions, for
instance Van der Waals forces or hydrogen bonds, or hydrophobic interactions.

3. Wetting theory: this refers to the polymer’s ability to spontaneously spread over the
mucus surface and develop adhesion.

4. Diffusion theory: a process driven by concentration gradients and affected by the
available molecular chain lengths and their mobilities. Sufficient depth of penetration
creates a semi-permanent adhesive bond, and this depends on several parameters
such as the nature of the mucoadhesive chains, the diffusion coefficient and the
flexibility and motility of the polymer chains.

5. Mechanical theory: according to this theory, a liquid adhesiveness is created with the
presence of irregularities in the mucosal surface, as this increases the area of contact
between the polymer and the mucosa.

In view of the different mechanisms described, the mucoadhesion process can be
divided into three different steps (Figure 10) [94,95]:

1. Contact stage: the first stage occurs when the biopolymer is wetted in the medium
and swells after it is placed on the mucous membrane. This is governed by the
wetting theory.

2. Polymer chains and mucosal surface interpenetration: the polymer chains of the
biopolymer and the mucosal layer become entangled by forming physical bonds. This
occurs through the combination of the adsorption theory and electronic theory, and is
favored by the mechanical theory.

3. Creation of bonds between the chains or consolidation stage: the entangled polymer
chains, bound by physical interaction, consolidate the adhesion by forming covalent
bonds. This is governed by the combination of the diffusion theory, electronic theory
and adsorption theory.
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The mucoadhesiveness of the biomacromolecules can be improved through the for-
mation of PEC, as the high entanglement between both PEs hinders the penetration of
water. This can be attributed to three features: first, the mucoadhesive groups of both
biomacromolecules are combined within the same systems; second, the system maintains
its structure so does not spread, but eventually leaks; and third, the mucoadhesive groups
have greater density as the polymer chains are less separated [96]. Finally, mucoadhesion
should be considered a characteristic of the system as a whole, so the presence of different
functional groups can increase the interaction between the system and the mucosa. Since
there is an electrostatic interaction between the oppositely charged polymer chains, the
spectra obtained by FTIR corroborates the formation of the PECs by the formation or
displacement of bands. The modifications must be carefully studied depending on the
constituent PEs, giving special importance to the bands that can be assigned to the ionizable
groups. The three-dimensional structures formed after this electrostatic interaction differ
from those seen for each of the components separately. SEM is generally used to observe
these processes, and multiple references confirm the presence of unique three-dimensional
structures thanks to the formation of PECs [84]; as a result, their porosities differ from
the constituent polymers, which may be relevant to their functionality. This is the case of
scaffolds for tissue engineering, since the systems must allow the correct diffusion of gases
in order to maintain a moist environment and enhance cell attachment, proliferation and
differentiation [97,98]. It is also important in the case of drug delivery systems, since the
pore size can condition the drug delivery process [99]. Porosity studies can be performed
by the alcohol displacement method [97,98] or through Hg porosimetry [84].

Lastly, some thermodynamic properties such as the enthalpies or temperatures of
the phase transition are frequently modified after the electrostatic interaction of PEs for
the formation the PECs [100,101]. Thermogravimetry (TGA) and differential scanning
calorimetry (DSC) have also been applied to the characterization of PECs. For instance,
the thermal degradation determined through TGA is usually modified and the DSC data
generally show an offset shift in the peaks observed in the PEs separately, or new peaks—
both endothermic and exothermic—may even appear [98,102].

Other more specific techniques can be found in the literature, i.e., rheological analysis [103] ,
ζ-potential [104], mucoadhesion studies [84], and X-ray diffractometry [102], among others.

3.3. Polyelectrolyte Complexes for Medical Applications

Due to chitosan’s exclusive ability to form a polycation, it forms PECs with polyanions [37],
including particularly biopolyanions; alginate, pectin, xanthan gum, gum arabic and car-
rageenan are the most frequently used PEs [100,105]. However, semisynthetic polymers
such as carboxymethylcellulose [106] and synthetic polymers such as methacrylic acid
derivatives [107] have also been used. PECs based on polysaccharides and their deriva-
tives have aroused great interest for their medical application; compared with chemically
crosslinked polymer complexes, PECs based on biopolymers—especially polysaccharides—
are generally considered to be nontoxic and biocompatible, and therefore of potential
interest for the design of medical devices. Several biopolyelectrolyte-based PECs have been
shown to have various applications in medical and pharmaceutical areas, and particularly
in drug delivery systems, tissue engineering and wound dressing (Figure 11).



Polymers 2021, 13, 2241 15 of 27

Polymers 2021, 13, x FOR PEER REVIEW 15 of 27 
 

 

3.3. Polyelectrolyte Complexes for Medical Applications 
Due to chitosan’s exclusive ability to form a polycation, it forms PECs with polyan-

ions [37], including particularly biopolyanions; alginate, pectin, xanthan gum, gum arabic 
and carrageenan are the most frequently used PEs [100,105]. However, semisynthetic pol-
ymers such as carboxymethylcellulose [106] and synthetic polymers such as methacrylic 
acid derivatives [107] have also been used. PECs based on polysaccharides and their de-
rivatives have aroused great interest for their medical application; compared with chem-
ically crosslinked polymer complexes, PECs based on biopolymers—especially polysac-
charides—are generally considered to be nontoxic and biocompatible, and therefore of 
potential interest for the design of medical devices. Several biopolyelectrolyte-based PECs 
have been shown to have various applications in medical and pharmaceutical areas, and 
particularly in drug delivery systems, tissue engineering and wound dressing (Figure 11). 

 
Figure 11. Diagram of the main applications found in the literature for PECs. 

3.3.1. Drug Delivery Systems 
Many PECs have been proposed for the controlled release of drugs, as they can be 

very useful for sustaining drug release or preserving the properties of sensitive biological 
molecules [108]. According to Meka et al., there are four mechanisms for preparing drug-
loaded PECs [20]: 
1. Dissolution of the drug in the medium, followed by its entrapment in the precipita-

tion of the complex. 
2. Absorption of a dissolved drug in the preformed PEC (especially with sponge-like 

PECs). 
3. Chemical binding of the drug to polyanions or polycations, and the subsequent for-

mation and precipitation of the PEC. 
4. Use of the drug as a partner in the formation of the PEC. This requires the drug to 

possess at least one ionizable polar group.  
Although PECs have the advantage of being biocompatible and therefore nontoxic, 

their use as carriers for drugs or nanoparticles can lead to cytotoxicity issues. In addition 
to the fact that nanoparticles can be cytotoxic depending on several properties (such as 
size, morphology or surface charge density), it is well known that they undergo biodeg-
radation in the cellular environment and degraded products could accumulate within the 
cells, inducing severe damage. According to this, a thorough understanding of the kinetics 
and toxicology of the particles is needed and cytotoxicity studies are therefore frequent 

Figure 11. Diagram of the main applications found in the literature for PECs.

3.3.1. Drug Delivery Systems

Many PECs have been proposed for the controlled release of drugs, as they can be
very useful for sustaining drug release or preserving the properties of sensitive biological
molecules [108]. According to Meka et al., there are four mechanisms for preparing drug-
loaded PECs [20]:

1. Dissolution of the drug in the medium, followed by its entrapment in the precipitation
of the complex.

2. Absorption of a dissolved drug in the preformed PEC (especially with sponge-like
PECs).

3. Chemical binding of the drug to polyanions or polycations, and the subsequent
formation and precipitation of the PEC.

4. Use of the drug as a partner in the formation of the PEC. This requires the drug to
possess at least one ionizable polar group.

Although PECs have the advantage of being biocompatible and therefore nontoxic,
their use as carriers for drugs or nanoparticles can lead to cytotoxicity issues. In addition to
the fact that nanoparticles can be cytotoxic depending on several properties (such as size,
morphology or surface charge density), it is well known that they undergo biodegradation
in the cellular environment and degraded products could accumulate within the cells,
inducing severe damage. According to this, a thorough understanding of the kinetics
and toxicology of the particles is needed and cytotoxicity studies are therefore frequent
and necessary for PEC-based drug delivery systems containing nanoparticles [109,110].
However, in vitro studies are limited and do not provide adequate prediction of the effects
that the administration of the dosage form will have; this highlights the need for in vivo
studies.

Table 1 shows a list of different PEC-based drug delivery systems found in the literature.
Hu et al. [85] developed salecan/chitosan PEC-based hydrogels for the oral admin-

istration of vitamin C. Thanks to the properties of the PECs, the carrier allowed this
highly unstable drug to be preserved in the gastric environment. The PEC also enabled
a pH-dependent release, reducing the release of vitamin C in simulated gastric acid and
enhancing its release in simulated intestinal fluid, so high blood levels of the drug could
be maintained for at least 6 h. The hydrogel exhibited high cytocompatibility and was
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biodegradable. PEC-based hydrogels were also explored by Hanna and Saad [111], who
prepared them by combining carboxymethyl xanthan gum and N-trimethyl chitosan for the
release of ciprofloxacin as model drug. The drug was effectively encapsulated in the hydro-
gel and showed high activity against Gram-positive and Gram-negative bacterial strains
due to the successful release of ciprofloxacin from the hydrogel matrix, even improving on
the effectiveness of the reference antibiotic, gentamicin.

Table 1. Examples of drug delivery systems manufactured with biopolymer-based polyelectrolyte complexes.

Polyanion Polycation Formulation Drug Reference

Salecan Chitosan Hydrogel Vitamin C Hu et al. [85]
Carboxymethyl xanthan gum N-trimethyl chitosan Hydrogel Ciprofloxacin Hanna and Saad [111]

Alginate
Guar gum

Xanthan gum
Chitosan Tablet Isosorbide nitrate Syed et al. [112]

Xanthan gum Eudragit® E100 Tablet Diclofenac sodium Moin et al. [113]
Kappa, Iota

and Lambda carrageenan Chitosan Tablet Trimetazidine
hydrochloride Li et al. [114]

Eudragit® S100
Chitosan lactate
Chitosan tartrate
Chitosan citrate

Film Tenofovir Cazorla-Luna et al. [36]

Pectin Chitosan Film Theophylline
anhydrous Ghaffari et al. [115]

Alginate Chitosan Microparticles Vancomycin Unagolla et al. [116]
Alginate

Eudragit® L100-55 Oligochitosan Microparticles Naproxen Čalija et al. [117]

Pectin Lactoferrin Nanoparticles Curcumin Yan et al. [118]
Poly(maleic acid-alt-ethylene)

Poly(maleic acid-alt-octadecene) Chitosan Nanoparticles Methotrexate Ciro et al. [119]

Alginate Cationized gelatin Nanoparticles Curcumin Sarika et al. [120]
Pectin Chitosan Nanoparticles Insulin Maciel et al. [121]

Alginate
Xanthan gum

Carbopol®
Chitosan Freeze-dried inserts Fluconazole Darwesh et al. [122]

Syed et al. [112] prepared tablets with the aim of obtaining a controlled release of
isosorbide mononitrate, which is poorly absorbed from the upper gastrointestinal tract. The
tablets were prepared by combining chitosan with different polyanions (sodium alginate,
xanthan gum and guar gum), and after optimizing the proportions, the chitosan/xanthan
gum PEC-based tablets were found to prolong the release of the drug for up to 12 h with
a good stability profile. Moin et al. [113] also prepared tablets intended for oral adminis-
tration, in this case combining xanthan gum and Eudragit® E100, to improve the release
of diclofenac. They performed in vitro-in vivo studies and reported that the drug release
was successfully prolonged for up to 12 h in vitro, and that the in vivo pharmacodynamic
profile was substantially improved compared to the free drug.

Films are innovative drug delivery systems as they have several advantages: they
are small, thin, and easy and economical to manufacture, and can be administered conve-
niently without the need for an applicator. Additionally, compared to gels, they prevent
leakage [123]. We developed bilayer films by the layer-by-layer technique for the vaginal
local administration of the antiretroviral drug tenofovir. These films were prepared with
chitosan derivatives (chitosan lactate, chitosan tartrate and chitosan citrate) as the poly-
cationic layer and Eudragit® S100 as the polyanionic layer, anchored by the formation of
a PEC in the interface. Highly mucoadhesive formulations were obtained due to the chi-
tosan layer, with a sustained and pH-dependent drug release thanks to the presence of the
polyanion [36]. Another approach to film technology was proposed by Ghaffari et al. [115],
who prepared chitosan/pectin/Eudragit® RS PEC-based films by blending polymer so-
lutions. They found that the swelling of the PEC-based films was pH-dependent (higher
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at high pHs), and exploited this to obtain a sigmoidal pH-dependent release of a model
drug, theophylline, with a slow initial release followed by a burst release induced by
a modification in the pH.

In the field of micro and nano systems, Unagolla et al. [116] prepared chitosan/alginate
PEC-based microparticles using the ionotropic gelation technique for the systemic delivery
of vancomycin. The lyophilized PEC-based microparticles were shown to have the best
control over the drug release (22 µm/day for 14 days), compared to microparticles prepared
exclusively with one of the polymers. This improvement in the ability to control the release
of vancomycin was attributed to the presence of a unique porous structure thanks to the
formation of the PEC between chitosan and alginate. Yan et al. [118] developed PEC-based
nanoparticles for oral administration, combining polycationic lactoferrin and polyanionic
pectin. Those nanoparticles were used as carriers for curcumin, a potent antioxidant. This
highly hydrophobic drug was successfully encapsulated in the nanoparticles, with in vitro
controlled release and prominent antioxidant activity, indicating that the nanoparticles
were suitable as carriers for curcumin.

PECs have also been proposed as carriers for other medical applications. For instance,
they have been explored as vectors for gene delivery; Baghaei et al. [124] prepared nanopar-
ticles containing chitosan/alginate, chitosan/hyaluronic acid and chitosan/dextran sul-
phate PECs. They reported that the microparticles were nontoxic after intravenous admin-
istration and had a high cellular uptake in MCF7 cell lines, and that there was a high tumor
uptake of nanoparticles with a low accumulation in vital organs.

3.3.2. Tissue Engineering

Another use for PECs is in tissue engineering: Florczyk et al. [125] used chitosan/hyaluronic
acid PEC to manufacture porous scaffolds to mimic the tumor microenvironment, and
concluded that these scaffolds can be used as an in vitro platform for the study and
screening of novel cancer therapeutics. Coimbra et al. [126] prepared scaffolds of chi-
tosan/pectin PECs for bone-tissue engineering, which induced bone-tissue proliferation
with zero toxicity. Scaffolds for bone-tissue engineering can also be loaded with drugs as
proposed by Sultankulov et al. [127], who prepared scaffolds with chitosan-based PECs
that were also capable of releasing bone morphogenic protein 2, which improved the
bone-tissue regeneration process. A similar approach was proposed by Ibrahim et al. [128],
who prepared erodible sponges with xanthan gum/chitosan, polycarbophil/chitosan and
Carbopol®/chitosan PECs loaded with rosuvastatin, which showed an increase in bone
regeneration capacity in mice. Scaffolds can also be used as tools for soft tissue cell therapy,
as proposed by Bushkalova et al. [129], who prepared macroporous scaffolds containing
chitosan/alginate PECs and demonstrated that their structure and angiogenic potential
made them interesting candidates to improve the results of mesenchymal stem cell therapy
in soft tissue engineering. Lastly, PECs are also found in the literature as agents for wound
dressing. Against this backdrop, Birch et al. [130] developed a hydrogel containing a
chitosan/pectin PEC, and reported that this material could be used as wound dressing
with an excellent exudate uptake, indicating it as a promising material for wound dressing
bandages. With a similar objective, Meng et al. developed membranes of chitosan/alginate
PEC that were loaded with silver sulfadiazine, which is an effective and widely used an-
tibiotic for burn injuries in humans. These membranes could therefore be good candidates
for wound dressing, as they release the drug in the damaged tissue, prevent infections and
accelerate the recovery of the damaged tissue.

3.3.3. Other Applications

Other innovative approaches for PECs include the development of biosensors or
surgical sutures. As an example of the first, Rassas et al. [131] proposed the development of
a voltametric glucose biosensor using chitosan/κ-carrageenan PEC to encapsulate glucose
oxidase. This produced a more sensitive voltametric detection of glucose compared to films
prepared exclusively with chitosan. In the case of surgical sutures, Mohammadi et al. [132]
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developed nylon monofilaments coated with chitosan/hyaluronic acid PECs. The antibac-
terial activity of these monofilaments (thanks to the presence of chitosan) and their ability
to control the release of model drugs (Acid blue 80 and Astrazon blue F2RL) make these
systems promising tools for the improvement of surgical sutures.

3.4. Advances in Biopolymer-Based Polyelectrolyte Complexes for Mucoadhesive Drug
Delivery Systems

Mucoadhesive systems offer several advantages in numerous routes, as shown in Table 2.

Table 2. Advantages of using mucoadhesive drug delivery systems for different administration routes.

Administration Route Advantages of Using Mucoadhesive Drug Delivery Systems

Ocular

1. Reduced drug loss; less dose required and local toxicity
2. Increased drug residence time in cornea and conjunctiva
3. Versatile mechanical properties

Nasal

1. Local and systemic drug administration
2. Increased drug residence time as mucociliary clearance is avoided
3. Possible route for direct drug administration into the brain

Buccal

1. Local and systemic drug administration
2. Reduced degradation compared to oral route; less drug degradation in intestinal medium and

avoidance of pre-systemic metabolism
3. Increased drug residence time
4. Possibility of prompt interruption of treatment in the case of adverse reaction

Oral

1. Possibility of prolonged gastric or small intestinal residence time
2. Intimate contact between the delivery system and the absorption surface
3. Enhanced permeation
4. Increase in drug stability and enzyme inhibition

Vaginal

1. Local and systemic drug administration
2. Reduced degradation compared to oral route; less drug degradation in intestinal medium and

avoidance of pre-systemic metabolism
3. Increased drug residence time

3.4.1. Ocular Drug Delivery Systems

Topical drug delivery through eye drops currently represents approximately 90% of
all ophthalmic products. However, this delivery route is very inadequate; regardless of the
volume administered, each eye drop is eliminated from the eye surface approximately 5 min
after application, so only 1–3% of an eye drop reaches the eye tissue. This means that the
amount of drug in an eye drop is much higher than required, which can produce adverse
effects [133]. For this reason, multiple strategies are being explored for the development of
dosage forms for the ocular route, including particularly the use of biopolymers, which
have the advantage of being mucoadhesive, especially in the cornea and conjunctiva [134].
These biopolymers have other appealing properties such as biocompatibility with the eye
tissues, biodegradability and mechanical strength [133].

Against this backdrop, we find several examples of PEC-based ocular drug delivery
systems in the literature. For instance, Dubey et al. [135] developed brinzolamide-loaded
chitosan/pectin PEC mucoadhesive nanocapsules for the treatment of glaucoma. These
nanocapsules sustained the release of the drug for 8 h, which would significantly improve
the release profiles of the formulations on the market. Ex vivo studies indicated that the
nanocapsules enhanced the corneal permeation as they increased the residence time of
the drug, with better results in reducing intraocular pressure compared to commercially
available eyedrops thanks to the promising properties of the chitosan–pectin PEC. Another
example in the literature is Costa et al. [136], who hypothesized that chitosan/alginate PECs
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in nanoparticles would sustain the release of encapsulated drugs more effectively than
chitosan nanoparticles, and developed nanoparticles for ocular delivery of daptomycin.
According to the results of their in vitro ocular permeability assays, around 10% of the
dosage of daptomycin in the nanoparticles crossed the cell lines evaluated after 4 h of
experiment, suggesting that daptomycin could be released over long periods of time. The
adhesive capacity of the PEC could ensure the presence of the formulation in the ocular
tissue. These results provided further evidence of the potential usefulness of biopolymer-
based PECs as mucoadhesive drug delivery systems.

3.4.2. Nasal Drug Delivery Systems

Intranasal drug administration has aroused great interest, as it is a non-invasive
administration route for local and systemic action. The nasal route is also interesting for
the possibility of directly administering drugs to the brain. The use of mucoadhesive
substances avoids mucociliary clearance, thus increasing drug residence time. Although
the nasal epithelium is a tight barrier, the intercellular junctional complex of the nasal
mucosa is leaky, which, added to the high vascularization of the mucosa and lamina
propria, provides a promising absorption surface for the drug absorption [137].

With this background, Dehghan et al. [100] developed nasal mucoadhesive inserts
based on chitosan/xanthan gum PECs for the administration of promethazine as an alter-
native for intravenous and intramuscular administration, as although these routes exhibit
good bioavailability they are invasive and may cause irritation or even severe tissue injury.
These inserts allowed an efficient in vitro drug release which led to the permeation of
the 90% of the drug in the first 8 h. Their bioadhesive characteristics could allow the
formulation to remain in the nasal mucosa while the promethazine penetrates through the
epithelium. With the same aim, Alavi et al. [87] developed a freeze-dried insert based on
chitosan/κ-carrageenan PEC for the release of sumatriptan, in order to avoid the first pass
effect when they are orally administered, without the need for invasive administrations
such as the intramuscular route. As mentioned before, the drug could reach the area of
action more easily from the nasal route. This study demonstrated that the properties of
the system, including water uptake ability, mucoadhesion behavior and the drug release
profile could be optimized by modifying the proportion of both polymers.

3.4.3. Buccal Drug Delivery Systems

PECs have been used for the development of mucoadhesive buccal drug delivery
systems for the treatment of local pathologies and for the systemic administration of drugs,
thus avoiding first pass metabolism and drug degradation in the harsh gastrointestinal
environment. Buccal drug absorption can also be promptly terminated in the case of
toxicity by removing the dosage form from the buccal cavity [138].

As an example of buccal administration for systemic effect, the literature describes patches
based on chitosan/pectin PEC for the release of carvedilol, developed by Kaur et al. [139].
These patches exhibited an increase in the bioavailability of carvedilol hydrochloride,
which was 2.4 times higher compared to oral administration. The use of the PEC improved
the swelling and mucoadhesive properties observed for the polymers separately. Chi-
tosan was capable of swelling but its mucoadhesive capacity was low, whereas pectin
formed a fluid gel in a few minutes, but its mucoadhesion capacity was greater than
that of chitosan; the combination of both made it possible to obtain improved swelling
capacity and mucoadhesion thank to the formation of the electrostatic bonds between both
polymers. With regard to local buccal administration, films based on chitosan/alginate
PECs have been proposed by Kilicarslan et al. [140] for the treatment of periodontitis
through the local release of clindamycin. The side effects of the oral administration of
antibiotics for periodontitis may cause problems in the progression of the treatment, so
local application is an appropriate alternative, as it leads to a high local drug concentration
and minimum adverse effects. The results of this study showed that combining alginate
and chitosan at varying concentrations is a tool for the optimization of film properties. The
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PEC-based films obtained were able to control clindamycin release for up to 10 h and had
high adhesiveness, emerging as an option for application inside the periodontal pocket.
Tejada et al. [141] also developed mucoadhesive films for the local treatment of oral candidi-
asis by preparing miconazole-loaded mucoadhesive films containing chitosan/Carbopol®

917NF, chitosan/gelatin, chitosan/gum arabic and chitosan/alginate PECs. The films
based on chitosan/Carbopol® 971NF and chitosan/gelatin PECs were the most suitable,
and had optimal mechanical properties and mucoadhesiveness, relatively low swelling
and a good drug release rate, with a higher in vitro activity against Candida culture than
the raw drug.

3.4.4. Oral Drug Delivery Systems

Mucoadhesive systems are today considered an option for improving oral drug deliv-
ery systems. Their potential advantages worth highlighting include their prolonged gastric
or small intestinal residence time and the intimate contact between the delivery system
and the absorption surface. Multifunctional polymers may act as permeation enhancers or
enzyme inhibitors [142].

The use of mucoadhesive nanoparticles has been proposed for the administration of
low-solubility or proteic drugs, as these carriers may prevent the enzymatic degradation
of these substances in the harsh gastrointestinal environment [143]. With this objective,
Avadi et al. [144,145] developed microparticles of chitosan/gum arabic PECs for the oral
administration of insulin, thus avoiding the use of parenteral routes for the administration
of this protein. According to the authors, the concentration of the polymers used in
the development of the PEC allows the properties of the nanoparticles to be modulated,
indicating the great versatility of the PEC. Nanoparticles are also able to enhance the
permeation of insulin models through intestinal tissue, thus increasing the amount of
insulin transported through the intestine compared to free insulin. Arora et al. [146]
developed gastric mucoadhesive microcapsules based on chitosan/alginate PEC for the
release of amoxicillin. The optimized formulation showed high drug entrapment and
bioadhesive strength. The drug release was evaluated in simulated gastric fluid, and the
microcapsules allowed a controlled release of amoxicillin for more than 12 h. The gastric
retention of the microcapsules was assessed by in vitro mucoadhesion studies, confirming
up to 8 h of residence time in the gastric environment and proving their efficacy as stomach-
specific drug delivery systems for antibiotics. These microparticles were able to prevent the
degradation of the drug in gastric acid, so less than 10% of the dosage they contained was
degraded after 8 h. Kim et al. [147] prepared nanoparticles through ionic gelation between
chitosan and gum arabic for the oral administration of quercetin. These microparticles had
a higher intestinal mucoadhesion than free quercetin, leading to excellent permeation of the
drug through the gastrointestinal tissue. Lastly, Boni et al. [148] prepared nanostructured
chitosan/hyaluronic acid PECs for the oral administration of methotrexate, which is a
highly soluble drug but one with low penetration through tissues. The nano PECs prepared
proved to be highly mucoadhesive ex vivo and have low toxicity for intestinal cells. The
system also allowed methotrexate to penetrate though a Caco-2 monoculture and a triple
co-culture cell model.

3.4.5. Vaginal Drug Delivery Systems

Multiple local infections caused by fungi, bacteria, protozoa or viruses are in the
vagina, so this route has traditionally been used for the local administration of drugs. It
has recently also been studied for the absorption of drugs due to its large surface area and
abundant blood supply. It may be especially useful for active ingredients that undergo a
high pre-systemic metabolism or which produce adverse effects in other routes, such as
the gastrointestinal route. It also has the advantage of being non-invasive compared to
parenteral routes (such as intravenous or intramuscular) [149,150]. Considerable progress
has been made in this area of research in recent years, leading to a broad understanding
of the anatomy, physiology, microflora and secretions of the vagina. Since traditional
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dosage forms generally suffer from leakage, messiness and a short residence time, pa-
tient compliance can be poor [3]. The main proposal to solve this problem is to design
dosage forms that remain in the vaginal area for longer periods, which can be achieved
by formulating mucoadhesive systems [151]. For instance, Trentor et al. [152] recently
developed flexible membranes based on chitosan/alginate PECs for the release of metron-
idazol, which showed high stability in simulated vaginal fluid and a slow dissolution rate
in this medium. They had high mucoadhesiveness and the ability to control the release
of the drug over time, confirming the suitability of this PEC for prolonged treatments of
vaginal infections. Abruzzo et al. [153] also developed a PEC-based vaginal drug delivery
system, and prepared freeze-dried inserts containing chitosan and alginate for the vaginal
administration of chlorhexidine gluconate. Their results demonstrated that by choosing
the optimal ratio between the polymers it was possible to obtain a moderate hydration rate,
high mucoadhesiveness and a controlled release of the drug, thus offering an interesting
option for the treatment of aerobic vaginitis and candidiasis.

In the field of vaginal drug administration, we consider it especially important to
highlight the efforts to develop formulations to prevent the sexual transmission of the
human immunodeficiency virus (HIV). These dosage forms, known as vaginal microbicides,
are considered an option for topical preexposure prophylaxis, which is a priority in the
fight against HIV as directed by the Joint United Nations Programme on HIV and AIDS
(UNAIDS) [96,154]. We developed tablets based on chitosan/pectin PECs for the vaginal
controlled release of the anti-HIV drug tenofovir. The results demonstrated that the
formation of PECs between both biopolymers in vaginal simulated fluid led to a significant
improvement in the mechanical properties of the system. Consequently, the ex vivo
mucoadhesion residence time was improved, as well as the rate of release of the drug
compared to the biopolymers separately. These results indicated the great potential of
PECs for improving the characteristics of mucoadhesive vaginal dosage forms [84].

4. Conclusions

Biopolymers are highly valuable tools for their application in biomedicine thanks to
their high biocompatibility, the ease with which they can be obtained and their functional
variety. They also have the unique property of being mucoadhesive, which makes them
an essential tool for the administration of drugs in the mucosae. Since a large proportion
of biopolymers are PEs, the possibilities of these substances can be multiplied through
the formation of PECs, which have been shown to be very versatile physicochemical
systems: their formation allows the mechanical or structural properties to be fine-tuned
to obtain systems that act in a pH-dependent manner, or to improve mucoadhesion and
drug release. However, PECs are a field that has yet to be explored in the development
of mucoadhesive formulations for drug release; there are few references to PEC-based
mucoadhesive drug delivery systems in the literature, although the results are generally
very promising. Among the multiple advantages of PEC-based mucoadhesive formulations,
it is worth highlighting several features: first, the possibility of systemic administration
through the vaginal, buccal or nasal route of substances that would undergo strong pre-
systemic metabolism if administered orally, thus avoiding parenteral routes; second, they
can be useful for the prolonged administration of drugs for the effective treatment of ocular
pathologies; third, PECs are also an option for oral administration of insoluble or proteic
active ingredients; and last, they can be explored for the prevention of sexual transmission
of HIV through the vaginal route, or the local treatment of pathologies through all these
routes. However, and due to the limited research in the field of mucoadhesive PECs, their
possibilities of clinical application are limited. To overcome this, future research should
focus on evaluating novel drug delivery systems in animal models prior to clinical trials.
In vivo studies will allow the efficacy and safety of these dosage forms to be adequately
evaluated. For all the above reasons, these physicochemical systems are a field with
extraordinary potential, whose knowledge could lead to very significant advances in the
future for the treatment of multiple diseases.
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