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Abstract

Dipeptidylpeptidase 4 (DPP4/CD26) enzymatically cleaves select penultimate amino acids of 

proteins, including colony stimulating factors (CSFs), and has been implicated in cellular 

regulation. To better understand the role of DPP4 regulation of hematopoiesis, we analyzed the 

activity of DPP4 on the surface of immature blood cells and then comparatively assessed the 

interactions and functional effects of full-length (FL) and DPP4 truncated factors [(T)-GM-CSF 

and- IL-3] on both in vitro and in vivo models of normal and leukemic cells. T-GM-CSF and T-

IL-3 had enhanced receptor binding, but decreased CSF activity, compared to their FL forms. 

Importantly, T-GM-CSF and T-IL-3 significantly, and reciprocally, blunted receptor binding and 

myeloid progenitor cell proliferation activity of both FL-GM-CSF and FL-IL-3 in vitro and in 
vivo. Similar effects were apparent in vitro using cluster forming cells from patients with Acute 
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Myeloid Leukemia (AML) regardless of cytogenetic or molecular alterations and in vivo utilizing 

animal models of leukemia. This suggests that DPP4 T-molecules have modified binding and 

functions compared to their FL counterparts and may serve regulatory roles in normal and 

malignant hematopoiesis.

Introduction

Dipeptidylpeptidase 4 (DPP4/CD26), a serine protease found as membrane bound and 

soluble forms, enzymatically cleaves select penultimate amino acids of proteins that regulate 

multiple aspects of hematopoiesis.1,2 We reported that DPP4 truncated (T)-GM-CSF has 

diminished colony stimulating activity, and intracellular signaling compared to FL-GM-CSF, 

and blunted the in vitro colony forming effects of FL-GM-CSF.3 Although a large number of 

cytokines, chemokines, and growth factors (including GM-CSF and IL-3) have previously 

unrecognized putative DPP4 truncation sites1–3 their potential interactive roles in 

hematopoiesis (including modifying the function of other molecules and acting as regulatory 

molecules) are poorly understood. Our objective was to clarify the regulatory effects of 

DPP4 truncated GM-CSF and IL-3 on in vivo and in vitro modulation of steady and diseased 

state hematopoiesis.

Hematopoietic progenitor (HPC)/precursor cells from patients with Acute Myeloid 

Leukemia (AML) respond to cytokines such as GM-CSF and IL-3 for enhanced growth, 

survival and resistance to therapy.4–8 GM-CSF and IL-3 have additive to synergistic 

proliferative effects on normal and malignant cell growth,9–15 and patients with AML 

manifest increased serum GM-CSF and IL-3 before induction therapy compared to normal 

controls, and a decline of GM-CSF and IL-3 after successful remission.16 GM-CSF and IL-3 

share a common receptor beta-chain, IL-3 competes for GM-CSF binding on AML blasts,10 

and targeting the IL-3 receptor has been suggested as a useful therapeutic in AML.16, 17 

Therefore, it is important to understand how T-GM-CSF and T-IL-3 may influence normal 

and malignant hematopoiesis. We now report that T-GM-CSF and T-IL-3 reciprocally blunt 

receptor binding, as well as functional interactions, of both FL-GM-CSF and FL-IL-3 in 
vitro in primary human cord blood (CB) HPC, primary AML HPC/precursors, and in the 

human growth factor dependent TF-1 cell line. Moreover, these blunting effects of T-GM-

CSF and T-IL-3 were recapitulated in vivo in murine models of normal and malignant 

hematopoiesis, thus demonstrating an additional, and perhaps crucial, layer of cell regulation 

for normal and leukemic hematopoiesis.

Materials and Methods

Mice, mouse cells, human cord blood, TF-1 and primary patient AML cells

C57BL6/J mice were purchased from Jackson Laboratories (Bar Harbor, ME) and treated 

with Diprotin A (Peptides International; Louisville, KY) or PBS control as reported.3 

dpp4−/−18, FLT3-ITD19, and PtpnE76K/+LysM-Cre+ (Ptpn11E76K)20 mice are all on a 

C57BL6/J mouse strain background, and have been previously described. Mouse bone 

marrow (mBM) and human cord blood [(CB) from the Eskenazi (formerly Wishard) 

Hospital, Indiana University School of Medicine, Indianapolis, Indiana, USA, and from 
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Cord:Use Cord Blood Bank, Orlando, Florida, USA] were used as described.21 AML patient 

samples were obtained from peripheral blood samples of patients under an approved IRB 

(9402–10 & 9812–11).

The Indiana University Committee on Use and Care of Animals, and the Indiana University 

Institutional Review Board, respectively, approved mBM, human CB, and AML studies. CB 

received was from to be discarded material. TF-1 cells, originally obtained from T. 

Kitamura, Japan, are available from American Type Culture Collection (CRL-2003) and 

were used as described.3, 22, 23

HPC Colony Assay

C57BL6/J, dpp4−/−, FLT-3/ITD, and Ptpn11E76K mice were injected s.c. with combinations 

of 10ug of recombinant murine (rm) FL- or T- GM-CSF and/or -IL-3. After 24 hours mice 

were sacrificed, femurs flushed, and mBM cells plated at ~5×104 cells/ml in 1% 

methylcellulose culture medium in the presence of hemin 0.1 mM, 30% FBS (Hyclone, 

Utah) with the following growth factors, unless otherwise noted: 1 U/ ml recombinant 

human (rh) erythropoietin (Amgen Corporation, South San Francisco, CA), 50 ng/ml rmSCF 

(R&D Systems, Minneapolis, MN), and 5% vol/vol pokeweed mitogen mouse spleen cell–

conditioned medium (PWMSCM).18, 21 Percent HPCs in S phase of the cell cycle was 

estimated by high-specific-activity tritiated thymidine kill technique. Colonies were scored 

after a 7 day incubation, and CFU-GM, BFU-E and CFU-GEMM progenitors 

distinguished.21 Human CB cells and primary AML patient samples were separated into a 

low-density fraction and plated at ~5×104 cells/ml, and TF-1 cells were plated at 250–1,000 

cells/ml in 0.3% semisolid agar medium (Difco) with 10ng/ml (or concentrations listed) of 

rhFL- or T- GM-CSF or -IL-3. Colony formation for CB was counted on day 14, and colony 

formation for TF-1, or cluster formation of AML patient samples,24–26 at day 7–10. CD34+ 

CB cells (>95% CD34+) were purified.(27) Rm and rhGM-CSF, IL-3, and SCF were from 

R&D Systems. Cell cultures were incubated at lowered (5%) O2 tension in 5% CO2 in a 

humidified chamber.3, 21, 27

DPP4 Activity Assay

CB, AML patient samples, TF-1 or mBM were harvested and enriched (CD34+) or depleted 

(Lineage -) using Miltenyi (San Diego, CA) commercially available kits.3, 28 Approximately 

1-5×105 cells (untreated or incubated with 5mM DiprotinA for 30 minutes) were plated/ 

well in duplicate (N= at least 3 individual samples or mice), and left intact in 50ul of PBS in 

a 96-well flat-bottom microtiter plate. The assay was carried out by combining cells with 50 

μl of the DPP4 substrate Gly-Pro-aminoluciferin and assay buffer optimized for this assay 

(DPP4-Glo Protease Assay; Promega, Madison, WI, USA). Plates were incubated at 37 °C 

for 30 min, and surface DPP4 enzyme activity was measured using an LMAX luminometer 

(Molecular Devices, Sunnyvale, CA, USA).(3)

Flow Cytometry

Human TF-1 cells were fixed with 1% formaldehyde after stimulation (with 10ng/ml rhFL, 

T or FL:T IL-3), permeabilized using BD Phosflow Perm Buffer III (#558050) and stained 

in BD staining buffer with primary anti-P-Stat5 (BD) and anti-P-Jak2 antibodies (Cell 
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Signaling) and secondary antibody (Cell signaling). Mouse bone marrow was washed in 

PBS and 2×106 cells were stained with the following phenotyping antibodies to determine 

HSC and progenitor populations29 prior to fixation [Lineage cocktail (Biolegend,), CD34, 

SCA, KIT, FLT3, Fcgamma receptor (BD)]. All samples were run on BD machines (LSR 4 

or Fortessa) and analyzed using FlowJo Software.

Generation of DPP4 truncated (T) -GM-CSF and -IL-3

Soluble human or porcine DPP4, prepared from human placental tissue or porcine kidney, 

were purchased from MP Biomedicals, LLC or Sigma Aldrich (#D7052), respectively, and 

used at approximately 0.25ug for every 1ug of full-length protein per digestion at 37°C for at 

least 18 hours.3

Equilibrium Receptor Binding

Receptor binding analysis of FL- and T- rh GM-CSF and IL-3 were done under equilibrating 

conditions, and data analyzed by Scatchard plotting. 3, 30, 31 using TF-1 cells, CD34+ CB 

cells, and AML primary patient samples. Carrier-free rhGM-CSF and IL-3 (R&D Systems; 

Minneapolis, MN) were radio-iodinated by chloramine-T method by Phoenix 

Pharmaceuticals, Inc. (Burlingame, CA). The [125I]-GM-CSF and IL-3 were re-purified to a 

concentration of approximately 0.67ug/ul and had a specific radioactivity of ~60 uCi/mmole. 

The chloramine-T method iodinates on tyrosine residues in proteins; therefore, truncation by 

DPP4 does not reduce the specific radioactivity of the protein by the enzyme’s removal of 

the N-terminal Ala-Pro. Nonspecific binding was assessed by competing rh[125I]-GM-CSF 

or IL-3 with a 1,000-fold excess of unlabeled rhGM-CSF or IL-3. Using TF-1 cells, this 

results in greater than 95% reduction in non-competed c.p.m. of bound ligand, which was 

near background radiation, so specific binding under these conditions was considered to be 

100% of measured 125I, as determined by Beckman Coulter Gamma 5500B gamma counter 

(Brea, CA). Linear-regression coefficient of correlation (r2) was considered acceptable at a 

value of 0.90 or greater.

Statistical analyses

For all colony assays, three plates per experimental point were scored. Results of colony 

assays and animal studies were assessed by Two-tailed students T test or Analysis of 

Variance (ANOVA). Receptor binding studies were assessed by Student’s t-test. Numbers of 

experiments per group are noted in the figure legends, and all animal experiments analyzing 

effects in vivo contained at least 3 mice per group.

Results

A.) Interactions of FL- and T-GM-CSF and –IL-3 on Cellular Proliferation in vitro and in vivo

Ai.) DPP4 is active on the cell surface of immature cells—DPP4 has been shown 

to be present as an active, membrane bound form on specific cell types. We detected active 

DPP4 on the surface of the human growth factor-dependent TF-1 cell line, human CD34+ 

CB cells, primary AML patient samples, and lineage negative mBM and this activity was 

blunted by Diprotin A (DPA), an ILE-PRO-ILE DPP4 inhibitor (Figure 1A) on all samples 

evaluated.3, 18, 28
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Aii.) T-GM-CSF and T-IL-3 blunt colony stimulating effects of both FL-GM-CSF 
or FL-IL-3 in vitro on human (CB and TF-1) and mouse cells—To delineate the 

ability of the FL- and T-GM-CSF and -IL-3 molecules to reciprocally modulate each other’s 

function, as well as to better understand the practical relevance of their functions, we 

analyzed the colony stimulating activity of these molecules using primary human low 

density CB HPCs (Figure 1B and 1C). This reciprocal interaction was specific for GM-CSF 

and IL-3, and likely involved the common beta chain they share in their receptors, as DPP4 

T-G-CSF (whose receptor does not share the common beta-chain) was only able to blunt 

colony formation induced by FL-G-CSF, but not that of FL-GM-CSF or FL-IL-3 (Figure 

1C). Importantly, the T-factors could be serially diluted to approximately 12% of the FL 

amount and still significantly blunt stimulation by either FL-GM-CSF or FL-IL-3 in both 

TF-1 (Figure 1D) and CB (Figure 1E) cells. Further, as previously demonstrated for GM-

CSF,3 T-IL-3 induced less activation of the JAK/STAT pathway than FL-IL-3 and blunted 

the activation induced by FL-IL-3 (Figure 1F). T-GM-CSF and T-IL-3 alone or in 

combination blunted numbers of mBM colonies stimulated by their FL forms and 

manifested decreased percentages of HPCs in S-phase of the cell cycle (Figure 1G).

Aiii) Effects of T- and FL- CSFs on HPC in vivo mimic in vitro effects—To 

evaluate if the functional data above would be replicated in an in vivo situation, we studied 

effects of m FL- and T-GM-CSF and -IL-3 for effects on the absolute numbers and cycling 

status of mBM HPCs. We used dpp4−/− mice on a C57BL/6 strain background (Figure 2A), 

C57BL/6 mice that were pre-treated with DPA (Figure 2B), or C57BL/6 mice left untreated 

(Figure 2C). Mice were administered a single s.c. dose of rmFL- or T-GM-CSF or -IL-3, or 

various combinations of FL-, and T-, GM-CSF or -IL-3. FL-vs. T-CSFs were injected 

separately at different sites in the same mouse. In all 3 animal models, T-GM-CSF and T-

IL-3 resulted in less in vivo stimulatory activity than their respective FL-CSFs with respect 

to HPC numbers (CFU-GM, CFU-GEMM, and BFU-E)/femur and their cell cycling, as 

assessed by percent of HPC in S-Phase of the cell cycle (Figure 2). Moreover, T-GM-CSF 

and T-IL-3 blunted effects of both FL-GM-CSF and FL-IL-3 similar to that seen in vitro. T-

GM-CSF or T-IL-3 each resulted in in vivo suppression of the effects of both FL-GM-CSF 

and FL-IL-3 (Figure 2). Most importantly, and impressively, combinations of T-CSFs were 

able to blunt the increased additive potency of combinations of FL-GM-CSF plus FL-IL-3. 

This functional blunting, with respect to HPC numbers/femur and cycling in vivo, 

demonstrates that both T-GM-CSF and T-IL-3 functionally display down-modulating effects 

on HPC over both FL- factors.

B) Primary progenitor/precursor cells from patients with AML respond in vitro to DPP4 T-
rhGM-CSF and T-IL-3, in a manner similar to normal progenitors

GM-CSF and IL-3 are important in growth and maintenance of AML cells.6, 10, 32–35 

Modifications in cytogenetic and molecular status, such as internal tandem duplication (ITD) 

mutations in the FMS-like tyrosine kinase 3 gene (FLT3/ITD), are common and can alter 

growth and aggressive progression of disease. Therefore, to understand if HPC/precursors 

from patients with AML, with various cytogenetic backgrounds and molecular mutations 

(Table 1), are sensitive to T- factors in a fashion similar to that of normal HPC, we assessed 

AML patient samples with varied cytogenetic and molecular alterations for responsiveness. 
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Patients with newly diagnosed, or relapsed, AML have varied growth patterns compared to 

normal cells, and usually form clusters (3-40 cells) rather than colonies (>40 cells) or no 

colonies or clusters in semi-solid agar culture medium.24–26 In the cases shown (Table 1, 

Figure 3 A–D), cells from these patients with AML did not grow without CSFs, but formed 

clusters (~3-20 cells/clone) upon stimulation with either rhFL-GM-CSF or FL-IL-3, and T-

GM-CSF and -IL-3 were each less effective stimulating factors on these cluster forming 

cells than their FL-forms. The FL-GM-CSF and FL-IL-3 stimulated cluster formation of the 

AML patient samples was reciprocally diminished by either T-GM-CSF or T-IL-3 in patient 

samples tested, regardless of cytogenetic or molecular status. Additionally, for two patient 

samples tested, and as seen in the CB and TF-1 in vitro models (Figure 1), less than a 1:1 

ratio of T-CSF to FL-CSF down-modulated maximal stimulation noted with combinations of 

FL-GM-CSF and FL-IL-3 (Figure 3 C and D, patients 3135 and 3131). Further, cycling 

analysis showed an identical trend to that seen in the in vivo studies evaluating normal 

hematopoietic progenitors, where T- molecules induced less stimulatory activity than the 

FL-CSFs counterparts with respect to numbers of clusters formed and percent of cells in S-

Phase of the cell cycle (Figure 3E). This dramatic suppressive response of AML patient 

samples in response to the T-factors, regardless of aggressive cytogenetic or molecular 

alterations, prompted us to compare the extent of the inhibition by fold change in primary 

CB vs primary AML patient samples. Figure 3F shows that, in general in this small 

sampling of patient cells, AML samples were significantly more sensitive to the T-factors 

than the CB cells, regardless of cytogenetic/molecular status, suggesting a possibility for 

consideration of future use of DPP4 T-factors to down-modulate growth of AML 

progenitors/precursors. We then assessed effects of T-CSFs in vivo in two mouse models of 

leukemia.

Bi) Effects of T- and FL-CSFs in vivo in mouse models of leukemia—AML 

primary patient samples were sensitive to the FL- and T-factors in vitro, regardless of 

cytogenetic or molecular status. Therefore, to begin to assess the potential clinical utility of 

T-GM-CSF and -IL-3 in models of malignant hematopoiesis in vivo, FLT-3/ITD mice were 

first utilized.19 Similarly, to in vivo experiments with normal mice (Figure 2), FLT-3/ITD 
mice were injected with rm FL- and T-GM-CSF and -IL-3, and effects on absolute numbers 

and cycling status of BM HPCs were analyzed. Mice showed a leukemia phenotype with 

significantly enhanced numbers of stem and progenitor cells in both the bone marrow and 

spleen (Supplemental Figure 1A and B, respectively) compared to control. In vivo treatment 

of FLT3-ITD mice with rmFL-factors (GM-CSF and IL-3 in combination to maximize 

stimulation) resulted in functional increases in numbers of progenitors (Figure 4A and C), 

and cycling status (Figure 4B and D), respectively in BM and spleen. T-factors (GM-CSF 

and IL-3 combination) not only reduced numbers and cycling status of HPCs compared to 

baseline levels of control mice but also significantly blunted the enhanced stimulation 

obtained with FL-CSFs in both the bone marrow (A and B) and spleen (C and D). Another 

model of murine leukemia containing an E76K activating mutation in protein tyrosine 

phosphatase, non-receptor type 11 (Ptpn11, Ptpn11E76K),20 commonly detected in 

childhood acute leukemia and myeloproliferative disorders, was also evaluated for response 

to rmFL- and T-GM-CSF and IL-3. These mice showed a leukemia phenotype with 

significantly enhanced numbers of progenitors in both the bone marrow and spleen 
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(Supplemental Figure 2A and B, respectively) compared to control. Identical trends to those 

seen with the FLT-3/ITD mice were detected with respect to progenitor cell numbers and 

cycling in the spleen (Figure 4E and F). The BM of the Ptpn11E76K mice showed dramatic 

reductions in multiple phenotypically and functionally-defined cell populations, in response 

to both FL- and T- factors, such that there was >90% reduction in BM ST-HSCs, MPPs, 

CMPs and GMPs with few or no CFU-GM, BFU-E or CFU-GEMM detected in these mice 

after FL-, T-, or FL+T-GM-CSF plus -IL-3 administration (data not shown). These decreases 

in HPC numbers in BM likely reflect large mobilization effects suggesting that these mice 

may be ultra-sensitive to CSF-induced mobilization regardless of treatment with FL- or T- 

molecules. Data from these two leukemia mouse models suggest that T-CSFs are able to 

modify growth and cycling of leukemia cells with molecular alterations in vivo which may 

represent a heretofore unknown mechanism of leukemia cell regulation.

C) T-GM-CSF and -IL-3 have high receptor binding affinity and compete with FL-GM-CSF 
and -IL-3 for receptor binding in primary CB and AML cells

To further identify potential mechanistic interactions of T- vs. FL-GM-CSF and -IL-3 at a 

receptor level, receptor equilibrium binding studies were performed (Figure 5). We first 

utilized the TF-1 cell line stimulated with rhFL- and T-GM-CSF and -IL-3 that was I125 

labeled or unlabeled. Both high and low affinity binding sites for FL- and T-GM-CSF and -

IL-3 were detected by Scatchard analysis (Figure 5). By calculating dissociation constants 

(Kd), we determined that T-GM-CSF and T-IL-3 bind with higher affinity than their FL-

counterparts, and both truncated forms are better competitors for receptor binding than FL-

GM-CSF and -IL-3 (Figure 5A). We also noted, through binding competition studies using 

pooled CD34+ CB cells (Figure 5B) and multiple primary AML samples (Figure 5C), that 

the T-GM-CSF and T-IL-3 reciprocally competed with and blunted the receptor binding of 

both their own, as well as the other FL-CSFs.

Discussion

Our studies have now demonstrated that DPP4 exists in an active form on the cell surface of 

murine as well as immature normal and malignant human cells, and that DPP4 T-GM-CSF 

and -IL-3 have enhanced receptor binding as well as modified HPC functional regulatory 

activity compared to their FL counterparts both in vitro and in vivo for both normal and 

leukemia progenitors/precursor cells. These results allude to the importance of DPP4, via its 

regulation of normal and malignant cells by acting as a scaffolding molecule and truncating 

physiologically and pathologically relevant proteins, thus adding another layer of 

interactions and complexity to growth modulatory factors and their role in the BM 

microenvironment. Alterations in receptor binding and signaling after DPP4 truncation is 

likely not only important for the effects seen on normal and leukemic cells in the settings of 

GM-CSF and IL-3 that we have elucidated here, but also suggests the possibility for broader 

relevance for the many factors we have recently noted to have DPP4 putative or confirmed T 

sites1–3 and potentially for other proteins with DPP4 T-sites that have not yet been identified. 

This highlights the critical need to understand how DPP4 T alters receptor binding of 

individual proteins and how it may alter their ability to act as a negative or positive regulator 

on normal and malignant hematopoiesis, as well as other steady- and disease-states outside 
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of hematopoiesis.1–3 Both T-GM-CSF and -IL-3 diminished receptor binding and function 

of both FL-GM-CSF and -IL-3, at less than a 1:1 ratio, likely through their shared common 

β chain receptor. Since DPP4 may play a more active role in hematopoiesis under stress 

conditions,3 a role for T- proteins in regulation of hematopoiesis may be even more apparent 

under stress.

DPP4 specific regulation of GM-CSF and IL-3 via its truncation, and in general as a 

modulator of CSF signaling and consequently alterations in hematopoietic function, may 

have potential clinical application. Patients with leukemia, may respond to T-factors 

regardless of molecular alterations or may have altered sensitivity to DPP4 T-factors based 

on leukemia type, similar to effects seen in our sampling of AML patient cells and the two in 
vivo models of leukemia assessed in our present studies. The knowledge we have gained in 

this research can possibly be used for investigation of the potential use of DPP4 T- proteins 

for future treatment of leukemia patients. This will require further mechanistic and 

therapeutic insight into the actions of T- vs FL- proteins in terms of what overlapping and 

distinct intracellular signals they elicit, and more in depth analysis of in vivo mouse models 

of leukemia to determine the effects on disease progression/relapse and animal survival.

Importantly, current assessment of protein levels, for the most part, do not distinguish 

between the FL- and DPP4 -T forms of these proteins and hence assessments of proteins by 

conventional methods such as ELISA, bioplex, and other methods that use antibodies that do 

not distinguish the FL- from the T- forms of the proteins therefore may not be fully telling in 

terms of the specific physiology or biological activities associated with these molecules. To 

that end, the possibility exists that functional outcomes that have been previously attributed 

to FL- molecules may, in fact, actually be due to T- molecules or a mixture of activities 

between the FL- and T- molecules. Thus, efforts to develop antibodies that can distinguish 

DPP4 T- from FL-proteins may be of practical, scientific, and potentially clinical value.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• DPP4 truncated (T) GM-CSF & IL-3 reciprocally bind with higher affinity to 

both GM-CSF & IL-3 receptors compared to their full length (FL) forms.

• DPP4 truncated (T) GM-CSF & IL-3 reciprocally blunt the activities of both 

full length (FL) GM-CSF & IL-3 in vitro and in vivo in primary AML patient 

samples and mouse models of normal/malignant hematopoiesis.
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Figure 1. DPP4 is active on the cell surface of immature blood cells and DPP4 truncated 
molecules (T-GM CSF and T- IL3) block colony formation across molecules in vitro at less than a 
1:1 ratio
(A) 1–5×105 cells/well from TF-1, primary AML samples, CD34+ CB and lineage negative 

C57 BL6/J mBM were analyzed for baseline DPP4 activity. Diprotin A (DPA, a DPP4 

inhibitor), was added as a control 30 minutes prior to the start of the assay (for some 

samples) to show assay specificity for DPP4 activity on the cell surface and ability to inhibit 

the DPP4 enzyme. N=3 samples per group done in triplicate for all except for the primary 

AML samples where N=5 and plating for data shown was lower than other samples 
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(~1×105/well) due to sample availability. AML samples were from those shown in Table 1. 

Low density cord blood cells (B,C, and E) or TF-1 cells (D) were stimulated with 10ng/ml 

of full length (FL) or DPP4 truncated (T) GM-CSF, IL-3 or G-CSF unless otherwise listed. 

(F) TF-1 cells were factor starved and treated with 10ng/ml of FL, T or 1:1 ration of IL-3 for 

5 minutes, fixed and assessed for induction of JAK/STAT signaling by flow cytometry (n=2 

independent experiments). (G) Mouse BM was plated at 5×104 cells/ml in the presence of 

10ng/ml rmFL, T or a mixture of FL/T GM-CSF and/or IL-3 and colony formation and 

cycling status of the progenitor cells were determined. All experiments contained 3 mice per 

group or were performed at least 3 times (unless noted otherwise) and ANOVA was used to 

determine statistical significance with the exception of 1A (students-T Test). * = p ≤ 0.05 

compared to control (FL GM, IL-3 or FL GM/IL-3, FL G-CSF etc.) For the combined 

experiments shown as fold change the average number of control colonies were: FL GM= 

45, IL-3= 55, FL GM/IL-3= 95 for LDCB and FL GM= 220, IL-3= 170, FL GM/IL-3= 310 

for TF-1.

O’Leary et al. Page 13

Leukemia. Author manuscript; available in PMC 2017 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Truncated GM-CSF (T-GM-CSF) and IL-3 (T-IL-3) block colony formation across 
molecules in vivo
dpp4−/− mice (A), C57BL6/J mice treated with Diprotin A (B), or untreated C57BL6/J mice 

(C) were injected with 10ug of either rmFL, T or a combination of FL/T GM-CSF and/or 

IL-3 s.c. at different sites. Mice were sacrificed 24 hours later, femurs were flushed, and 

colony formation and cycling status of the progenitor cells were determined. *= p ≤ .05 or 

less by ANOVA. N=3 animals/group with each mouse individually accessed. 1 of 2 

representative experiments shown for dpp4−/− mice.
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Figure 3. DPP4 Truncation of GM-CSF and IL-3 inhibit AML cluster formation stimulated by 
FL-CSFs
A-D) 5 × 104 cells from ficolled peripheral blood of AML patients with 90% or greater blast 

burden (Table 1) were plated in agar with 10ng/ml (unless otherwise noted) of rhFL- and/or 

T-GM-CSF and/or IL-3. Cells were plated in triplicate and incubated at 37°C/5% O2 for 7–

10 days prior to enumeration of clusters formed. E) Cell cycling evaluation of AML patient 

samples (n=3, 5 × 104) treated with FL or T factors. F) Fold change comparison of CB 

response to DPP4 truncated factors compared to AML response. N=4 for AML samples and 
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N=7 for LDCB * = p ≤ .05 or less by ANOVA compared to control (FLGM, FL3 or FLGM/

FL3)
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Figure 4. Effects of T- and FL- CSFs on in vivo model of leukemia
FLT3-ITD (A-D) and Ptpn11E76K ((F, G) mice were injected with 10ug of a combination 

of either rmFL-GM-CSF and FL-IL-3, T-GM-CSF and T-IL-3 or a mixture of both FL- and 

T- (GM-CSF and IL-3) s.c. at different sites. Mice were sacrificed 24 hours later, femurs 

flushed, spleens made into single cell suspensions and colony formation (A,C,E) and 

cycling status (B,D,F) of the progenitor cells were determined.
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Figure 5. T-IL-3 and T-GM-CSF bind with greater affinity than FL-IL-3 or FL-GM-CSF, and T-
IL-3 and T-GM-CSF blunt receptor binding of both FL-IL-3 and FL-GM-CSF
(A) Scatchard analysis and Kd determination of TF-1(n=2) was performed with I125 labeled 

IL-3. 1×106 TF-1 cells were plated per well, and iodinated full length or truncated IL-3 was 

added for one hour. Cells were harvested and levels of I125 labeled ligand bound were 

detected using a Beckman Coulter Gamma 5500B and low and high affinity binding sites, as 

well as the dissociation constant (Kd) were derived as previously published.(3) Pooled 

CD34+ CB (B) or primary AML patient samples (C) were incubated with I125 labeled FL-
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IL-3 or FL-GM-CSF alone or in addition to cold T-IL-3 and T-GM-CSF in excess for 1 hour. 

Cells were harvested and the CPM (or levels of I125 labeled ligand bound) were detected 

using a Beckman Coulter Gamma 5500B to analyze the ability of T-IL-3 and T-GM-CSF to 

compete with FL-IL-3 and FL-GM-CSF. * = p ≤ 0.05 AML patient samples n= 7 distinct 

samples; CB n= 5 independent experiments with CD34+ cells pulled from multiple cord 

bloods for each experiment.
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Table 1
Characterization of AML primary patient samples based on disease state, cytogenic/
molecular phenotype and utilization

AML patient samples were obtained and samples utilized were determined to be at least 90% tumor blasts. Yes 

or No (refers to growth in culture), “cycling” refers to being used in cycling assays

Patient Number De Novo or 
Relapse Cytogenetic/Molecular Alterations Experimental Use

3011 De Novo inv 16 Yes (cycling)

3099 De Novo Flt3 ITD N/A receptor binding only*

3127 De Novo t(9;22)(q34;q11.2) Yes*

3130 De Novo normal karyotype, F1t3 TKD Yes*

3131 De Novo 7q- Flt3 ITD Yes* (cycling)

3135 De Novo inv 3(q21;q26) [EVI 1 activiation] Yes*

3136 De Novo normal karyotype, Flt3 TKD, Mnpml No*

3142 Relapse T(12;15)(Q13,Q11.2),Flt3ITD N/A receptor binding only*

3146 De Novo 46(X;X) [13 metaphases]; t(l;13) (p32;ql2) [ 8 metaphases] dmut 
CEBPA, and negative Flt3ITD/TKD, negative NPM1

#

3152 Relapse normal karyotype (46[X,Y]), NPM1 negative, CEBPA negative, FltlTD 
negative, Flt3 D835+

#

3155 De Novo complex, with monosomy 7, negative for Flt3ITD/TKD and negative 
for NPM1

#

3157 De Novo 46(X;X) negative Flt3ITD, neg NPM1, neg CEBPA. #

3159 De Novo normal karyotype; FLT3ITD+, NPM1−,CEBPA− #

3224 Relapse normal karyotype, [46(X,Y)], WT1 18% Yes (cycling) #

*
designates use for receptor binding studies

#
designates use in DPP4 activity assay.
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