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Abstract

Background: Gait impairments are common and disabling in chronic stroke patients. Pes equinovarus deformity is
one of the primary motor deficits underlying reduced gait capacity after stroke. It predisposes to stance-phase
instability and subsequent ankle sprain or falls. This instability is most pronounced when walking barefoot. Tarsal
fusion is a recommended treatment option for varus deformity, but scientific evidence is sparse. We therefore
evaluated whether a tarsal fusion improved barefoot walking capacity in chronic stroke patients with pes equinovarus
deformity.

Methods: Ten patients with a pes equinovarus deformity secondary to supratentorial stroke underwent
surgical correction involving a tarsal fusion of one or more joints. Instrumented gait analysis was performed
pre- and postoperatively using a repeated-measures design. Primary outcome measure was gait speed.

Results: Walking speed significantly improved by 32% after surgery (0.38 m/s ± 0.20 to 0.50m/s ± 0.17, p = 0.007).
Significant improvement was also observed when looking at cadence (p = 0.028), stride length (p = 0.016), and paretic
step length (p = 0.005). Step length on the nonparetic side did not change. Peak ankle moment increased significantly
on the nonparetic side (p = 0.021), but not on the paretic side (p = 0.580). In addition, functional ambulation scores
increased significantly (p = 0.008), as did satisfaction with gait performance (p = 0.017).

Conclusions: Tarsal fusion for equinovarus deformity in chronic stroke patients improves gait capacity, and the degree
of improvement is of clinical relevance. Our results suggest that the improved gait capacity may be related to better
prepositioning and loading of the paretic foot, leading to larger paretic step length and nonparetic ankle kinetics.
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Introduction
Gait impairments are common and disabling in chronic
stroke patients, as they result in reduced mobility, falls
and fall-related injuries. [1, 2] Pes equinovarus is one of
the primary motor deficits underlying reduced gait cap-
acity in these patients. [3] It is the result of imbalance of
‘active’ muscle strength (weakness of dorsiflexors and
evertors) as well as ‘passive’ muscle length and tone

(contractures and spasticity of the plantarflexors and
invertors) around the ankle and tarsal joints. Particularly
the varus deformity of the hindfoot is disabling, as it
predisposes to stance-phase instability and subsequent
ankle sprain or falls. This instability is most pronounced
when walking barefoot, e.g. when going to the bathroom
at night, and imposes a heavy attentional load on pa-
tients to prevent ankle sprain or falling.
Clinical management of pes equinovarus is generally

perceived as challenging. Although in the chronic phase
after stroke balance control and balance correcting steps
can be trained, [4] there is no evidence that exercise-
based interventions can improve the gait pattern includ-
ing pes equinovarus. The emphasis of management of
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pes equinovarus should therefore be on medical-
technical interventions. [5] To improve management, we
have recently introduced a step-wise approach to the
treatment of pes equinovarus. [3] In this approach, we
strongly suggest that, in the presence of a dynamic or
fixed varus deformity of the hindfoot at initial contact or
during the stance phase, surgical interventions need to
be considered to restore a plantigrade foot position and
improve stance-phase stability of the paretic leg. [3] Un-
fortunately, despite excellent practice-based experiences,
the scientific level of evidence for these surgical inter-
ventions is very limited. [6] We therefore evaluated
whether gait capacity in chronic stroke patients im-
proves after a surgical correction of a pes equinovarus
deformity. Specifically, we focused on surgical interven-
tions that included a fusion of one or more tarsal joints.
The tarsal fusion restores a neutral position at the hind-
foot (resolves the varus component) and could be com-
bined with lengthening of the calf muscles in the
presence of an additional fixed pes equinus component.
We focused on barefoot walking, as stance-phase in-
stability due to varus deformity of the hindfoot is most
pronounced then. Our primary outcome measure was
self-selected gait speed, as this is often the most import-
ant treatment goal for patients. We hypothesized that
self-selected gait speed would increase after tarsal fusion
in chronic stroke patients suffering from equinovarus
deformity.

Methods
Patients and intervention
Between December 2014 and April 2017, we included
chronic (> 6months post onset) patients after supratentorial
stroke (either ischemic or hemorrhagic) who were evaluated
at the mobility outpatient clinic of the Radboud university
medical center and the Sint Maartenskliniek for gait prob-
lems due to stance-phase instability related to pes equino-
varus, and who subsequently underwent a surgical
intervention including a fusion of one or more tarsal joints.
We excluded patients who previously underwent orthopedic
surgery of the ankle or foot. Ten patients with a dynamic or
fixed pes equinovarus foot deformity due to stroke were in-
cluded (see Tables 1 and 2 for patient characteristics and type
of surgical intervention, respectively). Tarsal fusion was often
augmented by (partial) lengthening of the Achillles tendon
and/or by correction of flexion deformities of the toes.
Postoperatively, patients were treated in a cast without

weight bearing. After 4 weeks, patients were permitted
to bear weight in a below-knee walking cast, which was
followed by a removable walker after 8 weeks. Complica-
tions did not occur. All patients gave their written in-
formed consent, and the study was performed in
accordance with the local ethical guidelines.

Assessments and design
An instrumented gait analysis was performed pre- and
postoperatively in every patient using a repeated-measures
design. During these instrumented gait analyses, all pa-
tients were assessed barefoot. Four consecutive walking
trials at self-selected speed over a trajectory of 10m, in
which the subject actually stepped on the force plates,
were collected (an average of more than four walking trials
was not possible due to difficulties with walking barefoot
pre-operatively).
The instrumented gait analysis included kinematic and

kinetic assessment. Reflective markers were placed at
anatomical landmarks according to the full-body Plug-
in-Gait model. [7] Marker positions were recorded by an
8-camera 3D motion analysis system (Vicon Motion
Systems, United Kingdom) at a sample rate of 100 Hz.
Ground reaction forces under both feet were recorded at
a sample rate of 1000 Hz by two force plates (AMTI
Custom 6 axis composite force platform, USA). Kinetics
and kinematics were calculated with Vicon Clinical
Manager software. Kinematic data were calculated using
markers positions sampled over the 10m walking trajec-
tory; kinetic data were based on one step per foot during
each trial. In one patient, kinematic data were missing
on the nonparetic side.
Outcome measures included the following spatiotem-

poral parameters (which were calculated using the heel
marker positions in the kinematic data): walking speed,
cadence, stride length as well as step length and single-
support time of both the paretic and nonparetic leg.
Step-length asymmetry was quantified by using a step-
length ratio defined as the difference in step length

Table 1 Clinical characteristics of the participants

Sex 3 M, 7 F

Type of stroke 7 ischemic,
3 hemorrhagic

Age at the time of stroke (years) 41 (24–52)

Time post stroke (years) 7 (1–24)

Age at the time of surgery (years) 48 (30–62)

Time between pre-operative gait analysis
and surgery (months)

9 (5–14)

Time between surgery and post-operative
gait analysis (months)

7 (2–11)

Motricity Index - lower extremity 57 (39–80)

Brunnström stage - lower extremity 4 (3–5)

Quantitative vibration threshold
- ankle / foot

7 (5–8)

Modified Ashworth Scale triceps surae 2 (0–3)

Berg Balance Scale 48 (5–56)

Data are mean (range). Motricity Index - lower extremity (%). Brunnström
stage - lower extremity (max range 1–6). Quantitative vibration threshold –
ankle/ foot (max range 0–8). Modified Ashworth Scale – triceps surae (max
range 0–5). Berg Balance Scale (max range 0–56)
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between the paretic and nonparetic side, divided by the
average step length of the paretic and nonparetic side
(positive values indicate a larger paretic step compared
to the nonparetic step). In addition, we calculated the
following kinematic and kinetic outcomes: range of mo-
tion at the ankle joint during the gait cycle, internal peak
ankle moment, and peak ankle power of the paretic and
nonparetic leg. All outcome measures were averaged
over the 4 consecutive trials. At the same time, we col-
lected clinical and subjective scores. Ambulation cap-
acity was evaluated by an independent research assistant
using the Functional Ambulation Categories (FAC). [8]
In addition, patients were asked to express satisfaction
with their gait capacity on a scale (1 to 10) before and
after surgery. Moreover, we asked patients whether their
capacity to walk barefoot had improved after surgery
(yes/no).

Statistics
The spatiotemporal, kinematic and kinetic parameters
were analyzed using paired t-tests. We used a Wilcoxon
test for the FAC scores and subjective rating of gait sat-
isfaction. The α-level was set at 0.05.

Results
Spatiotemporal gait parameters
Self-selected walking speed improved significantly from
0.38 ± 0.20 preoperatively to 0.50 ± 0.17 m/s postopera-
tively (t [9] = − 3.492, p = 0.007). Improvement in gait
speed was seen in 9 out of 10 patients. In one patient,
even a fourfold increase in gait speed was found. Stride
length also significantly improved from 0.60 ± 0.22 to
0.73 ± 0.16 m (t [9]= − 2965, p = 0.016) as did cadence
from 69.8 ± 20.1 to 80.8 ± 15.4 steps/min (t [9]= − 2619,

p = 0.028). Step length improved significantly on the paretic
side (0.34 ± 0.09 to 0.43 ± 0.07m; t [9] = − 3729, p= 0.005),
but not on the nonparetic side (t [9] = − 0,942, p= 0.371;
Fig. 1). Step-length ratio did not change significantly (0.34 ±
0.67 preoperatively, 0.41 ± 0.38 postoperatively; t [9] = −
0.330, p= 0.749). Single-support time did not significantly
improve on either side (paretic: t [9] = − 0.433, p= 0.675; t
[9] = − 0.581, nonparetic: p= 0.575). Figure 1 provides an
overview of the changes in spatiotemporal gait parameters.

Kinematic and kinetic parameters
Neither kinematics nor kinetics of the paretic side im-
proved after surgery (range of motion ankle; t [9] = −
1.31, p = 0.220; peak ankle moment t [9] = 0.57, p =
0.580; peak ankle power t [9] = − 0.52, p = 0.620), but
peak ankle moment on the nonparetic side increased
significantly (from 1.14 ± 0.22 to 1.31 ± 0.26 Nm/kg, t [8]
= − 2.87, p = 0.021), while peak ankle power showed a
tendency towards significance (from 1.68 ± 0.75 to
2.35 ± 0.77W, t [8] = − 2.14, p = 0.065) (Fig. 2).

Clinical and subjective scores
Seven out of ten patients improved one FAC level (four
patients from level 2 to 3, two patients from level 3 level
4, and one patient from level 4 to 5), while no one dete-
riorated (t [9] = − 4.583, p = 0.008). Preoperatively, pa-
tients scored their satisfaction with gait capacity 4.1
(range 2–7), which improved to 7.8 post-operatively
(range 6–10; t [9] = − 4167, p = 0.017). Nine out of ten
patients expressed a subjective improvement of gait
capacity, whereas one patient scored slightly lower post-
operatively (from 7 to 6). All patients reported an im-
proved capacity to walk barefoot.

Discussion
In this study, we evaluated whether surgical correction
of pes equinovarus – involving a tarsal fusion of one or
more joints – improves gait capacity in chronic patients
after supratentorial stroke. After surgery, self-selected
walking speed improved significantly, as did cadence and
stride length. A significant improvement in step length
was observed for the paretic leg, but not for the non-
paretic leg. Peak ankle moment improved significantly
on the nonparetic side, but not on the paretic side.
Functional ambulation scores improved significantly, as
did satisfaction with gait performance scored by the pa-
tients themselves.
This study specifically focused on tarsal fusion for pes

equinovarus, whereas previous studies lumped surgical
interventions for pes equinus and pes equinovarus. [6, 9,
10] However, the distinction between ‘pure’ pes equinus
and pes equinovarus is important, as interventions for
these conditions differ and concomitant varus deformity
imposes a much greater threat on stance-phase stability

Table 2 Surgical interventions

Patient Surgical interventions

1 Talonavicular arthrodesis, interphalangeal arthrodesis of hallux,
tenotomy of toe flexors

2 Talonavicular and calcaneocuboid arthrodesis, gastrocnemicus
slide

3 Talonavicular arthrodesis

4 Talonavicular arthrodesis, gastrocnemicus slide, tenotomy of toe
flexors II-V

5 Talonavicular arthrodesis, gastrocnemius slide, tenotomy of toe
flexor II

6 Talonavicular arthrodesis, gastrocnemicus slide

7 Talonavicular arthrodesis, lengthening of the extensor hallux
longus muscle, interphalangeal arthrodesis I-III, tenotomy of toe
flexors

8 Talonavicular arthrodesis

9 Talonavicular arthrodesis, gastrocnemicus slide, osteotomy
metatarsal I, tenotomy of toe flexors

10 Talonavicular arthrodesis, interphalangeal arthrodesis of hallux
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Fig. 1 Values are averages with standard errors of the mean. * Significant differences (p < 0.05) before and after surgery

Fig. 2 Mean ankle angle, ankle moment, and ankle power on the paretic and nonparetic side before and after surgery for all patients who were
able to walk barefoot (n = 10)
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and safety of gait than pes equinus alone. [3] Only one
previous study specifically focused on a surgical inter-
vention for pes equinovarus (SPLATT combined with
Achilles tendon lengthening), [11] but this study did not
quantify the effects on gait capacity. Hence, the present
study is the first to objectively and specifically measure
the effects of (augmented) tarsal fusion surgery in
chronic stroke patients with a disabling pes equinovarus.
When looking at gait speed, this intervention appears to
be clinically relevant. Our population progressed on
average from household ambulators (< 0.4 m/s) into lim-
ited community ambulators (0.4 to 0.8 m/s), [12] which
transition has been associated with better daily life func-
tioning and quality of life. [12] The presumed clinical
relevance is further supported by better functional am-
bulation scores and patient-reported satisfaction scores.
Perhaps most importantly, patients reported an im-
proved capacity to walk barefoot. This gain renders them
less dependent on an orthosis or orthopaedic footwear,
which devices are commonly prescribed to patients with
a disabling pes equinovarus. This reduced dependence
on orthotic devoices may be of tremendous benefit for
certain indoor (e.g. bathing and toileting) and outdoor
(e.g. leisure) activities. However, this study was focused
on gait outcomes observed in a laboratory; home and
outdoor studies will be required to assess real world
impact.
Why did gait capacity improve in our patients? Al-

though several patients had interventions in addition to
the tarsal fusion, such as Achilles tendon lengthening,
we think the observed beneficial effects are mainly re-
lated to the tarsal fusion. Indeed, average range of mo-
tion at the ankle joint during the gait cycle – which
might change after Achilles tendon lengthening – did
not change significantly after the intervention. A fusion
of one or more tarsal joints is thought to improve prepo-
sitioning during terminal swing (as there is no varus at
the hindfoot anymore) and subsequent loading of the
paretic foot. On the one hand, improved foot preposi-
tioning and loading may allow a longer step length on
the paretic side, as the risk of ankle inversion at initial
contact is avoided. In this case, one could, in addition to
an increase in paretic step length, expect an increase in
ankle kinetics (‘push-off ’) on the nonparetic side, as an
increase in push-off is able to produce the kinetic energy
to make a larger step. On the other hand, during stance
phase the normal anatomical position of the hindfoot re-
mains secured, and this improved stance-phase stability
could lead to a longer single-support time on the paretic
leg allowing a longer nonparetic step. Our results sug-
gest that the first mechanism is more likely to occur,
since paretic step length significantly improved and co-
incided with improved ankle kinetics on the nonparetic
side, whereas single-support time on the paretic leg did

not improve. Hence, the increase in walking speed was
likely the result of improvement in non-paretic propul-
sion, which was possible because prepositioning of the
paretic leg during terminal swing improved reducing the
risk of ankle sprain at inititial contact. Why did single-
support time on the paretic leg not improve? Probably,
single-support time on the paretic side depends on many
other factors than plantigrade foot positioning, such as
knee and hip stability and the quality of postural control
strategies exerted by the paretic leg.
This study has several limitations. The sample size was

relatively small. Our results, therefore, need to be con-
firmed by future controlled studies with a larger sample
size. As snapshot evaluations in a gait laboratory have
inherent limitations, these studies should also monitor
gait activity in daily life situations using wearables.
Ideally, these future studies could further substantiate
the positive effects of tarsal fusion by taking personal
goals into account as well, in addition to measures of
hindfoot positioning during terminal swing and plantar
contact during the stance phase to evaluate outcomes
from a biomechanical point of view.

Conclusions
Tarsal fusion for equinovarus deformity in chronic
stroke patients improves gait capacity. The degree of im-
provement is of clinical relevance. Tarsal fusion should
therefore be considered to improve gait capacity in
chronic stroke patients with equinovarus deformity.
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