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In insulin-resistant states (obesity, pre-
diabetes, and type 2 diabetes), hepatic

production of glucose and lipid synthesis
are heightened in concert, implying that
insulin deficiency and insulin excess coex-
ists in this setting. The fact that insulin
may be inadequate or excessive at any
one point in differing organs and tissues
has many biologic ramifications. In this
context the concept of metabolic
compartmentalization in the liver is
offered herein as one perspective of this
paradox. In particular, we focus on the
hypothesis that insulin resistance accen-
tuates differences in periportal and peri-
venous hepatocytes, namely periportal
glucose production and perivenous lipid
synthesis. Subsequently, excessive pro-
duction of glucose and accumulation of
lipids could be expected in the livers of
patients with obesity and insulin resis-
tance. Overall, in this review, we provide
our integrative perspective regarding
how excessive production of glucose in
periportal hepatocytes and accumulation
of lipids in perivenous hepatocytes inter-
act in insulin resistant states.

Development of insulin resistance
with obesity, pre-diabetes, and type 2
diabetes is a physiopathologic process
where cells fail to respond normally to
insulin.1-4 Thus, suppression of glucose
production in the liver is decreased and
activation of GLUT-4-mediated glucose
uptake does not take place, particularly
in skeletal muscles and adipocytes.5

This overall failure typically is not due
to low insulin levels.6 Instead, insulin-
stimulated signal transduction pathways
for peripheral glucose uptake and for
hepatic glucose production are reduced,
including insulin receptors and down-
stream mediators.7-9

Hyperglycemia is then driven by exces-
sive hepatic glucose production10,11 and
reduced uptake of glucose by peripheral
tissues.12 To counteract resultant glycemic
elevations, b cells of the pancreas boost
insulin production, further contributing
to hyperinsulinemia.12,13 Hence, insulin
resistance often is accompanied by
increased circulating levels of insulin.14-16

If this compensatory rise in insulin pro-
duction is not maintained by the pancreas,
causing insulin levels to drop, then type 2
diabetes ensues.17-19

Questions Raised by Insulin
Resistance

It is well recognized that lipolysis and
weight loss are accelerated in the absence of
insulin, underscoring the fact that insulin
stimulates lipogenesis,20 and raising an
important question: why are about 90% of
patients with type 2 diabetes overweight or
obese?21 Or otherwise stated, is there a corre-
lation between insulin deficiency and the
tendency gain weight? Furthermore, given
the scope of lipid deposition in liver (hepatic
steatosis), skeletal muscle (intramyocytic
lipid accumulation), cardiac muscle, and adi-
pose tissues that is seen with insulin resis-
tance,22 one must also ask: is obesity the
cause or the result of insulin resistance?

The term insulin resistance oversimpli-
fies a highly complex physiopathologic
process for which a single overarching
mechanism is not easily conceived.1-6 In
addition, the paradigm that insulin resis-
tance is pathologic at all times is simply
inaccurate. For example, during late preg-
nancy, insulin resistance and increased
glucose tolerance may be seen together as
a seeming paradox.23 Nonetheless, some
degree of insulin resistance during late
pregnancy is necessary for glucose
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maintenance,13 owing to substantial fetal
demands for glucose.

These questions and considerations
have spawned a number of questions
where answers may be found or conclu-
sions drawn.

Which Came First: The Chicken or
the Egg?

Under physiologic conditions, the
insulin sensitivity of various bodily tissues
differs. Case in point, human skeletal
muscle is more sensitive than subcutane-
ous fatty in terms of the effects of circulat-
ing insulin.24

Similarly, insulin resistance in insulin
sensitive cells is not uniform but is tissue
specific.16 For example, in high fat diet fed
rats, insulin resistance was found to initiate
in the liver, prior to developing in skeletal
muscle.26 In addition, impairment in all
steps of insulin signaling was detected in
skeletal muscle, liver, hypothalamus, but
not in adipose tissue of fat-rich diet treated
mice.12 Hence, even in insulin-resistant
states in which glucose transport is
impaired, sensitivity to insulin’s antilipolytic
effect is relatively preserved, resulting in
maintenance or expansion of adipose stores.

Thus, insulin resistance is not a syn-
chronous, all-or-nothing process but
rather builds in select organs or tissues
amidst normal insulin response.

In parts of the body responding nor-
mally to insulin, the hyperinsulinism of
insulin resistance likely is construed as a
state of insulin excess. Hence, the catabolic
activities of insulin resistance (increased
hepatic glucose production, decreased glu-
cose uptake, fasting hyperglycemia) may
collide with complementary conditions
that favor lipogenesis and obesity. So a
vicious cycle can be set up with insulin
resistance promoting weight gain, which
promotes more insulin resistance. Subse-
quently, the multiple comorbidities of obe-
sity, prediabetes, and type 2 diabetes that
are attributed to insulin deficiency may
actually stem in part from insulin excess.
Likewise, the predisposition in patients
with insulin resistance for aging,1,18,27 can-
cer,27 liver steatosis,28 dyslipidemia,5 ath-
erosclerosis,29 cardiovascular disease,30 and
why intensive insulin therapy may initially

worsen retinophaty,31 also be at least par-
tially explained.

Coexistent Insulin Deficiency and
Insulin Excess in Organs and

Tissues of the Body

Development of hyperglycemia in
overweight patients,21 is also aligned with
the concept that throughout the body,
both insulin deficiency and insulin excess
are operant in insulin resistance. Indeed,
these 2 extremes of response are even dis-
played by the same organ, i.e., increased
hepatic production of glucose,12,25 and
parenchymal deposition of lipid,32-36 asso-
ciated with insulin resistance,37,38 suggest-
ing that this principle could be applied to
organs and tissues separately, as well as
involving the body as a whole.

Interestingly, with insulin resistance
induced by a high-fat diet, a temporal
sequence has been noted for each substrate
during activation of hepatic gluconeogen-
esis, with progressive intensification for L-
lactate, glycerol, and alanine on days 7,
14, and 56, respectively after dietary
implementation.25 If intensified liver glu-
coneogenesis then serves as a marker of
insulin resistance, it appears that this pro-
cess is quite specific, marked by intra-
organ metabolic pathways that are unique
for each substrate.

At this juncture, a new question surfa-
ces: as with organs and tissues and the body
as a whole, is the coexistence of insulin
deficiency and insulin excess in insulin-
resistant states applicable to isolated cells?

Metabolic Compartmentalization
of Glucose Production and Lipid

Synthesis in Liver

To our knowledge, a number of meta-
bolic pathways (i.e., gluconeogenesis,
lipogenesis, glycolysis, glycogenolysis,
ureagenesis, ketogenesis, synthesis and
catabolism of amino acids, etc.) are feasi-
ble in individual hepatocytes. Hence, glu-
coneogenesis (a process inhibited by
insulin) and lipogenesis (which is stimu-
lated by insulin) are achievable in the
same liver cell. However, in the acini area,
the hepatocytes are exposed to a spatial
biochemical gradient that influences

metabolism and gene expression, so cell
specialization does exist to some degree,
depending on locale.37-52

Parenchymal acini of the liver are divisi-
ble into 2 circulatory zones, based on prox-
imity to afferent vessels.36 Periportal
hepatocytes are supplied by blood rich in
oxygen and nutrients, whereas the blood
reaching perivenous hepatocytes (at the
periphery of acini) is oxygen-poor and
nutrient-depleted.53,54 This distinctive
microvascular arrangement encourages met-
abolic heterogeneity. Periportal hepatocytes,
harboring an abundance of mitochondria
and sympathetic nerves are ideally suited
for oxidative metabolism or glucose produc-
tion, and perivenous hepatocytes are opti-
mally configured for anaerobic metabolism
and lipid synthesis (Fig. 1).

Hepatocytes are also subject to differ-
ential regulatory control, due to gradients
in oxygen, substrate, and hormone levels.
Notably, O2 partial pressure of approxi-
mately 65 mmHg in periportal areas
drops to 35 mmHg in perivenous zones.52

The O2 partial pressure regulates the
expression of genes encoding glucose-
metabolizing enzymes, (for example: pyru-
vate carboxykinase, glucokinase and pyru-
vate kinase), through O2-responsive
transcription factors, such as hypoxia-
inducible factor (HIF).53,54 Moreover,
liver metabolism is controlled among
others by nuclear receptors,36 mammalian
target of rapamycin (mTOR) pathway,37

and sirtuin family of proteins.38

The model of metabolic zonation
assumes a functional specialization by
each hepatic zone (Fig. 1). In periportal
areas, gluconeogenesis, glycogenolysis,
b-oxidation, amino acid metabolism,
ureagenesis, and uric acid production
predominate,55-61 reserving lipogenesis,
glycolysis, glutaminogenesis, and biotrans-
formation for perivenous areas.62-72

Accordingly, periportal and perivenous
acinar zones differ in content of many key
enzymes and subcellular constituents
(Table 1A and Table 1B), all of which
serve to optimize liver function for a cen-
tral role in metabolic homeostasis.36

It must be emphasized that functional
specialization of this nature is also quite
flexible. For example, the periportal-to-
perivenous ratios for mitochondrial palmi-
tate oxidation in fed, starved, re-fed, and
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cold-exposed animals were 1.5, 2.0, 1.0,
and 0.4, respectively.73

Given that insulin released by b cells of
the pancreas reaches periportal zones first,
greater inhibition of glucose production in
periportal area and lesser activation of lipo-
genesis perivenous area are anticipated.74

However, insulin receptors are predomi-
nantly found in the perivenous zone, where
their expression is enhanced by high glu-
cose concentration and decreased venous
partial pressure.52 By contrast, glucagon
receptors predominate in the periportal
zone,75 where glucose release from glyco-
genolysis and gluconeogenesis preferen-
tially takes place. In addition, due to
biotransformation, glucagon and insulin
concentrations decline during a single pas-
sage of blood through the liver by

approximately 50% and 15%, respectively,
resulting in proportionately higher perive-
nous concentrations of insulin.50,75

Therefore, under physiologic condi-
tions, glucagon and insulin (from pancre-
atic a and b cells, respectively) first reach
periportal zones, where glucagon receptors
predominate for glycogenolysis and glu-
coneogenesis.76 Because after meal the
biotransformation of glucagon is compar-
atively more rapid,75 the insulin/glucagon
ratio increases as blood circulates to the
periphery of liver acini. The higher insu-
lin/glucagon ratio of perivenous zones, in
conjunction with their preponderance of
insulin receptors, is then favorable for
lipid synthesis.

Here again, a question can be raised:
is the paradox of insulin resistance,

namely the hyperproduction of
glucose in liver alongside steato-
sis, adequately explained by the
concept of metabolic
compartmentalization?

Hepatic Glucose
Hyperproduction and
Steatosis in Insulin

Resistance

Liver metabolism comprises an
immense spectrum of interrelated
anabolic and catabolic functions
which are performed simulta-
neously without futile cycles.
Therefore, functional compart-
mentalization of the liver, as shown
in Fig. 1, implies coexistence of an
anabolic liver in a fed state (with
perivenous insulin effects predomi-
nating) and a catabolic liver in a
fasted state (with predominance of
periportal glucagon effects).

Interestingly, decreasing peri-
portal-perivenous gradients of oxy-
gen tension and increasing
periportal-perivenous gradients of
insulin: glucagon ratio appear to be
major factors in the zonation,50

but how is functional compart-
mentalization of the liver affected
by insulin resistance?

A schematic of our theories is
shown in Fig. 2, starting with an
increased basal rate of lipolysis as a
consequence of augmented visceral
adiposity.22,77

Because insulin stimulates expansion of
visceral fat, this pathologic process func-
tions as a self-sustaining closed-loop sys-
tem that will only be interrupted by
weight loss (diet and/or exercise) and /or
use of drugs to increase insulin sensitivity.

The excess of free fatty acids (FFA)
from splanchnic lipolysis is taken up
by periportal hepatocytes (Fig. 2) and
oxidized as a source of energy, all of
which biochemically increases oxygen
consumption.78

In spite of the fact that FFA cannot be
used as substrates for gluconeogenesis,
their oxidation furnishes energy to
increase glucose production via gluconeo-
genesis. In addition, the excess of FFA
delivery to the liver, results in

Figure 1. Functional compartmentalization of liver: periportal hepatocytes on left and perivenous hepato-
cytes on right, with arrow in direction of blood flow.
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Table 1A. Zonation of cells, receptors, metabolism and biotransformation in liver. Key: CCC predominant localization in periportal or perivenous zone.

Periportal zone Perivenous zone

Oxygen gradient53,54 CCC
Cell size41 15-20 mm 30-40 mm
Kupffer cells39,40 Phagocytosis Cytotoxicity
Endothelial cells - Fenestrae39,40 Larger Smaller
Stellate cells and Pit cells39,40 CCC
Sympathetic nerves50 CCC
Glucagon receptors75 CCC
Insulin receptors52 CCC
Insulin/glucagon levels76 CCC
Mitochondria and aerobic metabolism36 CCC
Glucose uptake and glycolysis50 CCC
Glucose release: gluconeogenesis36 CCC
Glucose release: glycogenolysis56 CCC
ß-oxidation and ketogenesis50 CCC
Peroxisomal lipid oxidation70 CCC
Triglycerides59 and VLDL synthesis83 CCC
Cholesterol and bile synthesis71 CCC
Glycogen synthesis from glucose59 CCC
Glycogen synthesis from pyruvate and lactate50 CCC
Uptake of the majority of amino acids70 CCC CCC
Uptake of glutamate and aspartate70

Uptake of a-ketoglutarate and malate70 CCC CCC
Glutamine synthesis and release60

Amino acid catabolism and urea synthesis59 CCC
Uric acid synthesis from adenosine57 CCC
Glutation peroxidase and ROS detoxification50 CCC

Table 1B. Zonation of enzyme activity and protein synthesis in liver. Key: CCC predominant localization in periportal or perivenous zone.

Periportal zone Perivenous zone

Phosphoenolpyruvate carboxykinase50 CCC
Pyruvate carboxykinase41 CCC
Fructose-1,6-biphosphatase72 CCC
Glucose-6-Phosphatase58 CCC
Pyruvate kinase type L59 and glukokinase76 CCC
Acetyl-CoA carboxylase83 CCC
Suppressor of cytokine signaling 2 (SOCS-2)68 CCC
Glutaminase60 CCC
Glutamine synthetase48 CCC
Succinate dehydrogenase58 CCC
Hydroximethylglutaryl-Coa-reductase59 CCC
Alanine48 and tyrosine aminotransferase59 CCC
Carbamoyl phosphate synthetase59 CCC
UDP-glucoronosyltransferase50 CCC
Cytocrome P-45045 CCC
Serine dehydratase61 CCC
Fibrinogen and laminin synthesis50 CCC
a2-macroglobulin and conexin 26 synthesis50 CCC
Collagen IV and V synthesis41 CCC
Collagen I, III and VI synthesis41 CCC
a1-antitrypsin and fibronectin synthesis50 CCC
a-fetoprotein and angiotensinogen synthesis50 CCC
Lectin binding62 CCC
Heme synthesis46 CCC
Gene expression of albumin48 CCC
Xenobiotic metabolism67 CCC
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accumulation of intracellular diacyglycer-
ols which, in turn, leads to activation of
protein kinase C (PKC). PKC induce
insulin resistance by inhibiting insulin-
stimulated phosphorylation of IRS pro-
teins. Furthermore the excess of FFA
results in activation of inflammatory toll-
like receptors (TLR) signaling leading to
increased de novo ceramide synthesis.
Thus, accumulation of ceramides and cer-
amide-mediated inhibition induce insulin
resistance in the liver by inhibition of Akt
phosphorylation.79 Yet, FFA can cause
activation of Akt phosphatase protein
phosphatase 2A (PP2A). PP2A induce
insulin resistance in the liver by dephos-
phorilation and inactivation of Akt that in
turn acts to phosphorylate and inactivate
the transcription factor Forkhead Box 01
(FOX-01), which induces transcription of
the key enzimes of gluconeogenesis.80

As consequence of these metabolic
changes,73 perivenous hepatocytes exposed
to increased glucose concentration and
reduced levels of oxygen,53 intensifying
their expression of insulin receptors.52

The enhanced FFA also increase the
synthesis of triglyceride (TG) and very-

low-density lipoprotein (VLDL) produc-
tion in the perivenous zone,81-83 thereby
promoting hypertriglyceridemia. Further-
more, the TG in VLDL is exchanged for
cholesteryl esters from low-density lipo-
proteins (LDL) and high-density lipopro-
teins (HDL) by the cholesteryl ester
transport protein, producing TG-rich
LDL and TG-rich HDL. The TG in the
TG-rich LDL and TG-rich HDL is then
hydrolyzed by hepatic lipase, producing
small dense LDL and small dense HDL.
The formation of these particles are linked
to a higher risk of cardiovascular disease.5

In fact, patients die more often from car-
diovascular disease than from direct conse-
quences of liver steatosis.84

Concluding Remarks

All aspects of the human body must be
considered to better understand the mech-
anisms of insulin resistance and to appre-
ciate how insulin deficiency and insulin
excess may coexist in this pathologic con-
dition. The fact that insulin may be inade-
quate or excessive at any one point in

differing organs and tissues has
many biologic ramifications. Ulti-
mately, attention must be paid to
specific defects of insulin signaling
in isolated cells and to subcellular
compartments affected by the
increased circulating insulin that
accompanies insulin resistance.
However, despite the enthusiasm
for molecular aspects, we must
never lose sight of the isolated
organ and in vivo situation.

One key message is that insulin
resistance accentuates differences in
periportal and perivenous hepato-
cytes, namely periportal glucose
production and perivenous lipo-
genesis. Subsequently, excessive
production of glucose and accumu-
lation of lipids are to be expected
in the livers of patients with obesity
and insulin resistance.

However, there is still a great
deal to be learned about the mecha-
nisms linking insulin resistance and
metabolic compartmentalization in
the liver. Therefore, future studies
on the regulation of zonal gene

expression in parenchymal and nonparen-
chymal liver cells will provide advances in
our understanding of the impact of insulin
resistance on metabolic compartmentali-
zation in the liver.
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