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Abstract

Graphs describe and represent many complex structures in the field of social networks, bio-

logical, chemical, industrial and transport systems, and others. These graphs are not only

connected but often also k-connected (or at least part of them). Different metrics are used to

determine the distance between two nodes in the graph. In this article, we propose a novel

metric that takes into account the higher degree of connectivity on the part of the graph (for

example, biconnected fullerene graphs and fulleroids). Designed metric reflects the cyclical

interdependencies among the nodes of the graph. Moreover, a new component model is

derived, and the examples of various types of graphs are presented.

Introduction

More interconnected parts of graphs play an essential role in the social and natural sciences.

The formalization of the term “more connected part” can be defined in many ways. In this arti-

cle, we focus on generalizing biconnected components of a graph and we define a novel metric

that considers higher degree of connectivity on the part of the graph. Biconnected components

of the graph do not allow good scalability, and their definition is complicated for weighted

graphs. Our approach is based on the cycle length limit in the definition of biconnected com-

ponents. The first work devoted to the study of cycles of limited length is [1, 2].

Topological data analysis often uses tools developed in algebraic topology [3–5]. Cycles play

a significant role in algebraic topology. For example, Poincaré’s theorem of duality [6] shows

that the homology group Hn(M, Z2) is a space with the inner product above the field Z2 where

the inner product is defined as an intersection index. In the case that M is a continuous mani-

fold, then any homology class x 2 H1(M, Z2) can be represented by a closed curve γ�M. In

this case, the intersection index x � x becomes zero when and only when a small surrounding

of the curve γ is orientable.

Cycles with limited length play an essential role in the application of algebraic topology [3,

4]. When calculating the topological properties of data, it is necessary to look for cycles of lim-

ited length [7, 8]. Cyclical structures are also very often found in materials research. For exam-

ple, fullerenes form long cycles [9], in which topological properties play an important role.

Complex and social networks are another field in which cyclic structures appear [10].

The partitioning of large complex networks is a challenging task. Such networks are used as

a representation of proteins, chemical compounds, co-author networks, social networks, etc.

PLOS ONE | https://doi.org/10.1371/journal.pone.0202181 August 31, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Snasel V, Drazdilova P, Platos J (2018)

Closed trail distance in a biconnected graph. PLoS

ONE 13(8): e0202181. https://doi.org/10.1371/

journal.pone.0202181

Editor: Baruch Barzel, Bar-Ilan University, ISRAEL

Received: October 17, 2017

Accepted: July 30, 2018

Published: August 31, 2018

Copyright: © 2018 Snasel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data for this

study are third-party data from Zachary’s Karate

Club network. The minimal data set for this study

can be accessed via http://konect.uni-koblenz.de/

networks/ucidata-zachary. The authors accessed

the data in the same way as the instructions

provided and they did not have any special access

privileges that others would not have.

Funding: This work was supported by the project

SP2018/126 "Parallel processing of Big Data V"

received by P. Drazdilova of the Student Grant

System, VSB-Technical University of Ostrava.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202181
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202181&domain=pdf&date_stamp=2018-08-31
https://doi.org/10.1371/journal.pone.0202181
https://doi.org/10.1371/journal.pone.0202181
http://creativecommons.org/licenses/by/4.0/
http://konect.uni-koblenz.de/networks/ucidata-zachary
http://konect.uni-koblenz.de/networks/ucidata-zachary


The classical partitioning methods have problems with densely connected subgraphs that can-

not be partitioned easily. A list of the largest biconnected component in the selected network

was published by Leskovec [11].

In the case of protein interaction networks in computational biology, the authors in [12]

found vertices that are articulation points (determined by the computing of biconnected com-

ponents), but they have a low degree and, therefore, they are unlikely to be essential to the net-

work. In [13] the authors found the biconnected components that enabled further analysis.

Molecular topology [14] is another area where topological and metric distances are used in

graphs representing molecules. The fullerenes are cage-like, hollow molecules of pseudo-

spherical symmetry consisting of pentagons and hexagons only, resulting in a trivalent polyhe-

dron with precisely three edges (bonds) joining every vertex occupied by carbon [9]. In graph

theoretical terms, fullerenes belong to the class of cubic, planar, three-connected, and simple

graphs, see Fig 1. The authors of [15] give an overview of some graph invariants that can possi-

bly correlate with the stability of a fullerene molecule.

Fullerenes have been the subject of intense research for their unique physical, chemical, and

biological properties and for their technological applications, especially in materials science,

electronics, nanotechnology, and medicine [16–19].

The measuring of the distances between two nodes in a graph is a difficult task. The stan-

dard measure for this distance is the shortest path between two nodes in a graph [20, 21].

Another way is the expected lengths of random walks on the graph, which can be used to

derive the commute time distance [22]. The authors of [23] examine generalized distances on

graphs that interpolate, depending on a defined parameter, between the shortest path distance

and the commute time or resistance distance. Variants of node distances are described in detail

in [24–27].

In addition to the node distance measure, the quality of the components (partitions) is also

measured by means of several approaches. In 2014, a metric that measured the quality of com-

munities according to the number of 3-cycles split across the communities was published [28].

The idea is based on the four types of directed triangles that contain cycles. These triangles are

used to identify communities in directed networks. In [29], a measure that integrates both the

concept of closed walks and clustering coefficients to replace the edge betweenness in the divi-

sive hierarchical clustering algorithm (the Girvan and Newman method) was published.

Levoranto et al. [30] used the strongly p-connected components for community detection in

oriented networks. Community detection in undirected graphs is different. One of the major

and well-known approaches uses the union of cliques to define a community [31]. Edaschery

et al. [32] defined distance-k clique of a graph G = (V, E) as a subgraph of G with a diameter k.

The authors use these distance-k cliques for a clustering.

Our approach defines a new type of metric in a graph based on “cyclical distances“. This

metric is based on the definition of a biconnected component. The distance between two verti-

ces in the graph is defined as the length of the shortest closed trail that contains these two verti-

ces. The distance defined in this way allows straightforward generalization for weighted graphs

and also allows scalability.

In this article, we define a new measure on an undirected connected graph without bridges

for the measurement of distances using cyclic subgraphs. This measure satisfies the metric

properties. Our innovative measure may be used to define a new type of components that

highlight the locally connected subgraphs. Moreover, these components are not based on the

biconnectivity property and, therefore, are able to partition densely connected biconnected

components easily.

We will first introduce the terminology and the notation which we use in the article. In the

next section, we define the new distance in biconnected undirected graphs, and we describe

Closed trail distance in a biconnected graph
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some properties of this distance. In conclusion, we discuss the advantages and limitations of

the defined distance.

Terminology and notation

In this section, knowledge of graph theory will be required. The definitions of the following

terms were taken from [33]:

A loop is an edge (directed or undirected) that joins a single endpoint to itself. A walk on a

graph is an alternating series of vertices and edges

Wðvð0Þ; vðkÞÞ ¼ vð0Þeð1Þvð1Þeð2Þ . . . vðk� 1ÞeðkÞvðkÞ

such that for j = 1, . . ., k the vertices v(j−1) and v(j) are the end points of the edge e(j). A closed
walk is a walk where the initial vertex is also the final vertex. The length of a walk is the number

of edges in this walk. We will denote the length of a walk W(u, v) as |W(u, v)|. A trail is a walk

in which no edge occurs more than once. A closed trail (circuit) is a closed walk with no repeat-

ing edges. We will denote a closed trail which contains the vertices u, v as

CTðu; vÞ ¼ ueð1Þvð1Þeð2Þ . . . v . . . eðkÞu:

Fig 1. Graph of a fulleroid C260 − I[5, 7] (The image was provided by Peter Schwerdtfeger, Lukas N. Wirz and

James Avery under a CC BY license).

https://doi.org/10.1371/journal.pone.0202181.g001

Closed trail distance in a biconnected graph
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A path is a walk in which no edge or internal vertex occurs more than once (a trail in which all

the internal vertices are distinct). We will denote a path with an initial vertex u and a final ver-

tex v as P(u, v). A cycle is a closed path with a length at least one. We will denote the closed

path containing u, v as CP(u, v). A clique is a subgraph where each node is adjacent to every

other node. A planar graph is a graph that can be drawn on a sphere or a plane with no edge

crossings.

A connected graph is a graph such that between every pair of vertices there exists a walk. A

graph is called k-connected if the removal of fewer than k vertices leaves neither a non-con-

nected graph nor a trivial one. A component of a graph is a maximal connected subgraph. An

edge e is a bridge of the connected graph G if {e} is a disconnecting edge-set of G. An articula-
tion is a vertex of a graph whose removal increases the number of components. A biconnected
graph is a connected and “nonseparable” graph, meaning that if any vertex were to be

removed, the graph would remain connected. Therefore a biconnected graph has no articula-

tion vertices.

The property of being 2-connected is equivalent to biconnectivity, with the caveat that the

complete graph of two vertices is sometimes regarded as biconnected but not 2-connected.

This property is especially useful in maintaining a graph with a two-fold redundancy, to pre-

vent disconnection upon the removal of a single edge (or connection).

A biconnected component (or 2-connected component) is a maximal biconnected subgraph.

Equivalent characterizations of biconnectivity

Let G = (V, E) be a simple undirected graph (loop-less, no multiple edges) that contains at least

three points. Each of the following statements is equivalent to that G is biconnected

1. for every v1, v2 2 V there is a circuit of G containing v1 and v2,

2. E 6¼ ; and for every v 2 V and e 2 E there is a cycle of G containing v and e,

3. G has no isolated vertices and for every e1, e2 2 E there is a cycle containing e1 and e2,

4. for every v1, v2, v3 2 V there is a path from v1 to v2 containing v3,

5. for every v1, v2, v3 2 V there is a path from v1 to v2 not containing v3,

6. E 6¼ ; and for every v1, v2 2 V and e 2 E there is a path from v1 to v2 containing e.

The shortest path metric (dsp) [25] is the one most commonly used to determine the distance

between vertices of the graph. It is a metric on the vertex-set V of a connected graphG = (V, E),

defined, 8u, v2 V, as the length of the shortest path (P(u, v)) inG. This metric does not affect

greater coherence between vertices in the biconnected graph. Our goals in this article are to

define a new metric on the undirected biconnected graph for the measurement of distances using

cyclic subgraphs and to use higher connectivity among the vertices in the biconnected graph.

Closed trail distance in a biconnected graph without loops

In this section, a metric between the vertices in a biconnected graph without loops via a closed

trail (circuit) will be defined.

Closed trail distance in a undirected graph

Definition 1. A graph is a k-closed trail connected graph (k-CT) if every two vertices lie on the
closed trail (circuit) with a length� k. A k-CT component of the graph is a maximal k-CT
subgraph.

Closed trail distance in a biconnected graph
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Definition 2. A1-CT graph is a graph where every two vertices lie on a closed trail of any
length.

Definition 3. Let G = (V, E) be a graph. Let dct : V � V ! Rþ
0
be defined by the equation

dctðu; vÞ ¼ minCTðu;vÞ�GjCTðu; vÞj;

where CT(u, v) is a closed trail that contains the vertices u, v. Then the function dct is called the
closed trail distance (CT-distance).

Theorem 1. The CT-distance is a metric on the set V.

Proof. We verify the properties of the metrics.

From Definition 3 it follows that dct(v, v) = minCT(v,v)2G|CT(v, v)|. The length of the shortest

closed trail that started in a vertex v and ended in the same vertex is equal to 0. Then 8v 2 V
dct(v, v) = 0. And from the definition it follows that 8u, v 2 V dct(u, v)� 0 because the distance

between u and v is the number of edges in the closed trail containing u and v.

Symmetry of the distance is obvious: 8u, v 2 V dct(u, v) = minCT(u,v)2G|CT(u, v)| = dct(v, u)

because G = (V, E) is a undirected graph.

The triangle inequality: 8u, v, z 2 V dct(u, v) + dct(v, z)� dct(u, z) is proved in a constructive

way. Let CT(u, v) and CT(v, z) exist and let |CT(u, v)| = dct(u, v) and |CT(v, z)| = dct(v, z). In the

biconnected graph 8u, v 2 V a closed path (CP(u, v)) exists. Then we have two possibilities for

the closed trail which satisfy |CT(u, z)| = dct(u, z). First: dct(u, v) + dct(v, z) = |CP(u, v)| + |CP(v,

z)|� |CP(u, z)| = dct(u, z) which does not violate the triangle inequality. Second: if |CP(u, v)| +

|CP(v, z)|< |CP(u, z)| then we can join CP(u, v) and CP(v, z) in the vertex v to one a closed

trail CT(u, z) and dct(u, v) + dct(v, z) = |CP(u, v)| + |CP(v, z)| = |CT(u, z)|� dct(u, z) which does

not violate the triangle inequality either.

Example 1. Let graph G be defined as shown in Fig 2.

Let dsc(u, v) be the length of the shortest closed cycle in the biconnected graph that goes through
the nodes u and v. The dsc(u, v) is not a metric, because it does not satisfy the triangle inequality:

dscðu; yÞ þ dscðy; vÞ < dscðu; vÞ:

For the graph in Fig 2 it is true that dsc(u, y) = 4, dsc(y, v) = 4 and dsc(u, v) = 9.

Fig 2. Example of biconnected graph where dsc(u, y) + dsc(y, v)< dsc(u, v).

https://doi.org/10.1371/journal.pone.0202181.g002

Closed trail distance in a biconnected graph
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The violation of the triangle inequality by the cycles (dsc) may be solved using the closed trails
(dct).

In a similar way to that in which we defined the k-CT component, a k-SC component may

be defined using cycles of a length up to k. The graph is a k-shortest cycle connected graph (k-

SC) if every two vertices lie on a cycle of the length� k. The k-SC component of the graph is a

maximal k-SC subgraph.

Example 2. Figs 3 and 4 demonstrate maximal and different k-CT components in the undi-
rected biconnected graph without loops.

Lemma 1. Every 3-CT component is a clique.
Proof. Let Co3 be a 3-CT component. According to Definition 3: 8u, v 2 Co3 |CT(u, v)|� 3.

It is obvious that this CT(u, v) contains only three vertices and three edges and there exists the

edge (u, v). Therefore, all the vertices in Co3 are adjacent and create a clique.

Example 3. Fig 5 shows the differences between the closed trail distance and the shortest path
distance. We chose a subgraph of the fullerene graph for the comparison between distances.

Lemma 2. Every closed trail with a length 4 or 5 is a cycle with the same length.

Proof. Proof by contradiction. Let there exist a closed trail with a length of 4 (CT4) or a

closed trail with a length of 5 (CT5) which is not a cycle. Let CP3 be a cycle (closed path) with a

length of 3. It is obvious that it is not possible to create CT4 (CT5) on the set with one, two or

three vertices because CT4 (CT5) contains four (five) different edges. We have at least four ver-

tices and CT4 (CT5) has to contain the vertex u which appears at least three times in the

sequence of the trail (the initial, final and inner vertex of the closed trail). Vertex u is initial

and inner vertex of the trail if CT4 (CT5) contain CP3. When we add one (two) edge(s) to the

CP3 we have a trail with a length of 4 (5) but it not possible to create a closed trail because the

edge between the last—but—one vertex and initial (final) vertex is already on the trail (Fig 6).

The only closed trails with a length of 4 (5) are therefore cycles with a length of 4 (5).

Fig 3. 3-CT and 4-CT components of the graph.

https://doi.org/10.1371/journal.pone.0202181.g003

Fig 4. 5-CT and 7-CT components of the graph.

https://doi.org/10.1371/journal.pone.0202181.g004

Closed trail distance in a biconnected graph
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The demonstration of the impossibility of creating a CT4 or CT5 which is not a cycle and

the vertex u is the initial, inner but not final vertex of the closed trail with a length 4 (5):

CT4 ¼ ue1xe2ye3ue4z; CT5 ¼ ue1xe2ye3ue4ze5xðyÞ:

The first closed trail that is not a cycle is CT6 (Fig 6, third picture).

Theorem 2. The 3,4,5-CT components are biconnected. They are the same as the 3,4,5-SC
(shortest cycle) components.
Proof. It is obvious for 3-CT components. The proof follows from Lemma 1. 3-CT compo-

nents are cliques and therefore 3-CT components are biconnected.

We suppose that for 4(5)-CT components it is not true. There exists a connected 4(5)-CT

component which is not biconnected. Then the component contains the articulation x—see

Fig 7. Then there exist vertices u, v, where dct(u, v) = 4(5). From Definition 3 it follows that

there exist CT(u, v) and |CT(u, v)| = 4(5) (CT(u, v) is blue in Fig 7). From Lemma 2 it follows

that all closed trails with a length of 4(5) are cycles and then the vertex x is not an articulation.

This is a contradiction.

Example 4. The k-CT component is not sometime a biconnected subgraph for k� 6. The
6-CT component can be the smallest closed trail-connected component which is not biconnected
(Fig 6).

Lemma 3. dct(u, v) is a metric in any connected graph without bridges and defines the dis-
tances between two nodes u and v.

Proof. The graph is connected without bridges. There is a path between any pair of nodes u
and v. Let P1(u, v) = ue(1) . . . e(i) xe(i+1) . . . e(k)v be a path between any pair of nodes u and v.

Because the graph has no bridges (it is not 1-edge connected), a path P2(u, v) that has no com-

mon edge with P1(u, v) exists (see Fig 8). The joining of P1(u, v) and P2(u, v) creates a closed

trail on which the nodes u and v lie (CT(u, v)). Therefore, a closed trail between any two nodes

Fig 5. Selected vertices with the shortest path distance and the closed trail distance.

https://doi.org/10.1371/journal.pone.0202181.g005

Fig 6. u is an initial and inner vertex in the trails T4 and T5. For the last closed trail CT6 is the vertex u initial, inner

and final.

https://doi.org/10.1371/journal.pone.0202181.g006

Closed trail distance in a biconnected graph
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u and vwith a length of dct(u, v) may be created in any connected graph without bridges. The

connected graph without bridges is a1 − CT component.

Corollary 1. Graph and component hierarchy is defined as follows:

biconnected graph � connected graph without bridges ¼ 1 � CT component:

Corollary 2. The ordering of type of components according to its cardinality is defined as fol-
lows:

3 � CT � 4 � CT � 5 � CT � � � � � 1 � CT:

Example 5. Fig 9 shows the biggest 4-CT component (blue vertices) in the biconnected sub-
graph (in the blue ellipse) of the Zachary’s karate club graph (Fig 9). This 4-CT component is
biconnected. The Table 1 contains numbers of k-CT components which are maximal for selected
k. The Fig 10 shows the sample of k-CT components on the graph of fulleroid C260 − I[5, 7].

Closed trail distance in a weighted undirected graph

The definition of the CT-distance may be extended for the weighted graph G = (V, E, w) where

w is a mapping w: E! R+.

Definition 4. Let G = (V, E, w) be a weighted graph and let the mapping dwct: V � V ! Rþ
0

be defined by the equation

dwctðu; vÞ ¼ minCTðu;vÞ�G
X

8e2CTðu;vÞ

1

wðeÞ

 !

:

Then the function dwct is called the weighted closed trail distance (wCT-distance).
Theorem 3. The wCT-distance is a metric on the set V.

Proof. We verify the properties of the metrics.

Fig 7. k-CT components. The first picture: x =2 CT(u, v) and the component is biconnected. The second picture: x 2
CT(u, v) where |CT(u, v)| = 3(4, 5) and the component is biconnected. The third picture: x 2 CT(u, v) where this CT is

the shortest closed trail which is not a cycle and the component is not biconnected.

https://doi.org/10.1371/journal.pone.0202181.g007

Fig 8. Path P1, P2 between vertices u, v. First graph is biconnected (P1 \ P2 = {u, v}), second graph is connected with

articulation and without bridge (P1 \ P2 = {u, v, x}) and third graph is connected with bridge (P1 \ P2 = {u, v, x, (x, v)}).

https://doi.org/10.1371/journal.pone.0202181.g008

Closed trail distance in a biconnected graph
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From Definition 4 it follows that 8v 2 V
dwctðv; vÞ ¼ minCTðv;vÞ2Gð

P
8e2CTðv;vÞ

1

wðeÞÞ ¼ 0 and 8u, v 2 V
dtwðu; vÞ ¼ minCTðu;vÞ2Gð

P
8e2CTðu;vÞ

1

wðeÞÞ � 0.

Symmetry of the distance is obvious:

dwctðu; vÞ ¼ min8CTðu;vÞ2Gð
P
8e2CTðu;vÞ

1

wðeÞÞ ¼ dwctðv; uÞ because G = (V, E) is an undirected graph.

A triangle inequality 8u, v, z 2 V dwct(u, v) + dwct(v, z)� dwct(u, z), is proved in a construc-

tive way. Let CT(u, v) be a closed trail with the property that
P
8e2CTðu;vÞ

1

wðeÞ ¼ dwctðu; vÞ and let

CT(v, z) be a closed trail with the property that
P
8e2CTðv;zÞ

1

wðeÞ ¼ dwctðv; zÞ. Suppose that a closed

trail CT(u, v, z) formed by the merged closed trail CT(u, v) and CT(v, z) exists. This closed trail

has a weight of wðCTðu; v; zÞÞ ¼
P
8e2CTðu;vÞ

1

wðeÞ þ
P
8e2CTðv;zÞ

1

wðeÞ. This equality implies that

dwct(u, z)� dwct(u, v)+dwct(v, z)
Definition 5. The k-wCT component is a maximal subgraph H which satisfies 8u, v 2 V

dwct(u, v)� k.

Example 6. Fig 11 demonstrate a different wCT components. A closed trail marked in blue CT
= v1 − (v1, v2) − v2 − (v2, v4) − v4 − (v4, v3) − v3 − (v3, v1) − v1 has the weight
1

2
þ 1

10
þ 1

1
þ 1

1
¼ 13

5
¼ 2:6. It is the 4-CT component with the biggest weight. There exist 4-CT or

5-CT components with smaller weight (red—{v4, v5, v6, v7} and olive—{v4, v2, v5, v6, v7}). The red
marked closed trail contains edges with bigger weight than a blue marked closed trail. The value
of the wCT component is useful for better scaling of components.

Conclusion

In this article, we defined a new metric for measuring the distance between two nodes of a

biconnected graph. Moreover, the defined method holds the properties of a metric on the

Fig 9. The largest 4-CT component (blue vertices) in the biconnected subgraph (in the blue ellipse) of Zachary’s

karate club graph.

https://doi.org/10.1371/journal.pone.0202181.g009

Table 1. The number of different k-CT components in the largest biconnected subgraph of Zachary’s karate club graph.

3-CT 4-CT 5-CT 6-CT 7-CT 8-CT 9-CT

no. of components 20 17 10 6 3 2 1

https://doi.org/10.1371/journal.pone.0202181.t001
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connected graphs without bridges. The same algorithm works on any connected graph, but it

does not hold the metric properties. The metric reflects the cyclical interdependencies among

the vertices of the graph. The metric derives components, called k-CT, the sets of vertices that

have a distance between each pair of vertices less than or equal to k. The 3,4,5-CT components

are biconnected because the closed trails with the length 3, 4, and 5 are cycles. The defined

metric is applicable for both unweighted and weighted graphs.

Fig 10. Graph of a fulleroid with a highlighted sample of the k-CT components.

https://doi.org/10.1371/journal.pone.0202181.g010

Fig 11. Weighted graph and selected wCT components of the graph.

https://doi.org/10.1371/journal.pone.0202181.g011
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The paper [34] contains a method for community detection based on network decomposi-

tion. Another approach to detection of overlapping communities is used by Palla et al. [35].

Both approaches use a clique percolation method [36] for community detection, more pre-

cisely, they use cliques for specifying part of a community. A clique is a 3-CT component

according to our approach. Our proposed measure and a component definition decompose

the graph into overlapping components using different k-CT components.
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