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Abstract: Polyesters containing 2,4-dihydroxy-6-(2-hydroxypropyl)benzoate and 3-hydroxybutyrate
moieties have been isolated from many fungal species. Talaromyces stipitatus was previously reported
to produce a similar polyester, talapolyester G. The complete genome sequence and the development
of bioinformatics tools have enabled the discovery of the biosynthetic potential of this microorganism.
Here, a putative biosynthetic gene cluster (BGC) of the polyesters encoding a highly reducing
polyketide synthase (HR-PKS) and nonreducing polyketide synthase (NR-PKS), a cytochrome P450
and a regulator, was identified. Although talapolyester G does not require an oxidative step for its
biosynthesis, further investigation into the secondary metabolite production of T. stipitatus resulted
in isolating two new metabolites called talarodioxadione and talarooxime, in addition to three known
compounds, namely 6-hydroxymellein, 15G256α and transtorine that have never been reported from
this organism. Interestingly, the biosynthesis of the cyclic polyester 15G256α requires hydroxylation
of an inactive methyl group and thus could be a product of the identified gene cluster. The two
compounds, talarooxime and transtorine, are probably the catabolic metabolites of tryptophan
through the kynurenine pathway. Tryptophan metabolism exists in almost all organisms and has
been of interest to many researchers. The biosynthesis of the new oxime is proposed to involve two
subsequent N-hydroxylation of 2-aminoacetophenone.

Keywords: polyketides; polyesters; secondary metabolites; biosynthetic gene cluster; tryptophan
metabolism; structure elucidation

1. Introduction

Filamentous fungi are important sources of structurally diverse and biologically
active secondary metabolites, including polyketides, non-ribosomal peptides, and ter-
penes [1]. The fungal genus Talaromyces produces a broad spectrum of bioactive natural
products of interest to many scientists [2,3]. Polyesters containing 2,4-dihydroxy-6-(2-
hydroxypropyl)benzoate and 3-hydroxybutyrate moieties are polyketide-type compounds
isolated from many filamentous fungi such as Penicillium verruculosum [4,5], Acremonium
butyri [6], Talaromyces flavus [7,8], Menisporopsis theobromae [9], Ascotricha sp. [10] and Hans-
fordia sinuosae [11]. These polyketides are produced as linear or macrocyclic structures with
different patterns of subunit assembly and potential biological activities, such as antimalar-
ial, antifungal, antibacterial and anticancer [12,13]. In particular, macrocyclic polyesters are
more bioactive than their opened-structure counterparts because cyclic compounds retain
rigidity and do not lose entropy upon interacting with their targeted enzymes [14,15].

The biosynthesis of the fungal polyesters requires two enzymes, an HR-PKS and NR-
PKS [16]. Early study of the biosynthesis of polyesters showed the incorporation of [1-13C]-
and [2-13C]-labelled acetate into the structure of a macrocyclic polylactone menisporopsin A,
which confirmed the polyketide origin of such a fungal polyester [17]. Later, a gene cluster
found in Menisporopsis theobromae BCC 4162 containing two polyketide synthase genes,
namely men1 an HR-PKS and men2 an NR-PKS, was identified. Heterologous coexpression
of men1 and men2 in a fungal host Aspergillus oryzae led to the production of a macrocyclic
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polyester, ascotrichalactone A, and other byproducts such as 6-hydroxymellein 6 and
orthosporin [16]. The characterization of Men1 and Men2 proved that the biosynthesis
of the fungal polyester did not require additional enzymes and highlighted the unusual
mechanisms of interdomain interaction of Men2 during the process of subunit assembly.

Talaromyces stipitatus is known to yield polyketides, predominantly tropolones [18,19].
Recently, a polyester named talapolyester G 2 containing 2,4-dihydroxy-6 (2-hydroxypropyl)
benzoate and 3-hydroxybutyrate moieties was isolated from this organism [20]. Fortunately,
the complete genome sequence of T. stipitatus and the development of bioinformatics tools
have enabled the discovery of its biosynthetic potential [21]. Here, a new cyclic polyester
named talarodioxadione 1 and other known polyketides, namely 6-hydroxymellein 6 [22]
and the polyester 15G256α 3 [23], which have never been reported from T. stipitatus, were
isolated and characterized. In addition, the bioinformatic analysis revealed a potential
gene cluster for T. stipitatus polyesters biosynthesis that consists of four genes, including an
HR-PKS, NR-PKS, a cytochrome P450, and a regulatory gene. The secondary metabolic
investigation supported the putative gene cluster of polyester and revealed the production
of some catabolic metabolites of tryptophan, such as a new oxime called talarooxime 5 and
the quinolone transtorine 4 [24] (Figure 1).
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Figure 1. Talaromyces stipitatus obtained secondary metabolites: talarodioxadione 1, talapolyester G 
2, 15G256α 3, transtorine 4, talarooxime 5 and 6-hydroxymellein 6. 

2. Materials and Methods 
2.1. Fermentation and Extraction 

Talaromyces stipitatus, (Thom) C.R. Benjamin, CBS 349.72 was provided by the Leibniz 
Institute DSMZ (Germany). Two liters of the fungal culture were grown in Czapek-Dox 
medium supplemented with tryptone (20 g/L sucrose, 10 g/L tryptone, 2 g/L NaNO3, 2 g/L 
KCl, 1 g/L K2HPO4, 0.5 g MgSO4.7H2O, 0.01 g FeSO4.7H2O) for 7 days at 28 °C and shaken 
at 200 rpm. The culture broth was acidified to pH 5 using diluted HCl solution and then 
vacuum filtered using normal filter paper. The secondary metabolites were extracted us-
ing a separation funnel and ethyl acetate, then dried over anhydrous magnesium sulfate. 
The drying agent was filtered, and the organic solvent was evaporated using a rotary 
evaporator at 40 °C. Around 1.8 g of crude extract was obtained. 

  

Figure 1. Talaromyces stipitatus obtained secondary metabolites: talarodioxadione 1, talapolyester G 2,
15G256α 3, transtorine 4, talarooxime 5 and 6-hydroxymellein 6.

2. Materials and Methods
2.1. Fermentation and Extraction

Talaromyces stipitatus, (Thom) C.R. Benjamin, CBS 349.72 was provided by the Leibniz
Institute DSMZ (Germany). Two liters of the fungal culture were grown in Czapek-Dox
medium supplemented with tryptone (20 g/L sucrose, 10 g/L tryptone, 2 g/L NaNO3,
2 g/L KCl, 1 g/L K2HPO4, 0.5 g MgSO4·7H2O, 0.01 g FeSO4·7H2O) for 7 days at 28 ◦C and
shaken at 200 rpm. The culture broth was acidified to pH 5 using diluted HCl solution and
then vacuum filtered using normal filter paper. The secondary metabolites were extracted
using a separation funnel and ethyl acetate, then dried over anhydrous magnesium sulfate.
The drying agent was filtered, and the organic solvent was evaporated using a rotary
evaporator at 40 ◦C. Around 1.8 g of crude extract was obtained.

2.2. Isolation of Metabolites

The ethyl acetate crude extract was subjected to flash chromatography using silica
gel high-purity grade, pore size 60 Å, 220–440 mesh particle size, 35–75 µm particle size,
and 50% ethyl acetate and dichloromethane as a mobile phase. Colorless fractions were
firstly eluted and combined together. Upon evaporation of the organic solvent, pale-
yellow residue, which contained 1, 2, 4, 5 and 6 metabolites, was afforded, whereas 3 was
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directly eluted with around 450 mL 100% of ethyl acetate. After dryness, the fraction
residues were redissolved in methanol for further purification using preparative HPLC
(Agilent 1260 Infinity II Analytical-Scale LC Purification System), which comprises of
1260 Infinity II preparative binary pump (G7161A), 1260 Infinity II preparative autosam-
pler(G7157A), Infinity II diode array detector (G7115A), 1260 Infinity II Analytical Fraction
Collector (G1364E). The purification was performed with an Agilent ZORAX SB-C18 col-
umn (9.4 mm × 250 mm, 5 µm) at room temperature, flow rate: 3 mL/min, a mobile phase
composed of Milli- deionized water +0.1% formic acid and HPLC grade acetonitrile +0.1%
formic acid and runs of 30 min (3 min, 5% B; 20 min, 5–98% B; 4 min, 98% B; 1 min 98–5%,
3 min 5% B). HPLC-fractions of every compound were combined and dried under a ni-
trogen stream to afford 8.0 mg of talaroxime 5 (tR: 10 min), 3.9 mg of 6-hydroxymellein
6 (11.7 min), 5.4 mg of transtorine 4 (12.3 min), 9.5 mg of talarodioxadione 1 (14.2 min),
6.3 mg of talapolyester G 2 (15.5 min) and 8.2 mg of 15G256α 3, (16.8 min).

2.3. Structure Elucidation

Purified compounds were characterized from the analyses of 1D and 2D NMR spectra
which were obtained on a 600 MHz Bruker Avance III spectrometer. The high-resolution
mass spectrometry and the isotopic distribution (ID) of compounds were obtained us-
ing a Q-Exactive Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, USA).
Fourier transform infrared (FT-IR) spectra were recorded on Nicolet iS20 FTIR Spectrometer
(Thermo Scientific, Waltham, MA, USA). Optical rotations were determined at 589 nm
using a Bellingham and Stanley ADP400 polarimeter.

2.4. Spectroscopic and Spectrometric Data

Talarodioxadione 1: white crystals; [α]22
D −33.1 (c 0.1, MeOH), IR (neat): vmax 3196,

3082, 1627, 1476, 1253, 1167 cm−1; 1H-NMR (CDCl3, 600 MHz) δ (ppm) = 6.37 (s, 1H), 6.19
(d, J = 2.2 Hz, 1H), 5.30 (dt, J = 6.9, 3.5 Hz, 1H), 5.20 (ddd, J = 10.8, 6.8, 3.8 Hz, 1H), 3.66 (dd,
J = 14.3, 3.8 Hz, 1H), 2.86 (t, J = 11.3 Hz, 1H), 2.51–2.47 (m, 2H), 1.68 (d, J = 6.6 Hz, 3H), 1.03
(d, J = 6.7 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ (ppm) = 171.2, 170.7, 160.2, 159.6, 139.3,
113.0, 110.6, 102.5, 74.6, 70.9, 41.3, 39.3, 21.00, 18.2; HR-ESI-MS at m/z 281.1017 [M + H]+,
(calcd. for C14H17O6: 281.1025).

Talarooxime 5: colorless crystals, IR (neat): vmax 3402, 2970, 2880, 2742, 2359, 1652,
1525, 1451, 1451, 1281, 765 cm−1; 1H-NMR (DMSO-d6, 600 MHz) δ (ppm) = 9.72 (s, 1H),
9.29 (s, 1H), 7.66 (dd, J = 7.9, 1.6 Hz, 1H), 6.93 (td, J = 8.1, 1.6 Hz, 1H), 6.84 (dd, J = 8.1,
1.5 Hz, 1H), 6.75 (td, J = 7.9, 1.5 Hz, 1H), 2.09 (s, 3H); 13C NMR (DMSO-d6, 150 MHz) δ
(ppm) = 168.9, 147.8, 126.4, 124.6, 122.3, 118.9, 115.9, 23.6. HR-ESI-MS at m/z 152.07061
[M + H]+ (calcd. for C8H10O2: 152.07115).

The NMR data of the metabolites 2, 3, 4 and 6 agreed with the literature. Furthermore,
1D and 2D-NMR spectra of all metabolites are presented in the Supplementary Information
(Figures S1–S11).

2.5. Bioinformatics Analysis

The amino acid sequences of Men1 (CAB3277415.1) and Men2 (CAB3277416.1) were
used as queries to perform BLASTP sequence similarity searching against the T. stipitatus
non-redundant protein sequence database. The algorithm parameters were as follows: the
substitution matrix used was BLOSUM62, gap opening penalty 11, gap extension penalty 1,
expectation value (E-value) 10−10, and compositional matrix adjust method [25]. Conserved
domain analyses were performed using the simple modular architecture research tool
(SMART) [26] and SnapGene software.

3. Results and Discussion
3.1. Structure Elucidation

Talarodioxadione 1 was isolated as white crystals. Its molecular formula C14H16O6,
which indicates 7 degrees of unsaturation, was established from HR-ESI-MS (positive
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mode) at m/z 281.1017 [M + H]+, (calcd. for C14H17O6: 281.1025). Additional confirmation
was obtained from the isotopic distribution (ID), which matched the simulated ID of the
proposed molecular formula. The 1H and 13C-NMR chemical shifts of compound 1 were
similar to that reported for the fungal polyesters (Table 1).

Table 1. 1H-NMR (CDCl3, 600 MHz) and 13C-NMR (CDCl3, 150 MHz) of talarodioxadione 1.

Position δc (ppm) δH (ppm), (m, J Values in Hz, nH)

1 110.6 —
2 160.2
3 102.5 6.37 (s, 1H)
4 159.6 —
5 113.0 6.19 (d, 2.2, 1H)
6 139.3 —
7 39.3 3.66 a (dd, 14.3, 3.8, 1H), 2.51–2.47 b (m, 2H)
8 70.9 5.30 (dt, 6.9, 3.5, 1H)
9 18.2 1.03 (d, 6.7, 3H)
10 171.2 —
11 41.3 2.86 a (t, 11.3, 1H), 2.51–2.47 b (m, 2H)
12 74.5 5.20 (ddd, 10.8, 6.8, 3.8 Hz, 1H)
13 21.0 1.68 (d, 6.6, 3H)
14 170.7 —

The geminal protons are labelled a and b.

The 1H NMR in CDCl3 of 1 showed only two aromatic protons in meta position
to each at δH (ppm) 6.37 and 6.19, which indicated the presence of a tetra-substituted
benzene ring, whereas the 3-hydroxybutyrate moieties were recognized from the presence
of two oxygenated methine protons at δH (ppm) 5.30 and 5.20, two methylenes at δH (ppm)
3.66, 2.86, and 2.49 (2H overlapped), and two methyl groups resonated as duplets at δH
1.68 and 1.03. One dimensional Nuclear Overhauser Effect Spectroscopy (1D-NOESY)
spectra were indicative of the correlation between the aromatic proton H-5 and the aliphatic
protons Ha,b-7. Other 1H-1H space couplings were detected between H-7/H8, H-7/H9, H-
8/H-9, H-11/H12, H-12/H13, and H-11/H-13. The 13C-NMR spectrum showed 14 carbons
assigned based on Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear
Multiple Bond Connectivity (HMBC) analyses. The HMBC spectral data suggested the
cyclic structure of 1. A Key HMBC 1H-13C long rang correlation was detected between
H-12/C-14. More correlations supported the predicted structure of 1 were observed from
H-3 to C1/ C-2/C-5, from H-5 to C-1/C-3/C-4/C-7, from Hab-7 to C-5/C-6/C-8, from
H-9 to C-7/C-8, from Hab-11 to C-10/C-12/C-13, from H-12 to C-14, and from H-13 to
C-10/C-11/C-12 (Figure 2).
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an ion at m/z 152.07061 [M + H]+ (calcd. for C8H10O2: 152.07115). The NMR experiments
were performed in DMSO-d6 to enable the detection of exchangeable protons. Two broad
singles of the two hydroxyl groups appeared at δH (ppm) 9.72 and 9.29, whereas the
four aromatic protons resonated at δH (ppm) 7.66 (dd), 6.93 (td), 6.84 (dd) and 6.75 (td).
1D-NOESY experiment helped assign the configuration of 5. Clear NOESY correlations
between the hydroxyl groups and the aromatic protons were observed, suggesting trans-
conformation around the external double bonds (Figure 2). 13C-NMR showed eight signals
which were assigned from HSQC and HMBC experiments. Protonated carbons showed
cross-couplings in the HSQC spectrum at δc (ppm): H-3/C-3 (122.3), H-4/C-4 (118.9),
H-5/C-5 (124.6), H-6/C-6 (115.9) and H-8/C-8 (23.6). The designation of C-1, C-2 and C-7
were deduced from the HMBC spectrum at δc (ppm) 147.8, 126.4 and 168.9, respectively, as
the 1H-13C correlations were detected from N-OH to C-1/C-2/C-6, from -CH3 to C-7, and
from C-OH to C-2/C-3.

3.2. Identification of Talaromyces Stipitatus Polyesters Biosynthetic Gene Cluster

The polyesters isolated from T. stipitatus consist of 2,4-dihydroxy-6-(2-hydroxypropyl)
benzoate and 3-hydroxybutyrate subunits, which were predicted to derive from an HR-PKS
and NR-PKS homologous to Men1 and Men2. Indeed, protein Blast searches using the
amino acid sequence of Men1 against the T. stipitatus protein database revealed a highly
homologous HR-PKS (XP_002488696) at the top hit with 59% identity and 73% similarity,
which is over twice higher similarity than the second top hit. The Men2 query showed
an NR-PKS (XP_002488697) that shares a significant similarity, with 67% identity and 80%
similarity compared to the second top hit (Figure S12). Interestingly, the two corresponding
genes of XP_002488696 and XP_002488697, which were named tpeA and tpeB, existed
together in a gene cluster with a size of around 27.5 kb. The identified gene cluster also
contains a cytochrome P450 oxygenase (tpeC) and a regulator protein (tpeD) (Figure 3).
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Figure 3. The putative biosynthetic gene cluster of the T. stipitatus polyesters encodes a highly
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P450 oxygenase and a regulator protein.

The conserved domain analysis of TpeA and TpeB was performed using the SMART
protein domain analysis tool. Both enzymes showed similar domain architecture to Men1
and Men2, respectively (Figures S13 and S14). TpeA consists of the following domains:
i.e., ketosynthase (KS), malonyl-CoA:ACP transacylase (MAT), dehydratase (DH), enoyl
reductase (ER), ketoreductase (KR), and an acyl carrier protein (ACP). Similar to what had
been observed for Men1, TpeA has the structure of an HR-PKS but could only catalyze the
reduction in the β-carbonyl intermediate since the DH and ER domains are non-functional.
Active DH domains in highly reducing (HR)-PKSs and partially reducing (PR)-PKSs have
the His/Asp catalytic diad in the conserved motifs HXXXGXXXXP and DXXX(Q/H) to
adopt the double-hotdog fold [27]., but TpeA has the motifs H980XXXSXXXXP989 and
E1169XXXQ1173, indicating the replacement of Asp with Glu which may not be enough as
indicative for non-functional DH0 domain [28,29]. However, the conserved LPFXW motif
and Arg residue, which were considered essential for the interaction with the ACP domain,
are also not present in TpeA (Figure S15) [16,30]. In addition, the ER domain lacks the
NADPH binding motif (GGVG) and has instead the G1945AVG1948 motif, suggesting the
inactive ER0 domain [31].

TpeB has a typical fungal NR-PKS domains, including a starter-unit acyltransferase
(SAT), ketosynthase KS, MAT, product template (PT), tandem ACP doublet and thioesterase
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(TE) (Table 2) [32–34]. The similarity of TpeA and TpeB domains to their counterparts in
Men1 and Men2 are presented in (Tables S1 and S2).

Table 2. The putative proteins encoded by the proposed biosynthetic gene cluster of T. stipita-
tus polyesters.

Gene Gene Location Protein Accession No. Size Function Conserved Domain

tpeA TSTA_008130 XP_002488696 2521 aa HR-PKS KS-MAT-DH-ER-KR-ACP
tpeB TSTA_008140 XP_002488697 2200 aa NR-PKS SAT-KS-MAT-PT-ACP1-ACP2-TE
tpeC TSTA_008150 XP_002488698 507 aa Oxygenase Cytochrome P450 (CYP)
tpeD TSTA_008170 XP_002488702 846 aa Regulator BED zinc finger (ZnF_BED)

3.3. The Biosynthesis of Talaromyces Stipitatus Polyesters

The biosynthesis of the polyesters probably starts with the formation of the dike-
tide 3-hydroxybutyryl-S-ACP catalyzed by the HR-PKS (TpeA). The acceptance of 3-
hydroxybutyryl by the NR-PKS (TpeB) would initiate further elongation and cyclization,
catalyzed by KS and PT, respectively, to form 2,4-dihydroxy-6-(2-hydroxyn-propyl)benzoyl-
S-ACP intermediate. The TE domain could catalyze lactonization at this step to yield
6-hydroxymellein 6 as a derailment product. This polyketide was also produced by trans-
formants of A. oryzae expressing men1 and men2. Similarly to the biosynthetic steps of
ascotrichalactone A, the polyesterification process maybe occurs when additional molecules
of 3-hydroxybutyryl are transferred to the NR-PKS [16]. Following the first esterification
step, an intramolecular cyclization catalyzed by the TE domain would give talarodioxadione
1, whereas the ethyl esterification of talapolyester G 2 perhaps happens spontaneously
(Scheme 1a). Accumulated evidence showed that TE domains of iterative polyketide dis-
play selectivity for intermediates offloading with constant monitoring for the shape and
size of intermediates during the elongation process until completion [35]. However, smaller
molecules could escape further elongation during the assembly process, depending on
the selectivity of the TE domain. Elegant experiments conducted by Xu et al. investigated
the effect of TE domain swap on the programming of NR-PKSs and the production of
unnatural products. The outcome of such experiments showed the importance of the TE
domain in controlling product release and its capability for macrocyclization, hydrolysis
and transesterification [36].

The mechanism of esterification is ambiguous. It was hypothesized that esterification
and cyclolactonization are catalyzed by the TE domain as the reduced diketide interme-
diate 3-hydroxybutyryl is passed to the TE for the first esterification reaction with the
2,4-dihydroxy-6-(2-hydroxyn-propyl)benzoyl-S-ACP subunit and further esterification
reactions happen through interactions between TE and ACP2 domains. Although the
low-resolution small-angle X-ray scattering (SAXS) model of Men2 ACP1-ACP2-TE showed
a great flexibility beads-on-a-string configuration, there was no interaction between ACP
and TE domain was detected [16,37]. Another investigation using a high-resolution NMR
structural and biophysical analysis of a closely resembled NR-PKS tandem ACP domains
(PigH ACP1-ACP2) from prodigiosin biosynthesis revealed two distinct conformers, bent
and extended. In addition, an interaction between the ACP domains and the ACP cross-
liker has also been observed, which may suggest the importance of the linker sequence
in the biosynthetic programming of NR-PKS [38]. Conceivably, the double ACP domains
may require specific interactions with the linker sequences to facilitate the interaction with
TE domain and esterification reaction. However, the mechanisms of NR-PKS possessing
tandem ACP domains are still not fully understood and are difficult to predict [39].
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Since talapolyester G 2 does not require an oxidative step, the existence of other
polyesters was predicted. The investigation led to identifying the macrocyclic polyester
15G256α, which was also produced by other filamentous fungi, Hypoxylon oceanicum LL-
15G256 [23], and Talaromyces flavus [40]. The biosynthesis of 15G256α was previously
proposed to involve the hydroxylation of an inactive methyl group since potential inter-
mediates such as 15G256β and 15G256β-2 were isolated for the same fungus [41]. This
biosynthetic proposal for 15G256α is in agreement with the discovered BGC of T. stipita-
tus polyesters as the P450 (TpeC) is the best candidate for catalyzing this oxidative step
(Scheme 1b). Although 15G256β and 15G256β-2 have not been detected in the secondary
metabolites production of T. stipitatus, presumably due to the fast oxidation reaction, further
subunit assembly catalyzed by TpeB could offer the two substrates.

3.4. The Biosynthesis of Talarooxime

Talarooxime is a possible catabolic product of tryptophan. L-tryptophan is an essential
amino acid for microorganisms, but a small fraction is utilized in protein biosynthesis,
whereas an excess quantity is metabolized through the kynurenine pathway [42]. The
kynurenine pathway is important for generating the cofactor nicotinamide adenine dinu-
cleotide (NAD). However, there are many metabolites of tryptophan degradation, and one
of them is 2-aminoacetophenone 10 [43], which is likely a substrate for talarooxime biosyn-
thesis. The natural production of 2-aminoacetophenone came from converting kynurenine
8 to kynurenic acid 9 [44]. The latter is in an equilibrium with transtorine 4, which was
previously isolated from a plant organism, Ephedra transitoria [24]. Two subsequent N-
hydroxylation of 10 could result in oxime formation and the yield of 5 (Scheme 2). Similar
oxidation has been reported in tyrosine and tryptophan metabolism [45]. For example, the
cytochrome P450 (CYP79B2) was found to hydroxylate twice the amino group of trypto-
phan 7 to yield indole-3-acetaldoxime 11 [46]. Tryptophan metabolism via the kynurenine
pathway exists in almost all living organisms. It has been linked to the progression of
many human diseases such as cancer [47], HIV [48], and COVID-19 [49] as it prevents
inflammation and contributes to the development of immunodeficiency. Therefore, the
characterization of such a metabolite in the kynurenine pathway may provide an insight
into medical research.
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4. Conclusions

The fungal polyesters containing 2,4-dihydroxy-6-(2-hydroxypropyl)benzoate and
3-hydroxybutyrate moieties are interesting polyketides due to their potential biological
activities and unusual biosynthesis. The shared production of some polyesters by many
filamentous fungi suggests programmed esterification catalyzed by dedicated HR-PKS
and NR-PKS. The fungus T. stipitatus continues to provide a biosynthetic understanding
of fungal secondary metabolites. The investigation of T. stipitatus secondary metabolites
resulted in the identification of new and unreported compounds, which led to the discovery
of a putative BGC encoding all enzymes, namely TpeA (HR-PKS), TpeB (NR-PKS), TpeC
(P450) and TpeD (regulator) required for the biosynthesis of 15G256α. The presented
result may allow for domain swap experiments to greater understand the mechanism
and programming that govern the iterative esterification process. In addition, tryptophan
metabolism exists in almost all organisms and has been of interest to many researchers.
Therefore, the characterization of talarooxime may help identify and understand such a
metabolite’s effect on human health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27144473/s1, Figures S1–S11: 1D and 2D-NMR spectra of the metabolites 1–6;
Figure S12: The result of protein Blast searches of Men1 and Men2 amino acid sequences against
Talaromyces stipitatus protein database; Figures S13 and S14; The domains analysis of TpeA and TpeB
using SMART tool; Figure S15: The indication for inactive DH domain of TpeA; Tables S1–S2; The
similarity of TpeA and TpeB domains to their counterparts in Men1 and Men2.
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