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Abstract: Piper kadsura is a vine-like medicinal plant which is widely used in clinical treatment.
However, P. kadsura is often substituted by other materials in the markets, thereby causing health risks.
In this study, 38 P. kadsura samples and eight sequences from GenBank, including a closely-related
species and common adulterants were collected. This study aimed to identify an effective DNA
barcode from four popular DNA loci for P. kadsura authentication. The success rates of PCR
amplification, sequencing, and sequence acquisition of matK were 10.5%, 75%, and 7.9%, respectively;
for rbcL they were 89.5%, 8.8%, and 7.9%, respectively; ITS2 rates were 86.8%, 3.0%, and 2.6%,
respectively, while for psbA-trnH they were all 100%, which is much higher than for the other three loci.
The sequences were aligned using Muscle, genetic distances were computed using MEGA 5.2.2,
and barcoding gap was performed using TAXON DNA. Phylogenetic analysis showed that psbA-trnH
could clearly distinguish P. kadsura from its closely related species and the common adulterant.
psbA-trnH was then used to evaluate the fake proportions of P. kadsura. Results showed that 18.4%
of P. kadsura samples were fake, indicating that adulterant species exist in the Chinese markets.
Two-dimensional DNA barcoding imaging of P. kadsura was conducted, which was beneficial to the
management of P. kadsura. We conclude that the psbA-trnH region is a powerful tool for P. kadsura
identification and supervision in the current medicine markets.
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1. Introduction

Piper kadsura (Choisy) Ohwi is a vine-like medicinal plant found mostly in the Fujian, Zhejiang,
and Guangdong provinces of China. The stem part of P. kadsura is a traditional medicine in China
known as “haifengteng”, and is harvested in summer or autumn. According to Chinese medicinal
theory, P. kadsura is generally used to dredge meridian, expel wind-dampness, and relieve limb pain [1].
It is also used for cooking and improving digestive function in Japan, because its fruit is similar to
pepper. To date, various constituents have been isolated from P. kadsura, including amides, lignans,
terpenes, and cyclohexanes, which possess anti-human hepatitis B virus, anti-platelet activating factor,
anti-insect feeding, and anti-inflammatory activities [2,3]. P. kadsura has been widely used in medical
treatment and has attracted considerable attention because of its many functions.
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P. kadsura as sold in medicine markets is always dried or sliced, which makes the identification
of its traditional morphological characteristics difficult. Given this, it is frequently replaced by
other herbs in clinical treatment, causing potential medical problems, thereby eroding consumers’
confidence. Several closely related species and other adulterants of P. kadsura are usually adopted as
alternative herbs in many situations. Piper wallichii—a closely related species of P. kadsura that has no
anti-inflammatory action—is often used as a substitute for P. kadsura in Zhejiang, Fujian, and Hunan
provinces. Both species have the same name and are obtained in the same location. P. kadsura is
commonly substituted by Kadsura heteroclite in Guangxi and Guangdong provinces, which exhibits
different healing effects. The application of alternatives, to a certain extent, influences the curative
effect. In extreme cases, this behavior may lead to major medical accidents. Therefore, the correct
identification of P. kadsura is especially critical, and a practical and effective method is urgently needed.

DNA barcoding makes use of short but specific DNA tags or “barcodes”—parts of genes present
in all living things—to distinguish one species from another [4]. “Barcode” is a term first coined by
Hebert [5]. Many DNA barcodes have been searched. Among them are four loci—namely, matK,
rbcL, ITS2, and psbA-trnH—which are the most well-known in the identification of medicinal plants.
The matK gene of 1084 plant species was studied, and it could be used as a standard DNA barcode for
flowering plants [6]. Chase et al. concluded that rbcL sequence variation is appropriate for phylogenetic
analysis at the taxonomic level of seed plants [7]. Chen et al. concluded that ITS2 could be a good
DNA barcode for the authentication of medicinal plants and their closely related species. They also
demonstrated that psbA-trnH is excellent for species identification [8]. Combination with the above loci
for use in species authentication has been widely investigated [9–13]. In this study, we utilized DNA
barcoding to discriminate P. kadsura species from its closely related species and common adulterants.
This technique demonstrated that psbA-trnH is the best sequence for P. kadsura identification.

DNA barcoding has been increasingly used for supervision of the medicine market [14–16].
Chen et al. established a barcode system, called traditional Chinese Medicine Database, based on
a combination of the ITS2 and psbA-trnH barcodes [17]. The system contains 78,847 sequences belonging
to 23,262 medicinal species, and covers more than 95% of the herbs in pharmacopeia, including those
of China, Japan, Korea, India, the USA, and Europe. The sequences provide consumer protection
and safety. In the present study, we used psbA-trnH to supervise commercial P. kadsura products in
the current markets. Results indicated that adulterants are present, and that psbA-trnH is a powerful
identification tool for P. kadsura. Portable equipment based on DNA barcoding technology is desired
in the future.

2. Results

2.1. Success Rates of PCR Amplification, Sequencing, and Sequence Acquisition

Unsuccessful sequences require repeat experiments or PCR amplification reconstruction to ensure
data reliability. The success rate of PCR amplification refers to the rate of samples with evident DNA
straps in all the text samples. The success rate of sequencing is the rate of samples with high-quality
sequences in all sequences. Sequence acquisition rate is the product of the success rate of PCR
amplification and the success rate of sequencing. As shown in Figure 1, all three factors of four loci
were investigated. Among the 38 samples, only four samples could be amplified with the matK locus.
The amplification rates of rbcL and ITS2 were 89.5% and 86.8%, respectively; however, the success rates
of sequencing were 8.8% and 3.0%, respectively. We attempted to perform repeat experiments for the
two loci, but the results remained unsatisfactory. Thus, the sequence acquisition rate of ITS2 was 2.6%;
matK and rbcL, 7.9%; and psbA-trnH, 100%. Given that the sequence acquisition rate of psbA-trnH was
much greater than ITS2, matK, and rbcL, psbA-trnH was chosen as the DNA barcode for P. kadsura.
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Figure 1. The success rates of PCR amplification, sequencing, and sequence acquisition. 

2.2. Genetic Distances within and between Species 

Basic Local Alignment Search Tool (BLAST) analyses were performed on the 38 sequences. The 
results indicated that HF007AG07, HF009AG09, HF021YZ01, HF022YZ02, HF023YZ03, HF028YZ08, 
and HF038BZ05 were not P. kadsura samples, but were the same adulterant (i.e., Actinidia chinensis), 
and we treated these samples as AC. The kimura-2-parameter genetic distances of all 46 sequences 
were calculated. The intraspecific distances of P. kadsura was 0.000. The interspecific distance 
between P. kadsura and its adulterants varied from 0.004 to 0.426. The minimum interspecific 
distance of 0.004 between P. kadsura and Piper wallichii was larger than the maximum intraspecific 
distance, proving that psbA-trnH is a useful identification tool (Table 1).  
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K2P Genetic Distances Genetic Distance 
Intra-specific distances 0.000 
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Inter-specific distances with Kadsura heteroclita 0.426 

2.3. Barcoding Gap Assessment 

Barcoding gap is an important index to determine whether or not a DNA barcode is suitable. 
Barcodes should exhibit a “barcoding gap” between intra and interspecific divergences [6]. The 
divergence distributions were classed in 0.002 distance units to evaluate whether or not the gap 
exists. With psbA-trnH in the P. kadsura and its adulterants matrix, there were no overlaps, and the 
distributions of intra and interspecific divergence were well separated, forming an evident gap, 
which is a positive proof for psbA-trnH identification ability (Figure 2). 
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2.2. Genetic Distances within and between Species

Basic Local Alignment Search Tool (BLAST) analyses were performed on the 38 sequences.
The results indicated that HF007AG07, HF009AG09, HF021YZ01, HF022YZ02, HF023YZ03,
HF028YZ08, and HF038BZ05 were not P. kadsura samples, but were the same adulterant
(i.e., Actinidia chinensis), and we treated these samples as AC. The kimura-2-parameter genetic
distances of all 46 sequences were calculated. The intraspecific distances of P. kadsura was
0.000. The interspecific distance between P. kadsura and its adulterants varied from 0.004 to 0.426.
The minimum interspecific distance of 0.004 between P. kadsura and Piper wallichii was larger than the
maximum intraspecific distance, proving that psbA-trnH is a useful identification tool (Table 1).

Table 1. Genetic distances within and between species.

K2P Genetic Distances Genetic Distance

Intra-specific distances 0.000
Inter-specific distances with Piper wallichii 0.004

Inter-specific distances with AC (Actinidia chinensis) 0.318
Inter-specific distances with Kadsura heteroclita 0.426

2.3. Barcoding Gap Assessment

Barcoding gap is an important index to determine whether or not a DNA barcode is suitable.
Barcodes should exhibit a “barcoding gap” between intra and interspecific divergences [6]. The divergence
distributions were classed in 0.002 distance units to evaluate whether or not the gap exists.
With psbA-trnH in the P. kadsura and its adulterants matrix, there were no overlaps, and the distributions
of intra and interspecific divergence were well separated, forming an evident gap, which is a positive
proof for psbA-trnH identification ability (Figure 2).
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2.4. Neighbor-Joining (NJ) Tree Identification

An NJ tree was constructed using 46 psbA-trnH sequences (Figure 3). A total of 31 P. kadsura
sequences clustered into one clade with the P. kadsura sequence downloaded from GenBank, whereas its
adulterants clustered into other clades. Surprisingly, adulterants were neither P. wallichii nor
K. heteroclite. Seven samples from Hebei Anguo (AG), Henan Yuzhou (YZ), and Anhui Bozhou
(BZ) were identified as Actinidia chinensis stem. In addition to common adulterants, other fake samples
that could not be easily identified by morphology were also present. Thus, DNA barcoding is necessary
for authentication. We conclude that the NJ tree could effectively identify P. kadsura from its adulterants,
including its closely related species P. wallichii, which further indicates that psbA-trnH is a suitable
DNA barcode for P. kadsura identification.
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2.5. Proportions of Adulterant Species

Product adulteration and ingredient substitution are common as species of a lower market
price are used to replace those of a higher price. The frequency of product mislabeling in herbal
markets is estimated at 14% to 33% [18]. In this study, 38 psbA-trnH sequences were searched to
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evaluate adulterant proportions of P. kadsura in the current markets. The analysis of psbA-trnH region
identification showed that 18.4% of samples were different from their commercial names. No fake
P. kadsura samples were found in Hunan Shaoyang (SY), Heilongjiang Haerbin (HB), or Shanxi Xian
(XA). The fake sample rates for AG and BZ were 18.2% and 20%, respectively, whereas YZ obtained
the highest rate at approximately 50% (Figure 4). The existence of adulterants poses health risks and
seriously delays the development of traditional medicine.

Molecules 2016, 21, 1221 5 of 10 

evaluate adulterant proportions of P. kadsura in the current markets. The analysis of psbA-trnH 
region identification showed that 18.4% of samples were different from their commercial names. No 
fake P. kadsura samples were found in Hunan Shaoyang (SY), Heilongjiang Haerbin (HB), or Shanxi 
Xian (XA). The fake sample rates for AG and BZ were 18.2% and 20%, respectively, whereas YZ 
obtained the highest rate at approximately 50% (Figure 4). The existence of adulterants poses health 
risks and seriously delays the development of traditional medicine.  

 
Figure 4. The adulterant rate observed for 38 P. kadsura samples. 

2.6 DNA Barcoding and Two-Dimensional DNA Barcoding Image  

DNA barcoding technology aims to identify species, similar to the barcoding of goods in the 
supermarket. Based on the written code and open-source PHP QR Code coding method [19], the 
psbA-trnH sequences of P. kadsura were converted into two-dimensional DNA barcoding images 
(Figure 5). Two-dimensional DNA barcoding is the combination of two-dimensional technique and 
DNA barcoding, which is beneficial for the information conversion of DNA barcoding. Different 
colors represent different nucleotides, and numbers represent the length of the sequence. The 
sequence of P. kadsura can be obtained by scanning the two-dimensional code of the mobile terminal 
and then sending this sequence to a DNA barcoding database for identification, which makes 
identification more convenient and quick and facilitates the management of P. kadsura. This method 
can be applied to the identification of other medicinal herbs, to provide a new technical means for 
the protection of clinical safety. 

 
Figure 5. DNA barcoding and two-dimensional DNA barcoding image of psbA-trnH sequences for P. 
kadsura (  A  T  C  G). 

3. Discussion 

3.1. Efficacy of psbA-trnH for Identification 

The non-coding psbA-trnH spacer is the most variable plastid region in angiosperm, and it 
remains the leading candidate for plant DNA barcoding. The psbA-trnH spacer satisfies the criteria 
deemed appropriate for a plant barcode, including short length (often <500 bp) that allows for easy 
DNA extraction and amplification, high interspecific variability and divergence, and universal 
flanking primers [20–22]. The psbA-trnH intergenic spacer region could be used as a barcode to 

Figure 4. The adulterant rate observed for 38 P. kadsura samples.

2.6. DNA Barcoding and Two-Dimensional DNA Barcoding Image

DNA barcoding technology aims to identify species, similar to the barcoding of goods in
the supermarket. Based on the written code and open-source PHP QR Code coding method [19],
the psbA-trnH sequences of P. kadsura were converted into two-dimensional DNA barcoding images
(Figure 5). Two-dimensional DNA barcoding is the combination of two-dimensional technique and
DNA barcoding, which is beneficial for the information conversion of DNA barcoding. Different colors
represent different nucleotides, and numbers represent the length of the sequence. The sequence of
P. kadsura can be obtained by scanning the two-dimensional code of the mobile terminal and then
sending this sequence to a DNA barcoding database for identification, which makes identification
more convenient and quick and facilitates the management of P. kadsura. This method can be applied
to the identification of other medicinal herbs, to provide a new technical means for the protection of
clinical safety.
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3. Discussion

3.1. Efficacy of psbA-trnH for Identification

The non-coding psbA-trnH spacer is the most variable plastid region in angiosperm, and it remains
the leading candidate for plant DNA barcoding. The psbA-trnH spacer satisfies the criteria deemed
appropriate for a plant barcode, including short length (often <500 bp) that allows for easy DNA
extraction and amplification, high interspecific variability and divergence, and universal flanking
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primers [20–22]. The psbA-trnH intergenic spacer region could be used as a barcode to distinguish
various Dendrobium species and differentiate Dendrobium species from other adulterating species [23].
Kress et al. indicated that the rate of PCR success of psbA-trnH with standard primers is 95.8%
(46 of 48 genera), which is the highest in the nine loci searched [9]. The psbA-trnH region ranked
first in divergence value in six of the eight genera, and in 11 of the 14 species pairs, compared with the
other eight plastid regions [24]. Moreover, psbA-trnH alone showed the highest rate of identification
(90%), much higher than rbcLa and matK [25]. Ma et al. concluded that psbA-trnH is a powerful
DNA marker for medicinal Pteridophytes identification [26]. In the present study, the psbA-trnH region
showed the highest success rates of PCR amplification and sequencing, as well as sequence acquisition
rate in P. kadsura, which was far higher than the other three loci. The inter-specific divergence of
psbA-trnH was much greater than intra-specific, creating an evident barcoding gap. In addition,
the psbA-trnH sequence could clearly identify P. kadsura from its adulterants, including closely related
species, according to NJ tree description. The two-dimensional DNA barcoding image of psbA-trnH
sequences for P. kadsura also verify the importance of DNA barcoding. Our research demonstrated that
psbA-trnH is a useful tool for the identification of P. kadsura.

3.2. Opportunities and Challenges of DNA Barcoding in Medicine Markets

DNA barcoding is a novel system designed to provide rapid, accurate, and automated species
identification by using short, standardized gene regions as internal species tags [27]. In recent
years, DNA barcoding has played an increasingly significant role in the identification of Chinese
medicines. Several studies were conducted to apply DNA barcoding for supervision in medicine
markets. Han et al. used barcoding to investigate the proportions and varieties of adulterant species
in traditional Chinese medicine (TCM) markets. A total of 1436 samples representing 295 medicinal
species from seven primary TCM markets were supervised. The results showed that of the successfully
generated samples, approximately 4.2% were adulterants. They suggest that a DNA barcode platform
should be established for TCM market investigation [28]. Zhao et al. indicated that the ITS2 barcode
could effectively identify Acanthopanacis cortex, and DNA barcoding is a convenient tool for medicine
market investigation [29]. In the current study, 18.4% of P. kadsura samples were not genuine.
Uncommon adulterants, such as A. chinensis, also existed. Three of the six markets were identified
with fake medical materials. Certainly, psbA-trnH is a favorable control monitor for P. kadsura quality.
Thus, the current TCM markets should be regulated through a DNA barcoding method, considering
the consumer’s trust and clinical safety.

However, many aspects were considered in the determination of medicine quality. For instance,
in the pharmacopoeia of China, medicinal effective ingredients are an important index. Whether the
herbs that were identified as genuine using DNA barcoding meet the qualification of medicinal effective
ingredients is also a significant topic. In addition, morphological methods still play a fundamental role
in medicine identification. Thus, morphological and chemical information is necessary to integrate
DNA barcoding and achieve maximum efficiency for medicinal material identification [28].

4. Experimental Section

4.1. Plant Materials

Many medical materials are dried in medicine markets. To determine the efficacy of DNA
barcoding identification, we collected 38 dried P. kadsura samples from six approved national herbal
medicine markets from six provinces in China, including 11 samples from Hebei Anguo (AG),
5 samples from Hunan Shaoyang (SY), 4 samples from Heilongjiang Haerbin (HB), 8 samples from
Henan Yuzhou (YZ), 5 samples from Shanxi Xian (XA), and 5 samples from Anhui Bozhou (BZ)
(Table 2), which could reflect P. kadsura quality condition in the current market. All 38 specimens
were deposited in Beijing Forestry University. One P. kadsura sequence, two P. wallichii sequences,
and five K. heteroclite sequences were also downloaded from GenBank (Table 3).
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Table 2. The list of 38 samples used in this study. AG: Hebei Anguo; BZ: Anhui Bozhou;
HB: Heilongjiang Haerbin; SY: Hunan Shaoyang; XA: Shanxi Xian; YZ: Henan Yuzhou.

Sl No. Latin Name Place of Collection Sample No. Identification Result

1 P. kadsura AG HF001AG01 Genuine
2 P. kadsura AG HF002AG02 Genuine
3 P. kadsura AG HF003AG03 Genuine
4 P. kadsura AG HF004AG04 Genuine
5 P. kadsura AG HF005AG05 Genuine
6 P. kadsura AG HF006AG06 Genuine
7 P. kadsura AG HF007AG07 Fake
8 P. kadsura AG HF008AG08 Genuine
9 P. kadsura AG HF009AG09 Fake
10 P. kadsura AG HF010AG10 Genuine
11 P. kadsura AG HF011AG11 Genuine
12 P. kadsura SY HF012SY01 Genuine
13 P. kadsura SY HF013SY02 Genuine
14 P. kadsura SY HF014SY03 Genuine
15 P. kadsura SY HF015SY04 Genuine
16 P. kadsura SY HF016SY05 Genuine
17 P. kadsura HB HF017HB01 Genuine
18 P. kadsura HB HF018HB02 Genuine
19 P. kadsura HB HF019HB03 Genuine
20 P. kadsura HB HF020HB04 Genuine
21 P. kadsura YZ HF021YZ01 Fake
22 P. kadsura YZ HF022YZ02 Fake
23 P. kadsura YZ HF023YZ03 Fake
24 P. kadsura YZ HF024YZ04 Genuine
25 P. kadsura YZ HF025YZ05 Genuine
26 P. kadsura YZ HF026YZ06 Genuine
27 P. kadsura YZ HF027YZ07 Genuine
28 P. kadsura YZ HF028YZ08 Fake
29 P. kadsura XA HF029XA01 Genuine
30 P. kadsura XA HF030XA02 Genuine
31 P. kadsura XA HF031XA03 Genuine
32 P. kadsura XA HF032XA04 Genuine
33 P. kadsura XA HF033XA05 Genuine
34 P. kadsura BZ HF034BZ01 Genuine
35 P. kadsura BZ HF035BZ02 Genuine
36 P. kadsura BZ HF036BZ03 Genuine
37 P. kadsura BZ HF037BZ04 Genuine
38 P. kadsura BZ HF038BZ05 Fake

Table 3. The list of accessions downloaded from GenBank.

No. Latin Name Genus Name Genebank No.

1 P. kadsura Piper Linn. AB331285.1
2 P. kadsura Piper Linn. KM055222.1
3 P. wallichii Piper Linn. KM055221.1
4 K. heteroclita Kadsura Kaempf. ex Juss. KP690026.1
5 K. heteroclita Kadsura Kaempf. ex Juss. KP690025.1
6 K. heteroclita Kadsura Kaempf. ex Juss. KP690024.1
7 K. heteroclita Kadsura Kaempf. ex Juss. KP690023.1
8 K. heteroclita Kadsura Kaempf. ex Juss. KP690022.1

4.2. DNA Extraction, Amplification, and Sequencing

The samples were first scraped and then wiped with 75% ethanol to prevent fungal contamination.
Total DNA extraction was achieved using a plant genomic DNA kit (Tiangen, Beijing, China),
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based on the Hexadecyltrimethy Ammonium Bromide (CTAB) approach. The primers used for all
four regions and the PCR conditions were as follows: ITS2: S2F, ATGCGATACTTGGTGTGAAT;
S3R, GACGCTTCTCCAGACTACAAT; PCR conditions: 94 ◦C 5 min, 40 cycles at 94 ◦C 30 s, 56 ◦C
30 s, 72 ◦C 45 s, and 72 ◦C 10 min. psbA-trnH: fwd. PA, GTTATGCATGAACGTAATGCTC;
rev. TH, CGCGCATGGTGGATTCACAATCC; PCR conditions: 94 ◦C 5 min, 30 cycles at 94 ◦C
1 min, 55 ◦C 1 min, 72 ◦C 1.5 min, and 72 ◦C 10 min. matK: 390F, CGATCTATTCATTCAATATTTC;
1326R, TCTAGCACACGAAAGTCGAAGT; PCR conditions: 94 ◦C 5 min, 30 cycles at 94 ◦C
1 min, 48 ◦C 30 s, 72 ◦C 1 min, and 72 ◦C 10 min. rbcL: 1f, ATGTCACCACAAACAGAAAC;
724r, TCGCATGTACCTGCAGTAGC; PCR conditions: 95 ◦C 2 min, 34 cycles at 94 ◦C 1 min, 55 ◦C 30 s,
72 ◦C 1 min, and 72 ◦C 10 min [8].

4.3. Sequence Alignment and Genetic and Phylogenetic Analyses

CodonCode Aligner 4.2.7 (CodonCode Co., Centerville, MA, USA) was used to trim and assemble
raw trace files. BLAST analysis was performed using the nucleotide database at National Center for
Biotechnology Information (NCBI). Intra- and inter-species genetic distances were obtained with the
kimura-2-parameter (K2P) model of MEGA 5.2.2 [30]. Intra- and inter-species pairwise divergences
were calculated as a barcoding gap by using TAXON DNA [31]. A neighbor-joining (NJ) tree based on
phylogenetic analysis was constructed, with 1000 replicate bootstrap tests to identify P. kadsura via
MEGA 5.2.2 [30].
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