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Abstract
Background: In order to detect potential disease clusters where a putative source cannot be specified, classical
procedures scan the geographical area with circular windows through a specified grid imposed to the map.
However, the choice of the windows' shapes, sizes and centers is critical and different choices may not provide
exactly the same results.

The aim of our work was to use an Oblique Decision Tree model (ODT) which provides potential clusters
without pre-specifying shapes, sizes or centers. For this purpose, we have developed an ODT-algorithm to find
an oblique partition of the space defined by the geographic coordinates.

Methods: ODT is based on the classification and regression tree (CART). As CART finds out rectangular
partitions of the covariate space, ODT provides oblique partitions maximizing the interclass variance of the
independent variable. Since it is a NP-Hard problem in RN, classical ODT-algorithms use evolutionary procedures
or heuristics. We have developed an optimal ODT-algorithm in R2, based on the directions defined by each couple
of point locations. This partition provided potential clusters which can be tested with Monte-Carlo inference.

We applied the ODT-model to a dataset in order to identify potential high risk clusters of malaria in a village in
Western Africa during the dry season. The ODT results were compared with those of the Kulldorff' s SaTScan™.

Results: The ODT procedure provided four classes of risk of infection. In the first high risk class 60%, 95%
confidence interval (CI95%) [52.22–67.55], of the children was infected. Monte-Carlo inference showed that the
spatial pattern issued from the ODT-model was significant (p < 0.0001).

Satscan results yielded one significant cluster where the risk of disease was high with an infectious rate of 54.21%,
CI95% [47.51–60.75]. Obviously, his center was located within the first high risk ODT class. Both procedures
provided similar results identifying a high risk cluster in the western part of the village where a mosquito breeding
point was located.

Conclusion: ODT-models improve the classical scanning procedures by detecting potential disease clusters
independently of any specification of the shapes, sizes or centers of the clusters.
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Background
Since the development of warning systems and environ-
mental hazards awareness, a wide range of statistical
methods has been provided to identify disease clusters
and spatial patterns. These methods have been classified
into three groups [1-3]:

- Tests for focused clustering where the putative source is
prespecified [4,5,2];

- Tests for global clustering with statistics using the dis-
tance between cases [6-9];

- General tests for localized clusters where the putative
source or potential clusters cannot be prespecified
[6,10,11].

This paper focuses on the latter tests i.e. on general proce-
dures for the determination of spatial patterns. These pat-
terns allow us to localize disease clusters where the disease
rate is particularly high. Since the Openshaw's Geograph-
ical Analysis Machine (GAM), numerous works have pro-
posed extensions or modifications of this method. The
GAM lays out a regular grid of points covering the region
under study. Then it generates overlapping circular win-
dows centered at each grid point with constant radii
depending on the grid spacing. The procedure is repeated
at different predetermined values of the radius and thus
defines potential clusters. Alternative procedures use cir-
cular windows centered at the observed point locations
[10] and scan the area through this irregular grid. The use
of squared shaped windows has also been proposed [6]. A
general review of spatial methods is provided by Waller
and Gotway [12] as well as in several publications [13-
15].

The Kulldorff's scan statistic is one of the most interesting
and used methods for cluster analysis [16,1,17]. The scan
statistic is a likelihood ratio based method, which Kull-
dorff [11] defined without any assumptions about the
shape, size or collection of locations for the scanning win-
dows. However, various algorithms are necessary to calcu-
late the test statistics for different defined types of
scanning windows. Softwares (e.g. SaTScan™ [18]) have
been implemented for some of these particular windows/
algorithms. The SaTScan™ imposes on the map circular
windows positioned on regular (such as GAM) or irregu-
lar grid (defined by the observed point locations). For
each center point, the radius varies continuously from
zero to a pre-specified upper bound. Each of the circular
windows, moving through the different centers and with
different radii, is a possible candidate for containing a
cluster of cases.

It is noteworthy that the detection of potential clusters is
enforced on circular shaped (or squared shaped) win-
dows. The various algorithms applied the scan statistic
method to windows centered at either grid or observed
point locations. These two procedures define different sets
of potential clusters and therefore may not provide exactly
the same results. Furthermore, changing the windows'
shape may also provide different clusters. Gangnon and
Clayton introduced a bayesian approach [19] for cluster-
ing which does not require cluster's locations or shapes to
be specified but which requires some prior specifications
of the distribution of various cluster size and shapes (hier-
archical priors). However, given the large number of
potential models, the posterior distribution cannot be
directly provided. Therefore, Gangnon and Clayton limit
the number of models under consideration by using a ran-
domized method to build models with high posterior dis-
tributions. They approximate the posterior distribution
over the limited number of cluster models incorporating
hierarchical prior. Patil and Taillie [20] proposed an adap-
tation of the scan statistics to detect clusters without
restricted shape. It reduces the size of the potential cluster
set by determining levels of the rates of cases. The poten-
tial cluster set consists on all the connected components
that have rates higher than a fixed level. Each level deter-
mines a potential cluster set. But the determination of lev-
els is data-dependent. Furthermore in a practical point of
view, not all of the observed rates can be used as levels in
order to avoid providing a computationally impracticable
number of potential cluster sets. Other procedures use sto-
chastic optimization algorithm to reduce the number of
examined potential clusters [21]. But again these methods
used for the determination of potential clusters are not
optimal from a classification viewpoint.

The aim of the present work is to provide an optimal par-
titioning procedure using Oblique Decision Trees in order
to detect spatial patterns and to optimize the potential
clusters determination without prior specifications.
Rather than using a likelihood ratio test, this new
approach, which is not a scan statistic, is based on the cal-
culus of the interclass variance during each of many splits
of the space before providing the final pattern.

Methods
CART and ODT-models
Tree-based models such as CART (Classification And
Regression Trees) [22] are non-linear and non-parametric
alternatives to linear models for regression and classifica-
tion problems (such as linear regression, logistic regres-
sion, linear discriminant analysis, linear proportional
hazard models). CART models are fitted by binary recur-
sive partitioning of a multidimensional covariate space, in
which the dataset is successively split into increasingly
homogeneous subsets until a specified criterion is
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satisfied. For the first partition, CART searches the best
possible place to split a continuous variable into two
classes and defines two subspaces which maximize overall
class separation (i.e. interclass variance of the dependent
variable). Each of these subspaces subsequently serves as
the basis for further partitioning independently of the
others and so on. At each step the variable used for each
split is selected from all the explicative variables so as to
provide an optimal partition given the previous actions.
Partitions' sequence is summarized by a binary tree. The
root node of tree corresponds to the entire data space. Par-
titions of the space are associated with descendants of the
root node. The leaves of the tree, or terminal nodes, corre-
spond to subspaces which are not further partitioned. The
stability of the procedure can be improved using Data
resampling.

While CART-models are widely used as exploratory tech-
niques they are less-commonly used for prediction. Trees
generally rely on fewer assumptions than classical meth-
ods and handle a wide variety of data structures. Further-
more they are easy to use and to interpretate, and thus
provide a wide range of application fields. The use of
CART procedure has been considered by others in a vari-
ety of medical problems [22,23] such as, for example, sur-
vival analysis [24-26], longitudinal analysis, diagnostic
and prognostic studies or clinical trials [27-30].

One particular application is signal processing [31], in
which the problem concerns the detection of multiple
change points in the mean. The CART procedure can be
used to estimate simultaneously the change-points and
the means by recovering an underlying piecewise constant
function f(t).

If mk are the means for each piecewise k, then tk are the
change-points:

If we extend this point of view to the covariate space
defined by geographic coordinates, CART estimates the
"change-lines" (instead of change-points) of a piecewise
constant function on R2. In other words, tree-based proce-
dure can easily determine spatial patterns.

However, one limitation is that CART provides axis-paral-
lel splits i.e. rectangular spatial patterns. Oblique decision
trees (ODT) deal with this problem. Those algorithms
produce oblique (and then polygonal) partitioning of the
covariate space. However, oblique trees are less popular
than axis-parallel trees because the splits are less straight-
forward to interpret and oblique procedures require
greater computational complexity than axis-parallel algo-

rithms. Finding the best oblique tree in the covariate space
is a NP-Hard problem [32]. Therefore, existing ODT algo-
rithms use deterministic heuristics or evolutionary algo-
rithms (like the OC1 system [33]) to find appropriate
hyperplanes for partitioning the covariate space
[22,34,32,33]. Comparisons of the different procedures
are provided, for example, by Murthy [33] Cantu-Paz [34]
and Bradley [35].

Despite this difficulty in RN, it is easier to find an oblique
partition in the particular case of a space determined by
the geographic coordinates, i.e. in R2. Evolutionnary or
heuristic algorithms are not robust. They provide occa-
sionally local minima [33] and therefore are not optimal
procedures in R2. The ODT-algorithm we have devel-
opped is an optimal procedure to reach an optimal solu-
tion without using heuristics or evolutionary procedures.

ODT algorithm
The general purpose of the entire procedure consists on
finding several partitions of the plane. We present the first
step which allows finding the best oblique split of the
plane. Going recursively, this algorithm will split the
plane into several partitions, until reaching a specific
criterion.

This subsection is organized as follow:

i. First, we will introduce how the plane is splitted into
two adjacent partitions according to the interclass
variance.

ii. Second, we will present how the finite set of oblique
lines is determined, still within the first step of the entire
procedure.

iii. Third, we will propose an optimization of this
algorithm.

i. The splitting method proceeds as follows.

Consider, in the geographical space represented by the
plane with an orthogonal basis {x, y} and a fixed origin O,
n points Mi with coordinates {xi, yi}. These coordinates
can represente the geographic coordinates of a point loca-
tion provided by GPS. To each point Mi a numeric random
variable Zi (called explained or dependant variable) is
associated with the observation zi Whereas the CART pro-
cedure partitions the plane according to a line parallel to
the axis maximizing the interclass variance of zi, our pro-
cedure partitions the plane according to an oblique line 
maximizing in the same way the interclass variance of zi.
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To find this oblique line according to the direction  we
have to define the perpendicular direction u and the angle

.

From a general viewpoint, for a fixed direction  the pro-
cedure has to:

- Orthogonally projects the points Mi on the (O, u) direc-
tion, defining the coordinate ui;

- Considers all the ui as potential threshold in the way to

split the plane with the direction  perpendicular to the
direction u and going through ui;

- Finds the optimal split between two adjacent classes,
maximizing the interclass variance of zi according to the-
ses projections.

ii. The splitting method provides a finite set of cluster pro-
ceeding as follows.

Before detailing the algorithm, we have to study the differ-

ent splitting directions  i.e. to specify wich angles θ have
to be analyzed. For a global solution the algorithm can
scan all the oblique directions (i.e. all the θ) between zero
and π. In a heuristic way one can also discretize this inter-
val providing a finite number of angles θ. But these two
methods are not optimal.

The optimal algorithm for an optimal solution is easy to
implement. Obviously, two points Mi (xi, yi) and Mj (xj, yj)
have the same projected coordinates on the (O, u) direc-
tion if and only if Mi Mj is perpendicular to (O, u) (Figure
1). Then the number of critical directions, defined by the
θij angles, exists and is finite.

For each direction  passing through two points Mi (xi, yi)
and Mj (xj, yj), we define φij the angle between the line Mi

Mj and the x-axis.

Then:

As previously defined, θ is the angle between the x-axis
and the direction (O, u) perpendicular to Mi Mj.

Then for each couple (Mi, Mj), we have 

Each critical angle θij defines an angular sector. Within
each sector, the order of the coordinates projected on the
(O, u) direction does not depend on this direction. For
points Mi and Mj the difference (uj - ui) of their coordi-
nates projected on (O, u) verifies:

(uj - ui) cos(φij) = (xj - xi) sin(θ - θij)  (1)

with (uj - ui) = (yj - yi) sin(θ) for xi = xj ⇔ φij = 

Thus (uj - ui) depends continuously on θ. The sign of this
difference cannot change within the angular sector since
(uj - ui) = 0 only if θ = θij.

It follows that the interclass variances (and then the ODT
procedure) is not modified within each sector. As a direct
consequence of (1) the transition from a sector to another
via the critical angle θij (Figure 2) induces the same order
except the permutation of the two adjacent elements (ui,
uj).

Construction of the critical angle θij of the direction uFigure 1
Construction of the critical angle θij of the direction 
u. - the geographical space is represented by the plane with 
an orthogonal basis {x, y} and a fixed origin O; - u is a direc-

tion perpendicular to the splitting direction ; - Mi and Mj 
are two point locations in the geographical space.
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Note that for aligned points Mi, Mj and Mk the algorithm
has to permute the adjacent element group (ui, uj, uk).
Similarly for parallel directions Mi Mj and Mk Ml, the algo-
rithm has to permute at the same time the couples of adja-
cent elements (ui, uj) and (uk, ul).

Note again that all these angular sectors define as much
covariates. Thus the procedure comes to the usual CART
procedure. But the number of different critical angles is

 and using CART this way over-consumes

time and space. For example, in our application the
number of point locations is n = 164, hence the number
of different angular sectors is N = 13270.

iii. We present now an optimization of our algorithm. A
less time consuming and more efficient algorithm is a
stepwise analysis of the angular sector, ordered according
to the observed θij. At each step the algorithm uses the pre-
vious calculus.

Because only two elements between two adjacent sectors
are permuted only one interclass variance has to be

reloaded, related to the single different split (or some
interclass variances for the group of permuted couples,
related to a few different splits). The procedure inherits
the calculus of the other interclass variances from the
previous sector with the exception of the interclass vari-
ance related to the single permutation.

Thus, the algorithm complexity is (n2 log n) in time and

(n) in space for one split. Finally, our algorithm splits
the plane into two adjacent partitions as follows:

• Arrange the xi;

• Calculate and arrange the θij via the aij;

• Calculate ;

• For each potential split of the first angular sector (corre-
sponding to the x-axis), i.e. for each value of xi:

- Calculate the ∑ zi for each class (on both sides of the
threshold xi) and then the interclass variance, using the
previous results;

- If the calculated interclass variance is greater than the
previous one, store the results;

• For the next angular sector

- Permute the corresponding xi xj (or the group of
elements);

- Calculate the ∑ zi only for the two classes generated by
the split between xj and xi (or some splits for the group of
permuted elements);

- If the new interclass variance is greater than the previous
optimum, store the results;

• Until all sectors are scanned.

This algorithm goes on recursively until a specific criterion
is reached and the Oblique Decision Tree is completed.

For simplicity we will not herein discuss special proce-
dures of CART such as stopping rules, pruning algorithms
or resampling methods; these are examined elsewhere
[22,36].

Dataset
Malaria is the major parasitic disease in the world affect-
ing approximately 300–500 million individuals annually.

Passage through the critical direction u, from sector 1 to sec-tor 2Figure 2
Passage through the critical direction u, from sector 
1 to sector 2. - u is a direction perpendicular to the splitting 

direction ; Mi and Mj are two point locations in the geo-
graphical space; - Change in the order of the projected coor-
dinates on the u' and u" directions; - u' and u" are directions 
with intermediate angles, belonging respectively to sector 1 
and sector 2; - u'i, u'j, u"i, and u"j are the projected coordi-
nates of points Mi and Mj: u'i > u'j and u"i <u"j.
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About two percents of the individuals infected with Plas-
modium falciparum die. Most of the deaths occur in chil-
dren. In the last decade, the incidence of malaria has been
increasing at an alarming rate in Africa representing over
90% of the reported cases in the world [37].

The study area was the whole village of Bancoumana
located in the administrative circle of Kati (Mali, Western
Africa). This village is located in the high Niger's valley, a
Sudanese savannah area, about 60 km south-west from
the capital city Bamako. The main activities are rice cul-
tures and truck farming along the Niger river. This village
is 2.5 km2 wide, with 8 000 inhabitants (MRTC census,
1998) and about 1 600 children under 9 years. The trans-
mission of malaria is high during the rain season (usually
from June to October, with temperatures varying between
25°C and 40°C). It decreases then, reaching a low level of
transmission one or two months thereafter.

The project investigated at a village-level approach (using
a 1–3 m resolution scale) the risk of malaria infection. The
presence of P. falciparum, the main infectious agent of
malaria in this area, in blood smears was investigated in 1
461 children living in 164 households during the dry sea-
son in March 2000. Among them, 474 children had a pos-
itive blood smear (32.44%, CI95% [30.09–34.89]).
Localization was performed through GPS receivers. Thus,
all children were geocoded at a point location (corre-
sponding to their house). Geo-database and cartographic
displays were provided with the ArcGIS 8.3 software
(ESRI, Redlands, CA).

Human subjects' research conducted in these studies was
approved by the Institutional Committee on Ethics of the
Mali Faculty of Medicine and Pharmacy, University of
Mali. To obtain informed consents a stepwise consent
process was applied as described by Doumbo [38]. First,
the community informed consent was obtained before
the beginning of the study. Second, the informed consent
of the parents or guardians of the children were orally
obtained before each clinical or biological investigation.

Data analysis
The ODT-algorithm was implemented with the Matlab
Software 7.0.1 (The Mathworks Inc. 2004). We applied
the ODT procedure to the dataset using the GPS coordi-
nates of each location as independent covariates and the
parasitic positivity rate (rate of positive blood smears per
houses) as dependant variable. Thus ODT provided an
optimal partition of the geographical area, i.e. a spatial
pattern of the disease risk. We chose to use two classical
stopping rules [22]. First, the ODT stopped if a class was
made up of less than 15 locations. Second, we prunned a
node if, after partition, one of the two resulting classes was
made up of less than 3 locations.

For inference we considered the constant risk hypothesis
as a model of "no pattern". Under this null hypothesis
each child is at the same disease risk within the observa-
tion period regardless of his location. Thus the classes
issued from the ODT displayed similar disease risk. How-
ever in keeping with many spatial health applications
[12], we can not rely on asymptotic arguments to derive
theoretically the associated distributions under the null
hypothesis. Monte Carlo (MC) simulations were flexible
tools for such assessment.

Similarly to many statistical models, we used for inference
the explained variability rate Rv, defined as the ratio of the
interclass sum of squared errors (SCE) (outcome of the
ODT model) and the total SCE. We considered a Monte
Carlo inference conditional on the set of all locations and
on the local number of subjects. The total number of cases
varied from simulation to simulation with an expected
value (the total number of cases on the observed dataset).
In this way, the simulations assessed spatial variations in
the local proportion of cases conditional on the set of all
locations. Monte Carlo simulations reflected a constant
risk hypothesis similarly to the Rushton and Lolonis [39]
approach. We ran 999 simulations under the constant risk
hypothesis i.e. homogeneous Poisson distribution. Under
this null hypothesis we applied the ODT-algorithm for
each of the random dataset and calculated the empirical
distribution of Rv. Thus the MC inference provided p-val-
ues for testing whether or not the observed explained var-
iability rate is a realization of the theoretical (simulated)
distribution under the constant risk hypothesis. In other

Oblique Decision Tree for spatial partitioningFigure 3
Oblique Decision Tree for spatial partitioning. The 
geographical area is splited into 6 partitions. Nloc: number of 
locations belonging to each partition; n: total number of chil-
dren of each partition; R: infectious rate; θ: critical angle for 
each split; Vic: interclasses variance for each split.
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words, MC inference tested the ODT-model and provided
the significance of the spatial pattern issued from the
oblique decision tree.

We compared the ODT-model outputs with those of the
scan statistic method. For the latter, we used the software
program SaTScan™ [18] in order to test for the presence of
spatial clusters of malaria infection and to estimate their
locations. The identification of high risk clusters with the
SaTScan™ was performed under the Poisson probability
model assumption using a maximal cluster size of 50% of
the total population. For statistical inference, 999 Monte
Carlo replications were performed. The null hypothesis of
no clustering was rejected when the simulated p-value was
lower than or equal to 0.05.

During the data analysis we calculated all confidence
intervals of rates according to the Wilson method [40].

Results
Oblique Decision Tree
The ODT (Figure 3) partitioned the village into four risk
classes. The explained variability rate is high, i.e. Rv =
83.96% of the variability is explained by the ODT-model.
The global risk of disease (Table 1) was 32.44%, CI95%
[30.09–34.89]. The ODT provided two classes of high
infection risk. In the first high risk class (P2), located in
the western part of the village (Figure 5), the risk was 60%,
CI95% [52.22–67.55]. In the second high risk class (P3),
located in the southern part of the village, the risk was
about 50% with a large confidence interval. Note that dur-
ing the rain season about 80% of the children had a posi-
tive blood smear in the whole village. Investigations at
this site pointed to a small pond located within the west-
ern high risk class, and to ricefields located in the south-
ern part of the village, both having been identified as
Anopheles (the vector of malaria) breeding places.

Monte Carlo inference provided a global test, testing the
null hypothesis of a homogeneous Poisson distribution of
the malaria infection cases within the study area. Under
this null hypothesis we provided (999 simulated sets and
one observed set) the empirical distribution of the expli-
cated variability rate Rv (Figure 4). In this application the
Rv provided by the ODT-model significantly differed (p <
0.0001) from the one provided under the homogeneous
Poisson distribution, i.e. the spatial pattern was
significant.

Satscan approach
The Satscan results yielded one significant clusters (Table
2). In the first cluster (S1) the risk of disease was high with
an infectious rate of 54.21% (CI95% [47.51–60.75]).
Obvioulsy, his center was located within the high risk
ODT partition (P2) and the risk of disease were similar in
S1 and P2 (Figure 5). The second and third high clusters
were not significant, totalizing only one point location
each.

Discussion
For spatial cluster detection, the specification of the shape
and size of the clusters is required rather than using polit-
ical or administrative definitions of zones. For this pur-
pose scanning methods provide sets of potential clusters
but the problem of the choice of the shape still remains.
Different scanning grid and different windows' shapes or
sizes may provide different sets of potential clusters. To
reduce this difficulty we introduced ODT-models with the
aim to detect spatial pattern without pre-specifying win-
dows' shape. In contrast to classical scanning procedures,
neither the shape, size, nor centroid location have to be
specified by the users. Thus, ODT are optimal procedures
from the classification viewpoint.

Table 1: Spatial pattern resulting from the ODT-model. The first line refers to the areas without any partition.

Centroid's Coordinatesa Pop.b Risk of infection [CI95%] Number of Locationsc

No pattern X = -8.266497256
Y = 12.20520982

1 461 32.44% [30.09–34.89] 164

P1 X = -8.270634
Y = 12.202594

30 26.67% [14.18–44.45] 5

P2 X = -8.27019
Y = 12.20438615

153 60.13% [52.22–67.55] 13

P3 X = -8.26849
Y = 12.1999733

26 50.0% [32.06–67.94] 3

P4 X = -8,2659751
Y = 12.205486

1 252 28.83% [26.39–31.4] 143

a- The coordinates are for the centroid of each partition.
b- Pop. refers to the total number of children included in each partition.
c- The number of locations refers to the total number of households within each partition.
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Furthermore the spatial pattern obtained by the ODT-
model defines a potential clusters set which can then be
tested using the classical Monte Carlo inference. Similarly
to Satscan, inference analysis has to avoid multiple testing
inherent to such a procedure. The Kulldorffs procedure
provides first a potential cluster set. Second, this proce-
dure performs a significance test based on the local likeli-
hood ratio statistic for each cluster in a way that
compensates for the multiple testing. In our work we pro-

vide a global inference, testing the significativity of the
spatial pattern obtained by ODT. Note that, similarly to
Kulldorff's inference, likelihood ratio tests can be used to
test the spatial pattern.

Recently, Tango proposed a flexibly spatial scan statistic to
detect noncircular clusters [41]. But the Tango's method is
not practically feasible for large clusters (more than 30
point locations).

The village of BancoumanaFigure 5
The village of Bancoumana. - The circle S1 refers to the significative cluster provided by the Kulldorff's SaTScan. - The 
strait lines are the 3 splits resulting from the ODT-model, providing 4 partitions P1, P2, P3 and P4. - The bold grey line rep-
resents the Niger river. - Each location is represented by its own risk value. The scale of risks is discretized in 6 equal sized 
intervals.
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Our findings indicate that the ODT-method is consistent
with the classical Kulldorf's scan statistic. ODT procedure
is thus a classification tool widely usable for spatial pat-
tern detection. When compared to ODT, the scan statistic
did not detect the second high risk cluster (P3). This is
probably due to the lack of points fitting in this cluster (3
point locations and 26 childrens). The 95% confidence
interval of the disease rate in this cluster is large (32.06%-
67.94%). Nevertheless, after investigations in the village,
a putative source of disease risk has been detected at this
location. The two non-significant high risk clusters (S2
and S3) enclose only one point location each. This might
explain both the lack of significativity with the satscan
method and the lack of detection by the ODT.

After detection of a significant spatial pattern, the next log-
ical step is to test whether this pattern can be explained by
known or suspected risk factors. For example in the con-
text of malaria, environmental factors such as mosquitoes
breeding sites or thatched habitations might be identified
and appropriate measures can be proposed to enhance the
disease's control policy.

ODT-models allow for a flexible relationship between the
variables. The relationships between covariates do not

need to be linear or additive and the interactions do not
need to be prespecified or to be of a particular multiplica-
tive form. The literature about tree-based models is
increasing particularly for studies focusing on formal
inference procedures [31,36]. In contrast to classical ODT-
procedures the algorithm herein described is optimal
since it uses neither evolutionary algorithms [32,34] nor
heuristics [22]. While the problem is NP-Hard in RN, the
algorithm remains polynomial in R2.

The stability of tree-models can be improved by resam-
pling methods. It is noteworthy that scanning methods
such as satscan can also benefit from resampling. Resam-
pling methods may improve the determination of the
potential cluster set when the SaTScan™ procedure uses
windows centered at each point location. Among different
stopping rules, criteria have to be chosen according to the
trade-off between variance and bias of prediction. The
usually chosen rules are known as flexible and robust
methods [31]. But as our application results indicate, less
restrictive rule can be used for specific epidemiological
dataset in order to improve the interpretation of the ODT-
models' output. For rare diseases it might be necessary to
use less stringent stopping rules than for diseases
characterized by an epidemic evolution. This is related to
the definition of "cluster of cases" which depends on the
epidemiological profile of the disease.

The risk of infection has a high geographic variability
[42,43] and the knowledge of this variability is essential to
enhence malaria control programs' efficiency [44].
Moreover, the detection of high-risk locations is one
recommendation of the 20th WHO technical report [45].
In this context, the development of GIS displays data on
local malaria cases and then stratification of malaria risk
providing the opportunity for more focal (and then effi-
cient) malaria control programs [42].

Conclusion
In conclusion, Oblique Decision Tree is a new approach
for spatial pattern detection and has the following
features:

- ODT improve the classical scanning procedures by pro-
viding polygonal potential clusters;

- ODT are not bound by fixed centroid locations, sizes or
shapes. Thus, first they have an enhanced flexibility.
Second, the results are independent from the shape size
and center pre-specification;

- ODT provide an optimal partition in the classification
viewpoint.

Empirical distribution of the explained variability rate RvFigure 4
Empirical distribution of the explained variability 
rate Rv. The distribution was provided by Monte Carlo pro-
cedure (999 simulated sets and one observed set).
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Thus, ODT-models favorably compare with other cluster
detection methods for spatial epidemiology.
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