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Abstract

Due to continuous evolution of biomedical data, biomedical ontologies are becoming larger

and more complex, which leads to the existence of many overlapping information. To sup-

port semantic inter-operability between ontology-based biomedical systems, it is necessary

to identify the correspondences between these information, which is commonly known as

biomedical ontology matching. However, it is a challenge to match biomedical ontologies,

which dues to: (1) biomedical ontologies often possess tens of thousands of entities, (2) bio-

medical terminologies are complex and ambiguous. To efficiently match biomedical ontolo-

gies, in this paper, an interactive biomedical ontology matching approach is proposed,

which utilizes the Evolutionary Algorithm (EA) to implement the automatic matching pro-

cess, and gets a user involved in the evolving process to improve the matching efficiency. In

particular, we propose an Evolutionary Tabu Search (ETS) algorithm, which can improve

EA’s performance by introducing the tabu search algorithm as a local search strategy into

the evolving process. On this basis, we further make the ETS-based ontology matching

technique cooperate with the user in a reasonable amount of time to efficiently create high

quality alignments, and make use of EA’s survival of the fittest to eliminate the wrong corre-

spondences brought by erroneous user validations. The experiment is conducted on the

Anatomy track and Large Biomedic track that are provided by the Ontology Alignment

Evaluation Initiative (OAEI), and the experimental results show that our approach is able to

efficiently exploit the user intervention to improve its non-interactive version, and the perfor-

mance of our approach outperforms the state-of-the-art semi-automatic ontology matching

systems.

Introduction

Ontologies have gained much importance in the past two decades, especially in the biomedical

domain. Various biomedical ontologies such as Gene Ontology (GO) [1], National Cancer

Institute (NCI) Thesaurus [2], Foundation Model of Anatomy (FMA) [3], and Systemized

Nomenclature of Medicine (SNOMED-CT) [4] have emerged and been maintained, which
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have been widely used in the medical records annotation [5], medical data formats standardi-

zation [6], medical or clinical knowledge representation and integration [7], and medical deci-

sion making [8]. Due to continuous evolution of biomedical data, biomedical ontologies are

becoming larger and more complex, which leads to the existence of many overlapping infor-

mation. For example, NCI ontology defines the concept of “Myocardium” related to the con-

cept “Cardiac Muscle Tissue” in FMA ontology, which describes the muscles surrounding the

human heart. Since the utilization of these overlapping information is necessary for the inte-

gration, aggregation, and inter-operability among ontology-based biomedical systems, it is

necessary to find the correspondences between these information, which is commonly known

as biomedical ontology matching. However, matching biomedical ontologies is computation-

ally intensive task with quadratic computational complexity [9], which arises from their char-

acteristics: (1) biomedical ontologies often possess tens of thousands of classes, (2) biomedical

terminologies are complex and ambiguous, frequently the same biomedical concept has several

names, or the same terminology can be applied to two different entities. Although this chal-

lenge has attracted the interest of the community such as Ontology Alignment Evaluation Ini-

tiative (OAEI) which includes specific tracks on matching biomedical ontologies, the research

on it is still in its infancy.

To efficiently match biomedical ontologies, it is critical to reduce the search space, which

can improve the matching efficiency and the potential alignment’s quality. Recently, research-

ers have proposed various resolutions to reduce the search space, which mainly focus on the

utilization of clustering and blocking strategies to reduce the search space [10–13]. Although

divide-and-conquer strategy is a feasible solution for the large-scale ontology matching prob-

lem, it has two main issues: (1) the ontology partitioning algorithm cannot control the size of

blocks, which may be too small or too large for matching, (2) the ontology partitioning process

would make the elements on the boundaries of blocks lose some semantic information, which

directly affect the quality of the alignment. Moreover, since none of the existing similarity mea-

sures can distinguish the biomedical concepts in all contexts, the user knowledge should be

utilized in an automatic ontology matching process to ensure the quality of the final matching

results [14]. To this end, a number of interactive ontology matching methods are developed,

and various strategies on user interaction exploitation are presented. AgreementMakerLight

(AML) [15] employs an interactive selection algorithm, which utilized the alignments returned

by various ontology matchers to detect suspicious mappings. Above the threshold 70%, AML

queries the user for suspicious mappings, otherwise, it rejects all the suspicious mappings.

AML ensures that the reasonable workload for the user by setting the query limit as 45% of the

determined correspondences for small scale ontology matching tasks, and 15% for the others.

ALIN [16] generates an initial set of candidate correspondences, and requires the user to vali-

date them. If the user judges a candidate mapping as correct, it will be moved to the final align-

ment. Then, ALIN removes all candidate mappings that are not consistent with the approved

correspondences. The interactions continue until there are no more candidate correspon-

dences left. LogMap [17] presents problematic mappings to the user for validation, and the val-

idated results are utilized to detect the conflicts with already found mappings. LogMap allows

to pause the user interaction and continue the validation work in the future. XMap [18] coop-

erates with the user in the post-matching steps to filter the final alignment. It uses two thresh-

olds to implement this procedure, where the mappings with similarity value higher than the

upper threshold are directly added to the final alignment, and those mappings with similarity

values lower than the lower threshold are presented to the user for validation. The above inter-

active ontology matching systems exploit the user involvement in either pre-matching or post-

matching phrase, and do not take the error made by a user into consideration, which can not

ensure the quality of the ontology alignments.

Interactive biomedical ontology matching
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Due to the complexity of the ontology matching problem (large-scale optimal problem with

lots of local optimal solutions), Evolutionary Algorithm (EA) can present a good methodology

for determining the ontology alignments [19]. The most notable one that utilizes EA to match

ontologies is GOAL (Genetics for Ontology ALignments) [20], which determines the optimal

weights to aggregate different alignments determined by various similarity measures. Alexan-

dru et al. [21] further proposes to optimize both the aggregating weights and the threshold for

filtering the final alignment to improve the alignment’s quality. GAOM (Genetic Algorithm

based Ontology Matching) [22] tries to directly optimize the ontology alignment through the

fitness function. However, the slow convergence and premature convergence are two main

shortcomings of these EA-based matchers, which make them incapable of effectively searching

the optimal solution for biomedical ontology matching problems. To improve the efficiency of

EA-based matcher, in this paper, an Evolutionary Tabu Search (ETS) algorithm is proposed,

which can improve EA’s performance by introducing the tabu search algorithm as a local

search strategy into the evolving process. This marriage between global search and local search

allows keeping high solution diversity via EA (reducing the possibility of the premature con-

vergence) and increasing the convergence speed via the local search (improving the solution

quality and thus makes the solutions approach to the optimal solution more quickly). On this

basis, we further propose an interactive biomedical ontology matching technique, which can

make the ETS-based ontology matching technique cooperate with a user in a reasonable

amount of time to efficiently create high quality matchings, and makes use of EA’s survival of

the fittest to eliminate the wrong correspondences brought by erroneous user validations. In

particular, the contributions made in this paper are as follows:

• An interactive framework is proposed to match biomedical ontologies in an iterative way,

• An ETS-based ontology matching technique is presented to implement the efficient auto-

matic matching process, which can adaptively determine the timing of getting a user

involved,

• A hierarchy-based approach is presented, which can make use of partial biomedical concept

mappings to reduce the algorithm’s search space.

The rest of the paper is organized as follows: Section 1 presents the framework of interactive

biomedical ontology matching; Section 2 shows the automatic biomedical ontology matching

technique based on ETS; Section 3 presents the interactivity during the evolving process of

ETS; Section 4 presents the experimental studies and analysis; finally, Section 5 draws the con-

clusions and presents the future work.

1 Interactive biomedical ontology matching framework

In this work, the proposed interactive biomedical ontology matching framework is shown in

Fig 1. As can be sen from the figure, three working phases, i.e. initialization, ETS-based ontol-

ogy matching, and user interaction, are outlined by dotted-line boxes. A rectangle inside the

dotted-line box represents a working step, and a rectangle with a picture outside the dotted-

line box indicates the input or output data, e.g. source and target ontologies, reference align-

ment and evaluation result. Specifically, the description of three working phases is given as

follows:

• Initialization: before matching biomedical ontologies, the anchors (high-confidence concept

correspondences), are presented to a user for validation to initialize the Partial Reference

Alignment (PRA),

Interactive biomedical ontology matching
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Fig 1. Interactive biomedical ontology matching framework.

https://doi.org/10.1371/journal.pone.0215147.g001
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• ETS-based matching process: ETS algorithm is utilized to match the biomedical ontologies

in an iterative way, and when the evolving process gets stuck, the algorithm will get a user

involved,

• User interaction: the candidate correspondences are presented to a user for validation, and

the validated results are further used to update PRA, elite, and reduce the search space of

ETS through the hierarchy-based approach.

2 Evolutionary tabu search algorithm based biomedical ontology

matching

2.1 Biomedical ontology matching problem

A biomedical ontology O can be defined as a 5-tuple (C, P, I, A), where C, P, I, A are referred

to the set of classes, properties, instances and axioms, respectively. In general, class, property

and instance are referred to as entities. A correspondence can be defined as a 3-tuple (e1, e2, n),

where e1 and e2 are the entities from two ontologies, n 2 [0, 1] is the similarity value between

e1 and e2. The correspondence set is called an ontology alignment A, and PRA is a set of correct

correspondences that are provided by a domain expert [23]. Given a partial reference align-

ment PRA, a partial alignment Ap is the subset of A which contains all elements in A and shares

at least one class with an element in PRA [23]:

Ap ¼ fðe1; e2; n;¼Þ 2 Aj9e0
1
; n0 : ðe0

1
; e2; n0;¼Þ 2 PRAg [ fðe1; e2; n;¼Þ 2 Aj9e0

2
; n0 : ðe1; e02; n

0;¼Þ 2 PRAg ð1Þ

Given an alignment A0, whose recall, precision and f-measure on PRA [24] are defined as

follows:

precisionpra ¼
jA0 \ Aj
jAj

ð2Þ

recallpra ¼
jA0 \ Aj
jA0j

ð3Þ

f � measurepra ¼ 2�
precision� recall
precisionþ recall

ð4Þ

On this basis, the optimal model of biomedical ontology matching problem is defined as

follows:

max f � measurepraðXÞ

s:t: X ¼ ðx1; x2; � � � ; xjO1 j
Þ

T

xi 2 f1; 2; � � � ; jO2jg; i ¼ 1; 2; � � � ; jO1j

8
>><

>>:

ð5Þ

where |O1| and |O2| refer to the cardinalities of two biomedical ontologies O1 and O2 respec-

tively, xi, i = 1, 2, � � �, |O1| is the i-th correspondence.

In the next, the ETS algorithm is presented in details to solve this problem and implement

the automatic ontology matching process.

2.2 Partial reference alignment initialization

In this work, we utilize the HashMap http://en.wikipedia.org/wiki/Hash_table to determine

the anchors, i.e. the entities with identical labels. In particular, firstly, each class of source (or
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target) ontology is stored in the source (or target) HashMap as the key and its label is the value

associated with the key. Then, the values of source HashMap are used to query the target Hash-

Map to determine the highly similar mappings, whose time complexity is O(n). Finally, a user

is asked to validate the anchors, and those are judged as true will be further utilized to con-

struct the PRA.

2.3 Evolutionary tabu search algorithm

Since modeling the biomedical ontology matching problem is a complex (nonlinear problem

with many local optimal solutions) and time-consuming task (large scale problem), particu-

larly when the number of biomedical concepts is significantly large, EA can represent an effi-

cient approach for addressing it. However, the slow convergence and premature convergence

are two main shortcomings that make EA-based ontology matcher incapable of effectively

searching the optimal solution for biomedical ontology matching problem. Starting from these

considerations, this work proposes an ETS algorithm which combines EA (global search) and

tabu search algorithm (local search) to implement the automatic searching process, which can

keep high population diversity and increase the convergence speed via the local search. For the

sake of clarity, the pseudo-code of ETS algorithm is presented as follows:

Algorithm 1 Evolutionary Tabu Search Algorithm
Initialize the Generation t = 0;
Initialize the Population Pt;
Evaluate(Pt);
while t < MaxGeneration do

P0t0 ¼ CrossoverðPtÞ;

P00t ¼ MutationðP0tÞ;
Evaluate(P00t );
localSearch();
saveElite();
Pt ¼ SelectðP00t Þ;
t = t + 1;

end while
In the next, three key components of ETS algorithm are presented in details, i.e. encoding

mechanism, genetic operator and local search process.

2.3.1 Encoding mechanism. Let |C1| and |C2| be the cardinalities of the source concept set

C1 and target concept set C2, respectively. Each chromosome in the population would be a

one-dimensional array with |C1| elements, and the elements are denoted as: N1 N2� � �N|C1|
,

where Ni 2 ωi = {0, 1, � � �, |C2|}, which means the ith concept in C1 is mapped to the Nith con-

cept in C2. In particular, when Ni = 0, the ith concept is not mapped to any concept in C2.

2.3.2 Genetic operators. In this work, we evaluate the population by f − measurepra and

then use a roulette wheel selection method, where an individual is given a probability of being

selected that is directly proportionate to its fitness value, and in this way, the most suitable

individuals will have more opportunities of reproduction, while the less suitable individuals

also have the chance of reproduction. After choosing two individuals (the parents), we use

the one-cut-point crossover operator to produce their offsprings: first, a cut position in two

parents is randomly determined and this position is a cut point which cuts each parent into

two parts: the left part and the right part; then, the right parts of them are switched to form

two children. With respect to the mutation operator, for each gene bit Ni, we check if the muta-

tion could be applied according to the mutation probability, and if it is, the value of Ni is then

randomly changed to a value in its corresponding search space ωi.

2.3.3 Local search process. A local search process performs iterative search for the opti-

mal solution in the neighborhood of a candidate. In order to tradeoff between the local search
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and the global search, the local search process in our work is designed according to the follow-

ing rules:

• the local search is applied within each evolutionary cycle,

• the local search is executed after crossover and mutation,

• the local search is applied to the best individual of population,

• the local search method is the tabu search algorithm.

Tabu search concerns with imposing restrictions to guide a search process to negotiate oth-

erwise difficult regions, where the restrictions can operate by direct exclusion of search alter-

natives classed as “forbidden”. The implementation of tabu search uses an array to describe the

visited solutions, and if a potential solution has been previously visited within a certain short-

term period, it is marked as “tabu” (forbidden) so that the algorithm does not consider that

possibility repeatedly. Given a tabu matrix TM = [TV1, TV2, � � �, TV|C1|
] where the ith tabu list

TVi = (tv1, tv2, � � �, tvtLength)T, i = 1, 2, � � �, |C1|, tvj 2 0, 1, 2, � � �, |C2|, the pesudo-code of tabu

search algorithm is given as follows:

Algorithm 2 Local Search Process
iterNum = 0;
while iterNum < maxIterNum do
for n = 0;n < neighborScale;n + + do
solutionnew = solutionelite.copy();
for i = 0;i < solutionnew.length;i + + do
if random(0, 1) < mutationProbabilityLS then

solutionnew½i� ¼ randomðf0; 1; � � � ; jC2jg � ftvi
j 2 TVigÞ;

end if
end for
append solutionnew[i] to neiborhood;

end for
solutionlocalElite = elite in neiborhood;
compete(solutionElite, solutionlocalElite);
if winner == solutionlocalElite then
for each TVi 2 TM do
if TVi is not full then
append solutionlocalElite[i] to TVi;

else
replace tvi

j 2 TVi, whose corresponding class in C2 has the lowest
similarity value with ci, with solutionlocalElite[i];

end if
end for
iterNum ++;

else
break;

end if
end while

During the evolving process, if solutionelite keep unchanged for certain generations, each

tvi
j 2 TVi, whose corresponding class in C2 has the highest similarity value with ci, will be

removed.

3 User interaction

Since matching biomedical ontology matching is a complex task, ETS-based matching results

need to be validated by a user to ensure the alignment’s quality and improve the algorithm’s

efficiency [25]. However, it is impractical to require a user to validate all the correspondences

Interactive biomedical ontology matching
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at a time, which is both time-consuming and error prone. Thus, how to reduce a user’s work-

load is the first question we need to answer when implementing an effective user interaction.

In addition, how to effectively exploiting the limited user intervention to improve the match-

ing process’s efficiency is the second question that we need to answer. In this work, we get a

user involved only when ETS gets stuck, and present the most problematic correspondences

(those with low similarity measure value) to him for validation to reduce his workload. When

a user validates all the correspondences, the validated results will be further utilized to reduce

each gene bit’s search space through a hierarchy-based approach, which can improve the effi-

ciency of hereafter matching process.

3.1 Biomedical concept similarity measure

Similarity measure is a function that takes as input two concepts and outputs a score between

0, which means two concepts are completely different, and 1, which means two concepts are

identical. In particular, we first construct a profile for each biomedical concept by collecting

the label, comment, and property labels from itself, and all its direct descendants. Then the

similarity value between two biomedical class c1 and c2 is measured by calculating the similar-

ity of their corresponding profiles P1 and P2, which is defined in Eq 6.

simðc1; c2Þ ¼

PjP1 j

i¼1
max

j¼1���jP2 j
ðsim0ðp1i; p2jÞÞ þ

XjP2 j

j¼1
max

i¼1���jP1 j
ðsim0ðp1i; p2jÞÞ

jP1j þ jP2j

ð6Þ

where:

• |P1| is the number of elements of P1 and |P2| is the number of elements of P2,

• p1i is the ith property of P1 and p2j is the jth property of P2, e.g. the label or comment in con-

cept description profile,

Here, sim0(p1i, p2j) calculates the similarity value of two profile elements by N-gram distance

[26], which is the most performing string-based similarity measure for the biological ontology

matching problem, and a linguistic measure, which calculate a synonymy-based distance

through Unified Medical Language System (UMLS) [27]. To be specific, given two words w1

and w2, their similarity sim(w1, w2) is equal to 1 when two words are synonymous, and other-

wise, N − gram(w1, w2).

3.2 Improve the efficiency of matching process

It is the large search space that makes EA-based ontology matcher difficult to match the bio-

medical ontologies, thus, how to reduce the search space is critical for a biomedical ontology

matching technique. In this work, we propose a hierarchy-based approach to exploit the vali-

dated results to effectively reduce the ETS algorithm’s search space. Our proposal works on the

basis of two observations [28]: (1) a biomedical ontology is often composed of the hierarchies

organized by “is-a” relationship, and a correct alignment should be consistent with such hier-

archies, (2) an alignment between two biomedical ontologies has locality, i.e. most class of a

region in one ontology will match to the classes of a region in another ontology, and the search

space reducing process is as follows:

• if a user judges a source concepts ci and a target cj are identical, the sub-concepts(or super-

concepts) of ci and super-concepts(or sub-concepts) of cj should not match, i.e. cj’s super-

concepts’ indexes will be removed from the search space ω0 of each ci’s sub-concept c0i’s
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PLOS ONE | https://doi.org/10.1371/journal.pone.0215147 April 17, 2019 8 / 13

https://doi.org/10.1371/journal.pone.0215147


corresponding gene bit, and cj’s sub-concepts’ indexes will be removed from the search

space ω00 of each ci’s super-concept c00i ’s corresponding gene bit,

• if a user judge a source concepts ci and a target cj are not the same, the neighborhood of ci do

not match cj too, i.e. cj’s index will be removed from the search space ω000 of each ci’s neighbor

c000i ’s corresponding gene bit. In particular, ci’s neighborhood include ci’s direct super-con-

cept, sub-concept and siblings.

By omitting dissimilar correspondences, the search space of ETS algorithm can be signifi-

cantly reduced after each user interaction, as well as the alignment’s quality potentially.

4 Experimental studies and analysis

In this work, we exploit the Anatomy http://oaei.ontologymatching.org/2016/anatomy/index.

html and Large Biomed http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2016/ track to study the

effectiveness of our approach, which are provided by OAEI 2016 http://oaei.ontologymatching.

org/2016. The experiment allows the matching approaches to ask an oracle who will then tell the

matcher whether the correspondence is right or wrong. Tables 1, 2 and 3 show the mean value of

f-measure of the alignments obtained by our approach in thirty independent runs and the results

obtained by the participants of OAEI. The symbols r, p and f in the tables stand for recall, preci-

sion and f-measure, respectively, and �f , �r and �p respectively stand for the matcher’s non-interac-

tive version’s f-measure, recall and precision. In this experiment, we use three metrics, i.e. f-

measure, runtime and the mean improvement per request, to evaluate the performances of the

interactive biomedical ontology matchers. In particular, f-measure and runtime can be used to

Table 1. Comparison between OAEI 2016’s participants and our approach on interactive anatomy track.

ALin AML LogMap XMap Our Approach

�f ð�r ; �pÞ 0.50 (0.33, 0.98) 0.94 (0.93, 0.95) 0.87 (0.84, 0.91) 0.89 (0.86, 0.92) 0.82 (0.80, 0.84)

f (r, p) 0.85 (0.74, 0.99) 0.95 (0.94, 0.96) 0.90 (0.84, 0.98) 0.89 (0.86, 0.92) 0.97 (0.96,0.97)

Total Requests 803 241 590 35 262

Mean Improvement per Request 4.35 × 10−4 4.14 × 10−5 5.08 × 10−5 0 5.72 × 10−4

Runtime (sec) 505 48 27 49 23

https://doi.org/10.1371/journal.pone.0215147.t001

Table 2. Comparison between OAEI 2016’s participants and our approach on the interactive Large Biomedic track: FMA-NCI.

Alin AML LogMap XMap Our Approach

�f ð�r ; �pÞ 0.62 (0.45, 0.99) 0.93 (0.90, 0.96) 0.92 (0.89, 0.94) 0.93 (0.90, 0.97) 0.92 (0.90, 0.93)

f (r, p) 0.77 (0.63, 0.99) 0.95 (0.91, 0.99) 0.94 (0.90, 0.99) 0.94 (0.90, 0.99) 0.97 (0.97, 0.98)

Total Requests 653 449 1131 188 289

Mean Improvement per Request 2.29 × 10−4 4.54 × 10−5 1.76 × 10−5 5.31 × 10−5 5.19 × 10−4

Runtime (sec) 5895 60 38 50 32

https://doi.org/10.1371/journal.pone.0215147.t002

Table 3. Comparison between OAEI 2016’s participants and our approach on the interactive Large Biomedic track: SNOMED-NCI.

AML LogMap XMap Our Approach

�f ð�r ; �pÞ 0.79 (0.71, 0.90) 0.77 (0.66, 0.92) 0.69 (0.56, 0.91) 0.77 (0.72, 0.82)

f (r, p) 0.83 (0.72, 0.97) 0.79 (0.66, 0.98) 0.72 (0.59, 0.92) 0.86 (0.86, 0.87)

Total Requests 2730 5596 11689 1620

Mean Improvement per Request 1.46 × 10−5 3.57 × 10−6 2.56 × 10−6 2.60 × 10−5

Runtime (sec) 730 628 984 492

https://doi.org/10.1371/journal.pone.0215147.t003
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measure the effectiveness of semi-automatic ontology matching technique, and the mean

improvement per request can measure the efficiency of the user involvement.

The configuration of EA in our work follows the following principles:

• In our work, since the EA works mainly based on the crossover operator and is aided by the

mutation operator, the crossover possibility should be larger and the mutation possibility

just the opposite. However, if the value of the crossover operator is too great, excess solutions

would appear which might increase the cost of computation. Therefore, the suggested range

of crossover probability is [0.2, 1], and through the preliminary experiment, we find that the

results obtained with the crossover probability 0.85 and the mutation probability 0.02 are

acceptable for various heterogeneous problem in all testing cases.

• Since the local searching process requires producing a local searching population with high

diversity, the mutation possibility of local search should be higher than that of the genetic

algorithm. However, if the value is too large, the produced individual might not be the

“neighbor” of the local searching target. Therefore, the suggested range of mutation proba-

bility is [0.2, 0.8], and through the preliminary experiment, we find that the mutation proba-

bility 0.5 works better.

• The population size, local Search intensity and maximum number of generation for termina-

tion depend on the scale of the problem, the suggested ranges for them are [50, 120], [10, 40]

and [1500, 3500], respectively. Since the problem scale in our work is relatively large, we set

the size of population, local Search intensity and the maximum number of generation as 100,

30 and 3000 respectively.

In our work, we use the following parameters which represent a trade-off setting obtained

in an empirical way to achieve the highest average alignment quality on all testing cases of

exploited dataset. Through the configuration of parameters chosen in this way, it has been jus-

tified by the experiments that parameters chosen are robust for all the heterogeneous problems

presented in the benchmarks, and it is hopeful to be robust for the common heterogeneous sit-

uations in the real world.

• Numerical accuracy = 0.01,

• Population size = 100,

• Crossover probability = 0.85,

• Mutation probability = 0.02,

• Local search’s mutation probability = 0.5,

• Local Search intensity = 30 iterations,

• Maximum number of generation = 3000,

In addition, in order to compare with the participants of OAEI 2016, we run our approach

on Conference and Anatomy tracks on a server with Intel Xeon E5-2643 CPU @ 3.46 GHz x 6

cores and 8GB RAM, and Large Bio track and Phenotype track on a laptop with an Intel

Core i7-4600U CPU @ 2.10GHz x 4 and allocated 15GB RAM. The operating system of both

machines is Linux.

4.1 Anatomy track

The anatomy track is a large ontology matching task about matching the Adult mouse anat-

omy (2744 classes) and a part of the NCI Thesaurus (3304 classes) which describes the human
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anatomy. Adult mouse anatomy is a structured controlled vocabulary describing the anatomi-

cal structure of the adult mouse, whereas NCI depicts the human anatomy for the purpose of

cancer research.

As can be seen from Table 1, our approach’s f-measure is the highest. In particular, compar-

ing with the non-interactive version of our approach, both recall and precision are improved

by 20% and 15% respectively, which shows that our approach can effectively exploit the user

intervention to improve the alignment quality. In addition, because of the high efficiency

brought by the hierarchy-based approach, our approach only takes 23 seconds to obtain the

ontology alignment, which is the lowest among all matching systems. Our approach’s mean

improvements per request are all higher than other systems, which illustrate that our approach

can efficiently utilize the user involvement’s value. With the introduction of an erroneous ora-

cle and moving towards higher error rates, each system’s performance starts to deteriorate in

comparison to the all-knowing oracle. To sum up, our approach can efficiently exploit the user

involvement to achieve the great improvement.

4.2 Large Biomedic track

This track aims at finding alignments between the large and semantically rich biomedical

ontologies FMA, SNOMED, and NCI, which contains 78,989, 306,591 and 66,724 classes,

respectively.

On the first track of Large Bio, as can be seen from Table 2, our approach improves the

non-interactive version by 5.43% in terms of f-measure, comparing with Alin’s 2.4%, AML’s

2.15% and LogMap’s 2.17% and XMap’s 1.0%. Therefore, our approach’s user validation

exploitation is effective, which makes our approach can efficiently deal with the large scale

ontology matching problem and improve the ontology alignment’s quality. Since our approach

can effectively reduce the number of user interaction and exploit the user validation’s value,

the mean improvement per request of our approach is much higher than other systems. Last

but not least, due to the efficiency brought by the search space reducing approach, the average

runtime of our approach also is less than other systems.

As shown in Table 3, our approach obtains the highest f-measure. Comparing with the

non-interactive version, our approach’s recall and precision are both improved by 19.44% and

6.09% respectively, which shows that our approach can effectively utilize the user intervention

to improve the alignment quality. In addition, the mean improvement per request of our

approach is also higher than other systems, but the mean runtime is the lowest under all the

user error rates. In addition, our approach’s mean improvements per request are higher than

other systems. To sum up, our approach is able to efficiently exploit the user involvement to

obtain high quality ontology alignments when solving large scale biomedical ontology match-

ing problem.

To conclude, through the comparison with OAEI’s participants in the interactive ontology

matching tracks with different scales, our approach is able to more effectively exploit the user

validation to improve the performance of its non-interactive version, and the qualities of the

alignments obtained by our approach with three user error rates ranging from 0.1 to 0.3 are all

better than the state-of-the-art interactive biomedical ontology matching techniques.

5 Conclusion and future work

To efficiently match biomedical ontologies, in this work, an interactive biomedical ontology

matching approach is proposed, which can effectively utilize the user’s knowledge to guide

the ETS-based ontology matcher’s search direction and improve its efficiency by reducing the

algorithm’s search space. The experimental results show that our approach is able to efficiently
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exploit the user validation to improve its non-interactive version, and the performance of it

outperforms the state-of-the-art interactive biomedical ontology matching techniques. In the

future, we are interested in the strategies that can reuse a user’s validation results to further

reduce the search space of the algorithm. In addition, we are also interested in decreasing the

user’s error rate by warning him when contradicting validations are made.
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