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Positron emission tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological
processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on the assumption
that linear first-order kinetics can be used to adequately describe the system under observation. However, there has recently been strong
evidence that this is not the case. To provide an analysis of PET data which is free from this compartmental assumption, we propose a
nonparametric deconvolution and analysis model for dynamic PET data based on functional principal component analysis. This yields
flexibility in the possible deconvolved functions while still performing well when a linear compartmental model setup is the true data
generating mechanism. As the deconvolution needs to be performed on only a relative small number of basis functions rather than voxel
by voxel in the entire three-dimensional volume, the methodology is both robust to typical brain imaging noise levels while also being
computationally efficient. The new methodology is investigated through simulations in both one-dimensional functions and 2D images and
also applied to a neuroimaging study whose goal is the quantification of opioid receptor concentration in the brain.
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1. INTRODUCTION

Positron emission tomography (PET) is an in vivo neuroimag-
ing technique for studying biological processes in humans. It
is almost unique among the major neuroimaging modalities,
in that it can be used to study neurochemical concentrations
and associated changes in a quantifiable way. PET works on
the principle of using an injected radioactive tracer compound
specifically designed for the biological process of interest and
tracking its presence throughout the target organ through the
emitted radiation of the radioactively decaying compound. It is
a quantitative technique, as opposed to say functional magnetic
resonance imaging (fMRI), in that the amount of radiochemical
injected can be used to establish the concentrations present in
the target organs. This has led it to be almost universally used
in the diagnosis of certain cancers through fluorodeoxyglucose
(FDG) PET scans, which as a surrogate for glucose, can be
used to target tissues with high metabolic rates, such as tissues
containing cancer cells. Indeed, it is not only used for cancer
diagnosis and localization in the brain, but also throughout the
body (Gambhir 2002; Hsieh 2012).
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In addition to diagnostic and clinical usage, PET also can be
used to investigate neurochemical processes to help further un-
derstanding of the brain. Individual neurochemical transmitter
systems can be targeted through the design of radiotracers that
mimic the behavior of these chemicals. As might be imagined,
this involves considerable complex radiochemistry to design
suitable radiolabeled tracers which can be detected by the PET
camera. However, there are now many tracers available to tar-
get systems in addition to metabolism such as the dopamine
system (Wagner et al. 1983), the serotonergic system (Drevets
et al. 1999), and the opioid receptor system (Jones et al. 2004).
Indeed, it is the last of these, the opioid system, that is the mo-
tivation for this work. The opioid system controls the brain’s
reaction to pain (Pasternak 1993), and has been associated with
a number of conditions and diseases including changes in emo-
tional responses (Filliol et al. 2000), addiction (Wise 1996), and
Alzheimer’s disease (Jansen et al. 1990). The data which will be
analyzed later in this article is taken from part of a large study
on the role of the opioid system in epilepsy. It is of great interest
to get accurate quantifiable estimates of opioid receptor concen-
trations and densities throughout the brain in normal subjects
as a precursor to understanding the role of receptor changes in
disease diagnosis, prognosis, and treatment.

PET scans, in a similar way to fMRI scans, consist of three-
dimensional volumes of data recorded over time, leading to
large datasets with time courses from millions of spatial lo-
cations (voxels). The time courses associated with PET data
are characteristically nonlinear in that, being associated with
chemical reactions, they are routinely modeled as coming from
ordinary differential equation (ODE) systems, where first-order
linear kinetics can be used to model the data (Gunn, Gunn,
and Cunningham 2001). These kinetics are routinely associated
with compartmental models, which consist of abstract compart-
ments within each voxel. The transfer of material from one
compartment to another is assumed to follow a first-order ODE.
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For more information on compartmental models see Godfrey
(1983). However, there is increasing evidence both from bi-
ological experiments and statistical analysis that such models
are not adequate for the data (O’Sullivan et al. 2009), not least
because each voxel represents an inhomogeneous mixture of
cells leading to a mixture of compartmental processes (assum-
ing the compartmental assumption is even made). Therefore,
compartmental analysis can produce both biased and incom-
parable estimates across the brain. In addition, fitting methods
which are stable for large numbers of voxels, such as nonnega-
tive least squares, tend to have parameter dependent bias, while
methods such as nonlinear least squares tend to be somewhat
unstable (Peng et al. 2008).

To account for the model discrepancies while still maintain-
ing a robust approach to model fitting, this article explores a
nonparametric deconvolution model for PET analysis. The in-
put (through the blood flow to the brain) can be measured online
to all extents and purposes continuously with virtually no mea-
surement error relative to the error in the measured voxelwise
PET data, as the sampling on the measured radioactivity of the
blood is done outside the body using a sensitive blood moni-
tor via an arterial canula to produce a smooth continuous input
curve (Lammertsma et al. 1991). This allows one of the func-
tions in the deconvolution to be known (i.e., this is not a blind
deconvolution problem), but the inherent difficulties of decon-
volving the noisy measured output function are all still present.
We present a new methodology for deconvolution and analysis
of data. This new methodology works when there are multiple
observations of the convolved functions, and can also be used
when the functions are possibly dependent on a covariate.

The analysis is based on using functional principal compo-
nent analysis (FPCA). Our methodology involves a presmooth-
ing step to reconstruct the image, followed by a deconvolution
step to recover the impulse response function. Presmoothing
decreases the noise in the data, hence can reduce overall poten-
tial biases in further analysis, as even though smoothing itself
introduces a small bias, in many nonlinear situations, parameter
or functional biases can be noise level dependent. In parametric
nonlinear models such as compartmental models, this is well
known (Peng et al. 2008), while here the errors in the observed
functions are somewhat similar to those in measurement error
models, which yield biases in traditional regression analysis.
The presmoothing also produces functions that are smoother
than the original data, making subsequent deconvolution eas-
ier, as large independent measurement errors tend to result in
considerable instability in deconvolution settings.

As for the deconvolution approach, ours differs from tradi-
tional deconvolution methods and has inherent computational
advantages in that we treat the sample of dynamic PET data on
all voxels as functional data, and apply FPCA to reduce the di-
mension of the data, so that the deconvolution only needs to be
performed on the mean and eigenfunctions of the data. This has
substantial computational advantages as while there are millions
of spatial voxel locations, often only a few basis functions in
the FPCA basis are needed to adequately describe the temporal
curves, requiring only a very small number of actual deconvolu-
tions to be performed. Moreover, it is not the actual deconvolu-
tions that are the focus of the PET study. Of primary interest in
many PET studies is the volume of distribution, VT , the integral

of the impulse response function of the system at each voxel.
Under various biological assumptions, VT can be used to de-
termine the receptor density of the underlying neurotransmitter
(Innis et al. 2007). As advocated by O’Sullivan et al. (2009),
this will be approximated by the integral of the deconvolved
response function generated from the observed data, which in
itself is a more meaningful measure as it is less dependent on
the particular compartmental model fit assumed.

The article proceeds as follows. In the next section, the moder-
ately general methodology, inspired by PET data, is introduced
for deconvolution of multiply observed functions through the
use of FPCA. In Section 3, the methods are assessed through
simulation, not only on 1D functions, but also on moderately
realistic 2D image slices where both spatial correlations and
nonhomogeneous noise models, typical of those found in PET
studies, are used. In Section 4, the methods are applied to mea-
sured [11C]-diprenorphine scans taken from healthy volunteers
and are used to provide voxelwise quantification of receptor
concentration without resorting to compartmental assumptions.
The final section discusses some of the possible extensions of
this work.

2. METHODOLOGY

LetCi(t) be the concentration curve of voxel i in PET analysis,
where i is a generic index representing a spatial location. The
conventional assumption is that

Ci(t) = (I ⊗Mi)(t) =
∫ t

0
I (t − s)Mi(s)ds, (2.1)

where I (t) is a known input function and Mi(t) is the unknown
impulse response function (IRF) of voxel i. We assume that the
input function I (t) is smooth and positive over the entire range
of the integration. This is true in practice given the nature of the
input function being the amount of tracer in the blood plasma.
In reality, Ci(t) is not observed, but rather, a noise contami-
nated version of Ci(t) exp(−λt) is observed (Aston et al. 2000)
at discrete time points, t = t1, . . . , tp where λ is the known
decay constant of the radioisotope (in the case of 11C, this is
5.663 × 10−4s−1.). Suppose there are n voxels and p observa-
tions per voxel. Hence, the observations for the ith voxel are
Yij = Xi(tj ) + εij ,whereXi(tj ) = Ci(tj ) exp(−λtj ) and εij are
independent noise for i = 1, . . . , n and j = 1, . . . , p. Here, the
independence assumption on the errors in time can be largely
justified on the basis of the independent Poisson decay nature of
radioactivity (Carson and Lange 1985), while the implications
of assuming spatial independence will be discussed later.

The goal of PET analysis is to estimate the volume of distri-
bution (VT ) at each voxel i, which is VT (i) = ∫ τ

0 Mi(t)dt,where
τ is the end of the experimental time (and is typically taken to be
infinity in parametric modeling). To estimate VT , it is necessary
to estimate the IRF Mi(t) through deconvolution. As we are
using a nonparametric estimator in the deconvolution, it is not
possible to extrapolate the VT to infinity (as this would require
a parametric model), but this finite truncated version could well
be preferred in many situations (O’Sullivan et al. 2009), partic-
ularly given the known difficulties of function extrapolation.
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2.1 Spatial Curve Pre-Regularization

With the presence of noise in the output data Yij , our first step
is to reconstruct Xi(t) for all voxels. Instead of handling these
temporal curves voxel by voxel, we borrow spatial information
from all voxels by applying a spatially adapted smoother to Yij
across all time points (t) and spatial/voxel locations, denoted as
Zi for the ith voxel. Depending on the dimension of the image,
a three (for 2D images) or four (for 3D images) dimensional
smoother is used to reconstruct the latent signals. For the PET
data in Section 4, Zi is three-dimensional, so a four-dimensional
smoother is employed. This may seem a formidable task, given
the large amount of available data (32 time points and 150,784
brain voxels), but it is feasible if one adopts an computationally
efficient approach. For those who are interested in the theoreti-
cal parts of this step, the following are the specific assumptions
we make. We assume that the orders of bandwidths are all of
the same order as h. We also assume that the second deriva-
tives of Xi(t), the variable bandwidth function hT (t), formally
defined in Section 2.2, and the variance of Xi(t) are continu-
ous and bounded. For a k-dimensional smoother, h → 0 and
nphk → ∞.

Let X̂i(t) be the smoothed estimate of Xi(t). Specifically,

X̂i(t) = b̂i,0, (2.2)

where

b̂i = arg min
(bi0,...,bi4)

n∑
k=1

p∑
j=1

Kkj,h(zi , t)

×
{
Ykj − bi,0 −

3∑
�=1

bi,�(zi� − zk�) − bi,4(t − tj )

}2

,

Kkj,h(zi , t) = 1
βĥT (t)hz1hz2hz3

K( zi1−zk1
hz1

, zi2−zk2
hz2

, zi3−zk3
hz3

,
t−tj
βĥT (t)

) is a

four-dimensional kernel function (an Epanechnikov kernel was
used in the data analysis), zi is the spatial location for voxel
i, h’s are the bandwidths in the spatial coordinates, ĥT (t) is
the variable bandwidth, and β is the calibration coefficient for
ĥT (t). The kernel function K is assumed to be a symmetric
probability density function with bounded support. Note that
constant bandwidths are employed for spatial coordinates (in the
application, one bandwidth is chosen for all three dimensions),
but an adaptive local bandwidth for the time dimension is applied
(see Section 2.2 for details). The reconstructed concentration
function for Ci(t) is

Ĉi(t) = X̂i(t) exp(λt). (2.3)

If a kernel estimator is chosen, a product kernel can be applied
to save computational time, which is equivalent to smoothing
each coordinate of time and space sequentially.

2.2 Variable Bandwidth

In most PET analysis, particularly in the spatial domain,
smoothing is based on heuristic assessments determined by the
individual researcher. Here, we propose to use data-driven meth-
ods to select the bandwidth choices. A constant bandwidth is
suitable for the spatial coordinates as the covariance structure,
while subtly changing across the image, does not vary sub-
stantially. However, in the time coordinate, due to the denser

Figure 1. The resulting locally adaptive bandwidth for PET time-
course data.

measurements at the beginning of the time period and the sharp
peak near the left boundary, a nonconstant bandwidth is re-
quired. To retain the peak without compromising the perfor-
mance at other temporal locations, a locally adaptive bandwidth
function is recommended and applied in our analysis. Essen-
tially, a smaller bandwidth is preferred near the peak location,
while larger bandwidths are used near the right boundary, where
the curve is relatively flat. This is also consistent with the fact
that the noise in PET data can be crudely seen as being Poisson
distributed due to the radio labeled nature of the data (Carson
and Lange 1985).

We undertook the following pragmatic approach to design
such a bandwidth function. First, a number of time locations
(nb) (t(1), . . . , t(nb)), where the time-course data were observed,
were selected (we used nb = 13 in the application, which was
approximately 1/3 of the time points in the time course). At
each location, the bandwidth hT (t) at location t was cho-
sen such that the interval [t − hT (t), t + hT (t)] contains at
least four observations. Further, boundary correction was em-
ployed to ensure the resulting bandwidth function was posi-
tive when t was close to zero. A fourth-order polynomial was
applied to the pair set {(hT (t(i)), t(i))|i = 1, . . . , nb} to obtain
a smooth bandwidth function. The resulting bandwidth func-
tion ĥT (t) (shown in Figure 1) was further multiplied by a
constant β. The constant β serves to facilitate calibration of
the final local bandwidths, because the choice of local band-
widths for hT (t) was subjective, and thus β, which was deter-
mined by cross-validation, allowed this subjective choice to be
adapted to the data. This form of bandwidth selection has been
shown to work well in previous studies on smoothing prior to
parametric compartmental modeling (Jiang, Aston, and Wang
2009).

While several tuning parameters need to be chosen for the
analysis, this is not uncommon in PET, as data is usually
smoothed to increase the signal-to-noise ratio or to facilitate
population studies. However, as mentioned above, most anal-
yses use the default settings of whatever software package is
being used, while we here prefer to determine a good choice of
bandwidth through cross-validation.
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For every bandwidth candidate, each time, we randomly re-
move ncv voxels, use the observations of the remaining n− ncv
voxels to estimate the mean functions of the removed voxels.
This procedure repeats N times and we choose the bandwidth
minimizing the mean squared errors between fitted curves and
observations. We set ncv = 1 and N = 5000 in our data analy-
sis. The bandwidths for space and time are selected sequentially
to save computation time.

2.3 Deconvolution Based on FPCA

With the concentration curve reconstructed for each voxel,
one can perform deconvolution voxelwise to recover the IRF.
However, attempting to perform automated deconvolution over
such a large number of functions is inherently problematic and
computationally costly. Alternatively, we take the viewpoint that
the concentration curves are random curves, a.k.a. functional
data (Ramsay and Silverman 2005), so a functional approach
can be employed to model these curves. Since convolution is
a linear operator, it is advantageous to adopt a linear mixed-
effects model approach to represent these functional data. Since
we do not assume that the shapes of the IRFs are known a
priori, a nonparametric basis function is the preferred choice
and we adopt parsimonious basis functions through principal
component analysis.

Principal component analysis is a popular dimension reduc-
tion approach for multivariate data and has been extended to
functional data that are in the form of random curves and termed
FPCA. Many different FPCA approaches have been developed,
such as by Dauxois, Pousse, and Romain (1982), Rice and Sil-
verman (1991), Boente and Fraiman (2000), Cardot (2000), and
Yao, Müller, and Wang (2005). We adopt a similar approach
as Yao, Müller, and Wang (2005), but with a slightly different
model that was advocated in Jiang, Aston, and Wang (2009)
for PET time course data. Specifically, a multiplicative ran-
dom effects model was proposed there, motivated by the likely
randomness in chemical rates (e.g., induced by spatially vary-
ing neurochemical receptor densities) leading to multiplicative
changes in the curves. Thus, we adopt the following modified
Karhunen–Loève decomposition of Ci(t), which includes an
additional random effect term Ai0 on the mean function:

Ci(t) = Ai0μ(t) +
∑
k

Aikφk(t), (2.4)

where μ(t) = E{Ci(t)} is the mean function, E(Ai0) = 1, φk(t)
are the eigenfunctions of the covariance ofCi(t) − Ai0μ(t) with
the corresponding non-increasing eigenvalue ζk, and Aik is the
kth functional principal component score.

In general, deconvolution is an ill-posed problem. However,
due to the positivity of the input function I (t), (2.1) and (2.4)
imply that

Mi(t) = Ai0μ
d (t) +

∑
k

Aikφ
d
k (t), (2.5)

where μ(t) = (I ⊗ μd )(t) and φk(t) = (I ⊗ φdk )(t). Therefore,
deconvolution only has to be performed on the mean function
and the likely small number of eigenfunctions needed to give
a good representation of the data. This has considerable com-
putational savings compared to performing it on hundreds of
thousands of spatial voxels and is one of the main advantages

of our approach. It should, however, be noted at this point that
φdk (t) do not necessarily form an eigendecomposition of Mi(t)
(as deconvolution does not necessarily preserve orthogonality)
but are rather a basis of the deconvolved space.

To perform the deconvolution, we consider the following
strategy, which will be illustrated on μ(t). Suppose that μ(t)
or an estimate of it is available at times s0, s1, . . . , sm, where
s0 = 0 and sm = τ . Let µT = (μ(s1), . . . , μ(sm)). When m is
large, µ ≈ Aµd , where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I (s1)
s1

2
0 0 . . . 0

I (s2)
s1

2
I (s2 − s1)

s2

2
0 . . . 0

...
...

. . .
...

I (sm)
s1

2
I (sm − s1)

s2

2
I (sm − s2)

s3 − s1

2

... I (sm − sm−1)
sm − sm−2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.6)

and µd = (μd (s0), . . . , μd (sm−1))T . The matrix A can be seen
as a linear discretization of the convolution integral. Therefore,
we can obtain an estimate of µd by

µ̂d = arg min
µd

‖µ − Aµd‖2. (2.7)

This allows the deconvolution procedure to be framed as a linear
regression problem, allowing the use of the usual standard least
squares formulation. In the measured data analysis and simu-
lations in the next sections, we interpolated the smoothed PET
time courses to m = 250 to balance computational complexity
with discretization error.

This is of course not the only possible deconvolution strategy
that could be used, and many others exist in the literature, in-
cluding spline-based deconvolution as used by O’Sullivan et al.
(2009, 2014). However, it is very simple and computationally
efficient to implement, and as will be seen in the simulations
produces reasonable estimates of the deconvolved curves.

2.4 Estimation of FPCA

Since the mean function μ(t) and eigenfunctions φk(t) as-
sociated with the concentration function Ci(t) are unknown,
they need to be estimated first before one can implement the
deconvolution in (2.7).

Estimation of the mean function μ(t). One could use the
mean function of the reconstructed Ĉi(t) in (2.3). However, as
Ĉi(t) results from smoothing, the bias inherited at this step in the
reconstruction leads to a biased estimate ofμ (this is particularly
affected by the smoothing being later combined with the decay
correction, which is an exponential transform). We thus estimate
μ through the sample mean of Yij . Let Y·j = 1

n

∑n
i=1 Yij be the

cross-sectional mean (without any smoothing) of the observed
data Yij at time tj . The estimate for μ(t) is

μ̂(t) = Y·j exp(λt), for t = tj ,

= the linear interpolated value of μ̂(tk) and μ̂(tk+1),

for tk < t < tk+1. (2.8)

The resulting linearly interpolated estimate μ̂(t) is unbiased at
t = tj for all j = 1, . . . , p, and has a smaller bias at other t than
the mean of Ĉi(t). Of course, other interpolating schemes such
as cubic spline interpolation could be substituted at this point,
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but linear interpolation is faster and seems to work well for PET
data.

Estimation of Ai0. The estimate of the multiplicative coeffi-
cient at voxel i is

Âi0 =
∫ τ

0
Ĉi(t)μ̂(t)dt/

∫ τ

0
(μ̂(t))2 dt, (2.9)

where μ̂(t) is the estimate of the mean function μ from (2.8)
and Ĉi(t) is from (2.3). It should, of course, be noted here that
the resulting Ai0 will not necessarily have the usual property
of having expectation one. This results from estimating the Ai0
from the smoothed data, while the mean function is derived
from the unsmoothed data. However, in practice the difference
between the two is small, and considerably less variable estima-
tion results from using smoothed data to estimate Ai0 (a classic
bias-variance trade-off).

Estimation of the eigenfunctions φk and principal component
scores. We estimate the covariance function by the sample co-
variance of Ĉi(tj ) − Âi0μ̂(tj ), where Ĉi is from (2.3), Âi0 is
from (2.9), and μ̂ is from (2.8). Specifically,

	̂(tj , tk) = 1

n

n∑
i=1

{Ĉi(tj ) − Âi0μ̂(tj )}

×{Ĉi(tk) − Âi0μ̂(tk)} (2.10)

for 1 ≤ j, k ≤ p. Once the covariance is obtained, the eigen-
functions can be estimated by solving the eigen-equations at
a dense grid. Let φ̂k(t) be the estimate of φk(t), The principal
component scores Aik can be estimated by

Âik =
∫ τ

0
{Ĉi(t) − Âi0μ̂(t)} φ̂k(t) dt. (2.11)

Number of components. The number of eigenfunctions L for
voxel i is selected by

R2(i, L) = 1 − var
{
Yi(t) − Ĉi(t, L) exp(−λt)}

var{Yi(t)} , (2.12)

where Ĉi(t, L) = Âi0μ̂(t) + ∑L
k=1 Âikφ̂k(t). The above R2 is

an ad hoc measure for the goodness of fit, but provides a use-
ful summary of how much additional information is gained by
adding a further eigenfunction. For the simulation and data anal-
ysis in later sections, we adopted a simple rule to select L by
setting L = k when R2(i, k + 1) − R2(i, k) < 0.025.

After the number of components L is selected byR2, the IRFs
can be reconstructed through (2.5) and its associated VT can be
estimated by integration of the IRF. Specifically, at the ith voxel,
these estimates are

M̂i(t, L) = Âi0μ̂
d (t) +

L∑
k=1

Âikφ̂
d
k (t), (2.13)

and

V̂T (i, L) = Âi0

∫ τ

0
μ̂d (t)dt +

L∑
k=1

Âik

∫ τ

0
φ̂dk (t)dt.

(2.14)

The details of our approach are summarized in Algorithm 1.

Algorithm 1 Deconvolving PET with FPCA.
Input: The set of PET time course data {Yij ; i = 1, . . . , n, j =

1, . . . , p};
Output: The VT of each voxel i;

1: Pre processing

Pre-process Yij by (2.2) and reconstructCi(t) by (2.3);

2: FPCA

1. Estimate the mean function μ(t) by (2.8);
2. Estimate the covariance function 	(s, t) by (2.10);
3. Perform eigen-decomposition on 	̂(s, t) to obtain
φ̂k(t);
Calculate the PC scores by (2.11);

4. Select the number of eigenfunctions L by (2.12);

3: Deconvolution

Perform deconvolutions on μ̂(t) and
{φ̂1(t), . . . , φ̂L(t)} via (2.7);

4: Calculate VT for each voxel by (2.14);

3. SIMULATION STUDIES

The proposed methodology is first evaluated on simulated
data, both on 1D functions and then in more realistic image
settings using 2D image phantoms.

3.1 One-Dimensional Function Simulations

Before showing our formal image simulation studies, we
would like to demonstrate the use of the deconvolution strategy
via FPCA and assess how well it works for general functional
data. First, we assume the target functions (IRFs in PET imaging
data) can be represented as

Mi(t) = μM (t) +
2∑
k=1

Bikψk(t),

where Bik are random variables and ψk(t) are basis func-
tions. Specifically, we simulate the mean function μM (t) =
0.0049 exp(−0.0005t) + 0.0018 exp(−0.0112t) and ψ1(t) =
c1 sin(2πt/2000) and ψ2(t) = c2 cos(2πt/2000), where c1 and
c2 are constants which normalize the basis functions in the
L2-norm. Specifically,

c1 = 1√∫ 2000
0 sin2(2πt/2000)dt

and

c2 = 1√∫ 2000
0 cos2(2πt/2000)dt

.

Also, the random coefficients (Bi1 and Bi2) for the basis func-
tions are generated from N (0, 0.12) and N (0, 0.052) respec-
tively. The random functions are then convolved with an arterial
input function taken from the [11C]-diprenorphine study of the
next section truncated at 2000 s. The data observed are fur-
ther contaminated with independent measurement errors at the
observation times,

Yi(t) = (I ⊗Mi)(t) + ε,
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Figure 2. First eight observed curves of the 200 curves in the 1D simulation.

where ε ∼ N (0, 22) and where notationally we assume that the
errors are only present at the observations, not over the entire
continuum. This toy example contains 200 curves with observa-
tions made at 200 equally spaced time points and the first eight
observed noisy curves are shown in Figure 2. The MATLAB
package PACE (Yao, Müller, and Wang 2005) was applied to
obtain the mean function and eigenfunctions for the observed
functions. Figure 3 indicates that our deconvolution strategy
via FPCA performs very well for regular functional data. As
the FPCA uses information across all curves, this improves the
deconvolution.

In addition to the FPCA approach, we compared several
other approaches. O’Sullivan et al. (2009) proposed an approach
which worked well for region of interest (ROI) data in FDG-
PET. It was based on a spline deconvolution of the response
function. We implemented an analogous spline based decon-
volution (SP), using a weight function suitably chosen for the
simulations. We also examined deconvolution as used within the
FPCA procedure on a curve-by-curve (CC) basis. However, both
the spline deconvolution and the CC deconvolution of the same
data is much less accurate (see Figure 3) with a 10-fold increase
in mean integrated squared error (MISE) between the FPCA
approach and the CC approach (MISE, FPCA: 0.0879 × 10−3,

CC: 0.8160 × 10−3, SP: 0.5045 × 10−3), with the spline ap-
proach performing slightly better than the CC approach except
at the boundaries, but still less well than the FPCA approach.
Similar results (not shown) were obtained if the input function
was replaced by a known function, such as a scaled gamma
function, rather than the input function from the measured data.

3.2 Image-Based Simulations

In the context of using PET data, the structure of the data is
considerably more complex than was used in the 1D function
simulations above. In particular, there is considerable spatial
correlation in the measured data due to both the inherent un-
derlying biological physiology and the blurring induced by the

resolution of the PET camera. Theoretically, weak dependence
of this sort is not an issue for FPCA (Hörmann and Kokoszka
2010, 2013). However, from a practical point of view, the per-
formance of the proposed methodology is now assessed in light
of these factors.

3.2.1 Simulated Data Generation. To assess the effect of
different regions, simulations was performed using a brain phan-
tom (Shepp-Vardi phantom, 128 × 128 pixels) with five differ-
ent regions of varying sizes (Figure 4). Different signals were
placed in each of the regions based on random parameters which
also depended on the type of simulation being performed. The
level of VT randomness in each region was about 6.5% roughly
equivalent to the voxelwise variability observed within regions
in the measured data (Jiang, Aston, and Wang 2009). Finally,
the data were blurred using a standard Gaussian blurring ker-
nel, with FWHM of 6 mm, with the voxels in the image being
presumed to be 2 mm × 2 mm (as this is a two-dimensional sim-
ulation) before time-independent Gaussian errors with variance
proportional to the averaged signal were added. The propor-
tionality of this last measurement error results from the quasi-
Poisson nature of errors resulting from Poisson radioactive de-
cay (the reconstruction renders the errors not strictly Poisson,
and as such a Gaussian approximation is used in the simula-
tions).

We will compare four deconvolution strategies, the FPCA
and spline based (SP) methods from the 1D simulations and
an additional two based on PET parametric models. The curve-
by-curve method for the 1D simulations was also implemented
but found to be considerably worse than either FPCA or SP
methods (results not shown), so was not considered further. For
completeness, the techniques used are now detailed in full. The
first is the standard compartmental model based deconvolution
based on first-order linear ODEs. Given the nonnegativity in
the parameter values for the model, this can be solved using
nonnegative least squares (Lawson and Hanson 1974), known
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as PET spectral analysis in the PET literature (Cunningham and
Jones 1993). This analysis will be performed using the stan-
dard software DEPICT. Jiang, Aston, and Wang (2009) showed
borrowing spatial information can reduce the noise and thus
improve the VT estimates by PET spectral analysis. Therefore,
an additional comparison will be made with spectral analy-
sis after the data have been preprocessed (pDEPICT). Sim-
ilarly, the approach of O’Sullivan et al. (2009) will also be
applied to the presmoothed data (with results being worse if
presmoothing is not preformed). Finally, the proposed FPCA
methodology will be considered. As VT is the parameter of in-

terest in the PET study, this will be the target of interest in the
simulations.

3.2.2 Image Simulation 1: Compartmental Regions. This
first image based simulation was designed to assess the perfor-
mance of the proposed methodology where a true compartmen-
tal structure

Ci(t) = (
αi1e

βi1t + αi2e
βi2t

) ⊗ I (t)

was present everywhere, in this case a two compartmental
model. This, of course, favors the DEPICT method, where a
compartmental structure is assumed, but given that compart-

Figure 3. Estimated deconvolved functions and true target function in 1D simulation corresponding to the curves in Figure 2 along with the
pointwise MSE for each method.
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Figure 4. Phantom image: each of the five different regions used in the simulations are indicated.

mental models are routinely used in PET analysis, and have
proved to be useful models in such cases, it is something that is
of interest to assess. The values used in each region, along with
its size are given in Table 1, where the parameters, αij , βij were
chosen to coincide with physiologically plausible parameters
values from PET studies.

When comparing the MSE of VT estimates, Table 2 indi-
cates that the FPCA approach and pDEPICT (DEPICT with
presmoothing) outperform standard spectral analysis (DEPICT)
in all five regions even though the data are generated from
compartment models. pDEPICT performs better in regions 2–4,
while FPCA performs better in the rest of the regions. These
findings are not too surprising as the data are generated from
compartment models which are in favor of the DEPICT ap-
proach and Jiang, Aston, and Wang (2009) also has showed
borrowing spatial information to reconstruct the signals can fur-
ther improve the VT estimates by DEPICT due to noise reduc-
tion. However, as can also be seen, a completely nonparametric
FPCA approach is still competitive even in this situation, where
it is possible to assume the correct model structure. However,
as expected, the nonparametric approach (SP) which does not
involve FPCs performs very badly due to the high noise lev-
els in a voxelwise analysis. In particular, the SP performance
is often reasonable, but occasionally has issues at the bound-
aries (as was seen in Figure 3), which can yield large values
of MSE.

3.2.3 Image Simulation 2: Noncompartmental Regions.
The purpose of this second simulation is to investigate how
these four approaches perform when the IRFs are not generated
from compartment models. Again, we use the brain phantom
image with five different regions; however, we replace the IRFs
in regions 2 and 4 with scaled survival functions while the other
three regions remain the same, thus incorporating a mixture of
both compartmental and noncompartmental regions in the simu-
lation. The level of VT randomness in these two regions is again
taken to be are around 6.5%. The blurring procedure in the fi-
nal step is identical to simulation 1. Here is the scaled survival

Table 1. Parameters for first 2D image simulation

Region Size αi1 αi2 βi1 βi2 VT

1 9614 – – – – 0
2 5351 0.0060 – 0.0030 – 2.00
3 701 0.0040 0.0023 0.0008 0.0103 4.98
4 14 0.0068 0.0009 0.0007 0.0203 9.24
5 704 0.0007 – 0.0377 – 0.02

function for region 2,

Mi(t) = 1

200

[
1 −

∫ t

0
{0.7fi1(u/60) + 0.3fi2(u/60)}du

]
,

(3.1)

where fi1(t) and fi2(t) are gamma probability density func-
tions (pdf’s) with parameters (αi1, βi1) and (αi2, βi2) and
αi1 ∼ N (1.5, 0.052), αi2 ∼ N (10, 0.52), βi1 ∼ N (2, 0.22) and
βi2 ∼ N (1.5, 0.12). The fraction 1

200 is to make the integral of
Mi(t) close to a real value (≈ 1.97). In region 4, the scaled
survival function is

Mi(t) = 1

70

[
1 −

∫ t

0
{0.8fi1(u/60) + 0.2fi2(u/60)}du

]
,

(3.2)

where fi1(t) and fi2(t) are gamma pdf’s with parame-
ters (αi1, βi1) and (αi2, βi2) and αi1 ∼ N (2, 0.152), αi2 ∼
N (15, 0.12), βi1 ∼ N (2.5, 0.22) and βi2 ∼ N (2, 0.152). The
fraction 1

70 is to make the integral of Mi(t) close to a real value
(≈ 8.54). The parameters are provided in Table 3. The IRF of
region 4 has a marked deviation from a compartmental (sum
of exponential) structure, while region 2 much more closely re-
sembles a traditional exponential decay, even though it is in fact
not expressible as such.

Table 4 shows the MSE of VT estimates of the three ap-
proaches. As in simulation 1, the FPCA approach outperforms
DEPICT in all five regions. pDEPICT outperforms DEPICT
except in region 4 and the FPCA approach outperforms pDE-
PICT in regions 1, 4, and 5. This simulation shows that the
preprocessing procedure carried out in pDEPICT can help the
DEPICT approach to improve the VT estimates when compart-
mental conditions are satisfied; however, it does not always
work well. If the true IRFs are close to the assumed compart-
mental structure, as in region 2, the gains from a model based
deconvolution can outweigh the model misspecification errors.
However, in situations, such as in region 4, where the true IRF is

Table 2. Averaged MSE (s.e.) of VT ’s based on 50 runs for five
different regions in first 2D simulation

Region 1 2 3 4 5

FPCA 0.0114 0.0832 0.4943 0.6228 0.0433
(0.0012) (0.0109) (0.1471) (0.8306) (0.0076)

DEPICT 0.1306 0.2204 0.5549 0.6730 0.1741
(0.0113) (0.0076) (0.0507) (0.4069) (0.0149)

pDEPICT 0.0248 0.0601 0.2335 0.2594 0.0505
(0.0033) (0.0049) (0.0481) (0.2238) (0.0086)

SP 0.0155 1.1710 7.7870 19.5207 0.2936
(0.0014) (0.0849) (0.4739) (4.4023) 0.0424
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Table 3. Parameters for second 2D image simulation

Region Size αi1 αi2 βi1 βi2 VT

1 9614 – – – – 0
2 5351 Equation (3.1) 1.97
3 701 0.0040 0.0023 0.0008 0.0103 4.98
4 14 Equation (3.2) 8.54
5 704 0.0007 – 0.0377 – 0.02

markedly different from a compartmental structure, borrowing
spatial information from neighboring voxels can result in worse
estimates not only against the nonparametric FPCA deconvo-
lution, but even against the standard DEPICT result where no
spatial information is taken into account. On the contrary, the
FPCA approach estimates the IRFs nonparametrically and thus
the performance is more robust and relatively stable regardless
of the model structure. Again, a voxelwise nonparametric de-
convolution strategy is not competitive, with SP again suffering
from large discrepancies in a few of the simulation runs, result-
ing in very large MSE values overall.

From the MSE of the estimated functions in region 2 and
particularly in region 4, we see that the FPCA approach captures
the function shape nicely while DEPICT cannot do so due to its
parametric model restrictions. This is emphasized in Figure 5
which examines the pointwise MSE of the reconstructed curves
in Regions 2 and 4, as well as the MISE. It should be noted
at this point though that simply using MISE as a target in this
case would indicate that both approaches perform similarly.
However, as VT is the primary interest, we focused on this, and
as can be seen in the Table 4, there is a large improvement in
MSE for VT in Region 4 using FPCA.

4. MEASURED 11C-DIPRENORPHINE DATA

We apply the nonparametric FPCA approach to a set of dy-
namic PET scans from a measured [11C]-diprenorphine study
of normal subjects, for which an arterial input function is avail-
able. The main purpose of the study is to produce a population
of normal controls to build an understanding of opioid recep-
tor densities in normal brain. Multiple subjects were scanned,
some once, some twice. We will analyze these data and focus
particularly on the repeated scan data, as this analysis will aim
to ensure that the methodology is applicable across a range of
subjects with reasonable test–retest reproducibility. While re-
producibility cannot be equated with the truth, it is somewhat

Table 4. Averaged MSE (s.e.) of VT ’s based on 50 runs for five
different regions in second 2D simulation

Region 1 2 3 4 5

FPCA 0.0116 0.0968 0.3695 0.7045 0.0429
(0.0013) (0.0111) (0.1293) (0.4041) (0.0063)

DEPICT 0.1325 0.2405 0.5545 0.9142 0.1774
(0.0105) (0.0106) (0.0496) (0.4033) (0.0170)

pDEPICT 0.0257 0.0747 0.2475 1.1158 0.0529
(0.0028) (0.0059) (0.0491) (0.5028) (0.0087)

SP 0.0152 1.1346 7.9536 22.8747 0.2917
(0.0014) (0.0894) (0.5365) (5.3599) (0.0471)

reassuring if the methods yield relatively similar estimates on
the same subject in repeated scans. The scans which are an-
alyzed here are part of a study into the relationship between
opioid receptors and epilepsy, and the subjects here are from a
normal population for the quantification of opioid receptor dis-
tribution. In particular, accurate quantification of VT is required
as this is a measure related directly to receptor density. In ad-
dition, it is well known that for the tracer [11C]-diprenorphine,
any particularly compartmental model does not easily fit the
data for all voxels (Hammers et al. 2007), so the investigation
of a nonparametric approach is of particular relevance here.

The description of the data here follows from Jiang, Aston,
and Wang (2009), although in that article only one subject was
considered, but the rest were similarly acquired. Each normal
control subject underwent either one or two 95-minute dynamic
[11C]-diprenorphine PET baseline scans. The subject was in-
jected with 185 MBq of [11C]-diprenorphine. PET scans were
acquired in 3D mode on a Siemens/CTI ECAT EXACT3D PET
camera, with a spatial resolution after image reconstruction of
approximately 5 mm. Data were reconstructed using the repro-
jection algorithm (Kinahan and Rogers 1989) with ramp and
Colsher filters cutoff at Nyquist frequency. Reconstructed voxel
sizes were 2.096 mm × 2.096 mm × 2.43 mm. Acquisition
was performed in listmode (event-by-event) and scans were
rebinned into 32 time frames of increasing duration. Frame-
by-frame movement correction was performed on the dynamic
[11C]-diprenorphine PET images.

The three most promising approaches used in the simulation
studies are applied, DEPICT, pDEPICT, and the nonparametric
FPCA procedure, as the data are on the voxel level, and thus
curve-by-curve methods are both unstable and computationally
intractable so not considered further. We first introduce the re-
sults of FPCA on a single subject (no. 2913, who only had one
scan, and was randomly chosen for discussion here, although is
indicative of the way the analysis performs in general). Figure 6
shows the estimated mean function and its deconvolved func-
tion. The deconvolved mean function deviates from the shape
which would be expected from a sum of exponential functions.
Figure 7 shows the first three eigenfunctions together with their
corresponding deconvolved functions. The eigenfunctions indi-
cate the variation from the mean function among voxels.

Figure 8 shows the numbers of components needed to re-
construct the latent signals and the impulse response functions.
Spatial clusters exist and it gives indications about the concen-
tration of pain receptors in specific spatial locations. Figure 9
shows the VT estimates of FPCA approach and DEPICT ap-
proach and their differences. The VT estimates by FPCA are
about 12.4% lower than those by DEPICT, while pDEPICT
was similar to that of DEPICT (approximately 2.2% lower, data
not shown). Positive biases of 10% or more are not uncom-
mon for parameter values in the range of those present here
(bias is parameter dependent) for PET compartmental models
when analyzed with spectral analysis (see Peng et al. 2008),
and as such the estimates provided by FPCA are closer to what
might be expected from previous simulation results. Thus, the
FPCA yields results which are more quantitatively plausible for
comparison across a population. In particular, as differences in
PET studies between patients and controls tend to be small,
and bias is parameter dependent when using nonlinear models,



10 Journal of the American Statistical Association, March 2016

Figure 5. MSE of the different methods in the regions which are not compartmental models in the 2D image simulations.

Figure 6. Estimated (deconvolved) mean function for subject 2913.

plausible quantitative estimates, which do not rely on particular
compartmental assumptions, would allow greater confidence in
differences found.

The results from the test–retest analysis from the seven sub-
jects who had this data available are given in Table 5 and

Figure 10. Taking the figure first, we see that the test–retest
variability of both DEPICT and FPCA are roughly similar in
corresponding brain regions. This is reassuring as the FPCA
procedure is considerably more flexible than the model-based
DEPICT estimates. In addition, there is evidence of spatial

Figure 7. The first three estimated (deconvolved) eigenfunctions for subject 2913.
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Figure 8. The numbers of components needed to reconstruct the latent signals and the impulse response functions for subject 2913. This
indicates that the numbers of components are not randomly distributed in the brain but rather exhibit spatial correlation.

smoothness in the reproducibility which is physiologically more
interpretable from the FPCA approach than the DEPICT ap-
proach. Turning to Table 5, we see that there is considerable
correspondence between the test–retest results from DEPICT
and FPCA. The pooled results show that there are similar levels
of variation at different threshold levels. This is important, as
the receptor densities are only of interest at somewhat higher VT
values. Indeed there is also less variation within the test–retest
values for the FPCA procedure. For individual subjects, the
results are fairly balanced with some subjects having smaller
test–retest differences with FPCA and others with DEPICT at
different threshold levels. However, in almost all cases, the vari-
ability in the test–retest results is smaller with FPCA than with
DEPICT.

From a computational point of view, the time for the nonpara-
metric deconvolution is very competitive to the parametric mod-
eling approach. The proposed procedure took approximately 8.5

Figure 9. The VT estimates of FPCA approach and DEPICT ap-
proach and their differences for subject 2913. The VT ’s estimated by
FPCA are in general smaller than those by DEPICT with VT ’s reduced
about 12.4%.

minutes to analyze a single PET scan, which compares with ap-
proximately 10 minutes for DEPICT to perform an equivalent
analysis (all computations carried out on an Intel core i7 CPU
M620 2.67 GHz with 4 GB RAM).

5. DISCUSSION

We have presented a functional data analysis approach to the
problem of mass deconvolution in neuroimaging. By expressing
the deconvolution problem via a functional principal component
basis expansion, it is possible to dramatically reduce the required
computational complexity. The methodology has been shown to
work well both in generic 1D function deconvolution and also
in more realistic image based simulations, while also producing
physiologically plausible results in a real data analysis, without
resorting to modeling assumptions that are challengeable at best.

The approach to the methodology here has been to take as
simple approach as possible for each inherent step. This, of
course, could be relaxed, and much more complex algorithms
for deconvolution could be investigated in the place of the sim-
ple linear deconvolution suggested here. In addition, different
methods for choosing the number of eigenfunctions to examine
or how the smoothing is performed could also be changed, but
without any significant effect on the application of the method-
ology. However, even the simple approach taken in this article
has been shown to be very effective when used in real-data
analysis (Zanderigo, Parsey, and Ogden 2015).

It would be possible to carry out a nonparametric analysis
using different basis functions using methods such as those ex-
plored in O’Sullivan et al. (2014) for FDG. There a segmentation
algorithm is used to determine the basis functions and is shown
to work well for FDG. However, when using segmentation al-
gorithms, it is often hard to know how many basis functions to
use, particularly for tracers such as [11C]PK-11195, a marker
for neurodegeneration, which has little spatial coherence, and
it is not clear that the resulting decomposition would always
be identifiable. However, the eigenbasis approach as proposed
here would be equally valid in such a situations and by definition
always yields an identifiable basis.

We have here suggested the use of the multiplicative random
effects model for the FPCA analysis. This could be replaced
with the more usual standard FPCA decomposition. However, it
has been shown previously (Jiang, Aston, and Wang 2009) that
this model is a natural model for PET, given the compartmental
assumptions usually made in data modeling, both in terms of
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Figure 10. The VT estimates of a test and a retest scan from a single subject who had two scans (numbered 1031 and 1033). In addition, the
percentage change between the two is given for both DEPICT and the FPCA procedure. The difference is truncated at 40% as all voxels above
this had estimated VT close to 0.

its interpretation as well as its empirical performance, and for
this reason we have concentrated on it here. It should, of course,
be noted that the use of smoothed estimates for the curves, but
unsmoothed data to estimate the mean yields the possibility that
the functions of the data used to generate the principal compo-
nent scores will not be eigenfunctions. However, asymptotically
(as the smoothing bandwidth goes to zero), these will be consis-
tent estimates. For finite samples, these will still be a completely
valid function basis to express the data, albeit not necessarily
the finite sample eigenfunctions. However, the gains in using
smoothed data to control the noise is considerable over the use
of raw curves for deconvolution.

PET volumes are intrinsically three-dimensional tomographic
reconstructions. However, the reconstruction process has not
been the focus here, but with suitable modification, the methods
introduced in this article could be incorporated into reconstruc-
tion in a similar way to compartmental analysis (e.g., Wang and
Qi 2009), although we have preferred to carry out our analysis
in the standard clinical setting directly using the reconstructed
data. It is also true that in some PET settings a compartmental
model is likely to be a good choice. However, we are advo-
cating using a nonparametric approach due to any particular
model being unlikely to be true across the brain for all vox-

els and indeed model selection for compartmental models is
one of the major challenges for practitioners. One drawback
of there not being a formal model in the nonparametric case
is that VT does not have the same direct biological interpreta-
tion. However, in many cases, the resulting nonparametric VT
will be similar in spirit to that of the compartmental model,
and the biological models used to make links from VT to re-
ceptor density, for example, could be updated in line with the
finite time nature of the experiment (and after all the experi-
ment really is only performed over a finite time horizon). One
interesting line of future research would be to use a mixture
approach to the modeling involving both compartmental and
nonparametric approaches where some form of model evidence
is used to help in the estimation of a common parameter such
as VT .

The methodology presented here is naturally appealing for
PET data, given that it reduces the number of deconvolutions
from several hundred thousand to four or five. However, it is
also a candidate for deconvolution for neuroimaging in general,
where in modalities such as fMRI, there is interest in deconvolv-
ing hemodynamic response functions from the data (Zhang et al.
2012; Wang et al. 2013). A similar FPCA setup to deconvolve
fMRI data could therefore be used, although care would need to

Table 5. Averaged absolute normalized difference for [11C]-diprenorphine data

FPCA DEPICT

Experiments 5 10 15 20 5 10 15 20

244 vs.247 0.186(0.117) 0.184(0.082) 0.176(0.070) 0.148(0.037) 0.122(0.121) 0.086 (0.070) 0.060(0.047) 0.049(0.036)
1031 vs. 1033 0.131(0.157) 0.088(0.072) 0.073(0.055) 0.055(0.040) 0.158(0.170) 0.110 (0.093) 0.087(0.069) 0.067(0.053)
1248 vs. 1258 0.175(0.111) 0.166(0.056) 0.180(0.041) 0.203(0.034) 0.144(0.120) 0.124 (0.073) 0.147(0.063) 0.163(0.051)
1680 vs. 1774 0.243(0.229) 0.175(0.149) 0.104(0.079) 0.063(0.053) 0.283(0.260) 0.181 (0.154) 0.115(0.111) 0.320(0.354)
1794 vs. 1798 0.238(0.221) 0.184(0.143) 0.170(0.084) 0.262(0.033) 0.295(0.231) 0.260 (0.175) 0.293(0.129) 0.365(0.132)
3427 vs. 3497 0.134(0.130) 0.093(0.064) 0.060(0.041) NaN 0.166(0.161) 0.106 (0.084) 0.094(0.068) 0.168(0.101)
3568 vs. 3715 0.193(0.183) 0.137(0.110) 0.094(0.077) 0.076(0.062) 0.202(0.191) 0.132 (0.107) 0.095(0.076) 0.099(0.085)

Pooled 0.185(0.175) 0.146(0.110) 0.113(0.078) 0.080(0.067) 0.196(0.196) 0.142(0.127) 0.121(0.109) 0.081 (0.083)

NOTE: We consider the following measure
|V̂T 1−V̂T 2 |

V̂T 2
if V̂T 2 > δ to evaluate the difference between two experiments. The analysis results from seven individual subjects are pooled

and summarized in the last row. Four different δ’s (5, 10, 15, and 20) are used.
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be taken and additional regularization used in the deconvolution
step, as the null space of the linear operator will be nonzero
for fMRI data (due to the negative dip in the hemodynamic re-
sponse), unlike the case for PET data. Indeed, under suitable as-
sumptions, the approach that has been proposed is applicable in
many situations where there are replicates of the curves present,
allowing the deconvolution to be treated from a functional data
perspective.

[Received April 2013. Revised April 2015.]
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