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INTRODUCTION 
 

Communication between the heart and kidney plays an 

important role in regulating fluid balance, metabolite 

excretion, and neuroendocrine function to maintain 

homeostasis [1]. The heart pumps fresh blood to 

maintain organ perfusion while the kidney filters the 

blood and concentrates metabolic waste, which is 

important for regulating blood volume and maintaining 

cardiac output. Cardiorenal syndrome (CRS) is defined 

as simultaneous bidirectional dysfunction of both the 

heart and kidney. The term ‘cardiorenal’ was first used 

by Thomas Lewis in a 1913 lecture entitled “Paroxysmal 

Dyspnoea in Cardiorenal Patients” in which he described 

his observation that patients with advanced kidney 

disease frequently developed dyspnea [1]. More recent 

studies have provided additional insight into the 

relationship between cardiac dysfunction and renal 

failure [2–4]. However, the etiology of CRS has not been 

 

fully elucidated [5]. Bongartz el al. expanded the 

definition of CRS to account for the role of renal 

dysfunction in heart failure in addition to the causal role 

of cardiac dysfunction in kidney disease [6]. The Acute 

Dialysis Quality Initiative (ADQI) currently defines 

CRS as a pathophysiological disorder in which acute or 

chronic dysfunction of one organ may induce acute or 

chronic dysfunction in the other organ [7].  

 

Ronco et al. proposed a classification system that divides 

CRS into five subtypes based on acuity of onset and the 

primary organ involved (Table 1) [8]. CRS types 1 and 2 

(CRS-1 and CRS-2) correspond to acute and chronic 

cardiorenal syndrome, respectively, whereas CRS types 

3 and 4 (CRS-3 and CRS-4) correspond to acute and 

chronic renocardiac syndrome, respectively. CRS type 5 

(CRS-5) is a secondary disease process that occurs in the 

context of other conditions such as diabetes, sepsis, and 

drug toxicity. In contrast, Hatamizadeh et al. proposed 
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Table 1. Cardiorenal syndrome classification system by Ronco et al. 

CRS General Definition: 

A complex pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction in 1 organ may induce 

acute or chronic dysfunction in the other organ.  

Types of CRS 

CRS Type 1 (acute CRS)  

Description: Abrupt worsening of cardiac function leading to AKI  

Examples: Acute coronary syndrome, acute decompensated heart failure 

CRS Type 2 (chronic CRS)  

Description: Chronic abnormalities in cardiac function causing progressive and permanent CKD 

Examples: Chronic heart failure, ischemic heart disease, hypertension 

CRS Type 3 (acute renocardiac syndrome)  

Description: Abrupt worsening of kidney function causing acute cardiac disorder  

Examples: Postsurgery AKI, acute glomerulonephritis, rhabdomyolysis 

CRS Type 4 (chronic renocardiac syndrome)  

Description: CKD contributing to decreased cardiac function, cardiac hypertrophy, fibrosis, and/or increased risk for 

adverse cardiovascular events  

Examples: Cardiac hypertrophy/fibrosis in CKD 

CRS Type 5 (secondary CRS)  

Description: Systemic condition causing both acute cardiac and kidney injury and dysfunction  

Examples: sepsis, diabetes mellitus 

Abbreviations: AKI: acute kidney injury; CKD: chronic kidney disease; CRS: cardiorenal syndrome. 
 

classifying CRS into seven distinct categories based on 

pathophysiologic mechanisms and the response to 

treatment strategies: 1) haemodynamic, 2) uraemic, 3) 

vascular, 4) neurohumoral, 5) anaemia and/or iron 

metabolism, 6) mineral metabolism, and 7) malnutrition-

inflammation-cachexia (Table 2) [9]. 

 

In this review, we describe recent insights into the 

pathophysiological mechanisms underlying acute kidney 

injury (AKI)-induced cardiac dysfunction (CRS-3). 

Additionally, we discuss current approaches in the 

management of patients with CRS-3 including the 

development of targeted therapeutics. 

 

Epidemiology of AKI and CRS-3 
 

AKI refers to acute kidney damage or failure. Although 

there is a consensus on the definition and diagnostic 

criteria for AKI, different terms are sometimes used to 

describe the pathology of the kidney injury. The primary 

criteria used to evaluate AKI stage are an increase in 

serum creatinine and a decrease in urine output (Table 3) 

[10]. Male sex, age, diabetes, blood pressure, a history of 

surgery, and atrial fibrillation are independent risk 

factors for AKI [11, 12].  

 

The prevalence of AKI is increasing among hospitalized 

patients (4.9–7.2%) [13]. Severe AKI has been observed 

in over 40% of patients in the intensive care unit (ICU) 

[13]. The overall mortality for AKI patients is 

approximately 50%, but can be as high as 80% among 

ICU patients [14, 15]. AKI primarily results in acute 

tubular necrosis, a reduction in the glomerular filtration 

rate (GFR), and a decrease in renal perfusion. A previous 

multi-center study of AKI patients demonstrated that 

more than 60% of ICU patients also developed acute 

cardiovascular failure [16]. More recently, a multi-

national, multi-center study of ICU patients with AKI 

indicated that the overall hospital mortality rate was 

60.3% (95% confidence interval [CI]: 58.0–62.6%) and 

that cardiovascular-related death was the second leading 

cause of death [17]. Cardiogenic shock was shown to be 

an independent risk factor for hospital mortality (odds 

ratio [OR]: 1.41; 95% confidence interval [95% CI]: 

1.05–1.90) [17].  

 

The long-term effects of AKI on the cardiovascular 

system have also been investigated. A 5-year population-

based study demonstrated that early- and late-onset post-

operative AKI were independent risk factors for a 

composite cardiovascular endpoint that included 

myocardial infarction, heart failure, and other 

cardiovascular causes of mortality (hazard ratio [HR]: 

1.41; 95% CI: 1.11–1.80) [18]. This finding was 

supported by a more recent study that explored the long-

term risk of coronary events following AKI among 

9,738 hospitalized patients who recovered from de novo 

dialysis-requiring AKI between 1999–2008 [19]. The 

incidence of coronary events was 19.8 per 1,000 person-

years among AKI patients. They also found that AKI 
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Table 2. Cardiorenal syndrome classification system by Hatamizadeh et al. 

CRS category (subclassified) Manifestation 

Haemodynamic (acute/chronic) Renal dysfunction due to cardiac output 

Uremic (acute/chronic) Uremic cardiomyopathy, Uremic pleuritis, Uremic pericarditis 

Vascular (acute/chronic) Coronary artery disease, Renal artery thrombosis, Renal artery stenosis 

Neurohumoral (acute/chronic) Abnormal serum calcium, potassium, magnesium and activated RAAS 

Anemia and/or iron metabolism (acute/chronic) Iron deficiency, Renal tubularinjury, Infection, Folate deficiency 

Mineral metabolism (mostly chronic) Vitamin D, Elevated FGF 23, Hypercalcemia, Hyperphosphatemia 

Malnutrition/inflammation-cachexia  

(mostly chronic) 
Cachexia, malnutrition and inflammation 

Abbreviations: RAAS: Renin-Angiotensin system, FGF-23: Fibroblast Growth Factor 23. 

 

Table 3. KDIGO classification criteria for acute kidney injury. 

Stage Serum creatinine (Scr) Urine output (UO) 

1 Baseline increase of 1.5 to 2 times in 7 days <0.5 mL/kg/hour for 6–12 hours 

2 Baseline increase of 2 to 3 times <0.5 mL/kg/hour for ≥12 hours  

3 ≥4 mg/dL or a baseline increase >3 times or initiation of 

renal replacement therapy 

<0.3 mL/kg/hour for ≥24 hours or anuria for ≥12 

hours  

Abbreviation: KDIGO: Kidney Disease Improving Global Outcomes. 

 

patients had an increased risk of coronary events (HR: 

1.67; 95% CI: 1.36–2.04) and all-cause mortality (HR: 

1.67; 95% CI: 1.57–1.79) after adjusting for chronic 

kidney disease and end-stage renal disease. Another 

study demonstrated that a single AKI event was 

associated with a two-fold and eight-fold increase in 

hospital mortality risk among patients with left or right 

ventricular dysfunction, respectively [20]. Several 

studies have indicated that AKI is an independent risk 

factor for 30-day readmission among heart failure 

patients (OR: 1.81; 95% CI: 1.35–2.39) [21]. ‘Frequent 

admitters’ were found to have longer lengths of stay (4.3 

days vs. 4.0 days) and higher associated costs ($7,015 

vs. $2,967) compared to non-frequent admitters among 

patients with repeat heart failure admissions [22].  

 

The epidemiology of CRS-3 is not well understood. The 

incidence is likely underestimated as a consequence of a 

lack of early diagnostic criteria. Cardiac failure is 

typically diagnosed by echocardiography, but impaired 

cardiac function is frequently not observed until an 

advanced stage. However, early recognition of cardiac 

dysfunction is important given that AKI-mediated 

cardiac damage is frequently characterized by reduced 

diastolic function. The temporal relationship between 

AKI and cardiac damage has also not been fully 

elucidated. Patients with compensatory heart failure are 

likely to develop prerenal (functional) AKI as a 

consequence of reduced renal blood perfusion. If 

prerenal AKI persists for > 2 days, renal tubular cells 

will undergo cell death due to reduced perfusion. This 

can induce renal (structural) AKI, which can lead to 

decompensated heart failure. Thus, it can be difficult to 

determine the primary cause of CRS-3, particularly 

among elderly patients.  
 

Pathophysiology of CRS-3 
 

Hemodynamics 
AKI can cause cardiovascular damage through direct 

and1/or indirect mechanisms. Both hemodynamic and 

non-hemodynamic mechanisms have been proposed  

to explain crosstalk between the heart and kidneys  

(Figure 1). Hemodynamic disorders are characterized by 

activation of the sympathetic nervous system (SNS) and 

the renin-angiotensin-aldosterone system (RAAS)  

[23, 24]. SNS activation has been observed in AKI 

patients [25]. One study found that renal sympathetic 

nerve activity was elevated during renal ischemia and 

further increased during reperfusion [26]. Renal venous 

plasma norepinephrine concentrations were primarily 

elevated following reperfusion [26]. These findings may 

be explained in that the renal ischemia time was 

relatively short (28–30 minutes), and renal damage 

predominantly occurs during reperfusion. Elevated 

norepinephrine concentrations may be a delayed response 

to increased SNS activity. Although activation of the 

SNS enhances cardiac output by increasing myocardial 

contractility, higher levels of norepinephrine can  

cause increased cardiomyocyte oxygen consumption, 

cardiomyocyte death, and dysregulation of intracellular 

calcium. Additionally, activation of the SNS is followed 
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by vasoconstriction and a reduction in the blood supply 

to the renal tubules, which exacerbates necrosis. 

Feedback mechanisms involving SNS activation and 

AKI can promote cardiac failure. Renal denervation can 

reverse AKI-induced histological alterations in the 

kidney and is therefore a potential therapeutic approach 

for preserving cardiac function following AKI [26].  

 

RAAS activity is also elevated following AKI. 

Activation of the SNS stimulates β1-adrenergic receptors 

in the juxtaglomerular apparatus of the kidney resulting 

in reduced renal blood flow and activation of RAAS [27]. 

Juxtaglomerular cells in the juxtaglomerular apparatus 

secrete renin into the circulation in response to  

the reduction in renal perfusion. Renin cleaves angio-

tensinogen to yield angiotensin I (Ang I), which is then 

converted into angiotensin II (Ang II) by angiotensin 

converting enzyme. Increased Ang II concentrations are 

associated with systemic vascular resistance and water-

sodium retention. These alterations can significantly 

augment cardiac preload and afterload. Ang II also exerts 

direct effects on cardiomyocytes by inducing hypertrophy 

and apoptosis [28, 29]. Interestingly, treatment with a 

RAAS inhibitor has been shown to protect against AKI 

and cardiac failure [30, 31]. 

 

AKI is characterized by a reduction in urine output and 

water-sodium retention. Increased blood volume, 

particularly venous congestion, results in an increase in 

cardiac preload. Volume overload causes myocardial 

edema, resulting in decreased myocardial contractility 

and left ventricular compliance [23, 24]. Right 

ventricular collagenase activity also increases in 

response to chronic interstitial edema, which contributes 

to myocardial remodeling [24]. Volume overload has 

also been shown to induce ventricular arrhythmias [32]. 

Although activation of the SNS and RAAS may be an 

adaptive response to AKI, dysregulated neurohumoral 

mechanisms also play an important role in promoting 

myocardial depression following AKI. Inhibition of 

SNS/RAAS activation is a standard treatment for 

patients with AKI. 

 

Inflammation 
 

Inflammation is thought to be the primary non-

hemodynamic mechanism that contributes to CRS-3 

(Figure 1). A previous study demonstrated that two 

cytokines (TNF-α and IL-1) were released from ischemic 

kidney tissue into the blood, which resulted in an increase 

in TNF-α levels in myocardial tissue in a bilateral renal 

ischemia-induced mouse model of AKI [33]. Excessive 

TNF-α accumulation contributed to cardiac damage,  

as evidenced by an increase in the left ventricular end-

diastolic and end-systolic diameters, and fractional 

shortening measured by echocardiography. Interestingly, 

 

 

 

Figure 1. Pathophysiologic mechanisms underlying CRS-3. AKI is the initial insult in CRS-3 and has multiple potential etiologies. AKI 
may cause acute cardiac injury including heart failure, ischemia, and arrhythmia through both direct (e.g. SNS activation and RAAS) and 
indirect (e.g. volume overload, inflammation, oxidative stress, and mitochondrial dysfunction) effects. 
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TNF-α inhibition attenuated AKI-induced cardiac 

damage. These results are supported by a recent study 

by Alarcon et al., who explored the molecular basis of 

AKI-induced cardiac arrhythmias [34]. They found that 

Nlrp3-/- and Casp1-/- mice had normal QJ intervals  

and fewer ventricular arrhythmias compared to wide-

type mice following renal ischemia/reperfusion (I/R) 

injury [34]. AKI was shown to cause IL-1β 

overproduction. Treatment with an IL-1β antagonist 

rescued the duration and amplitude of the calcium 

transient thereby protecting against ventricular 

arrhythmias. However, Toldo et al. demonstrated that 

exogenously administered IL-1β was associated with 

depressed myocardial contractility [35]. AKI-mediated 

inflammation can induce apoptosis in cardiomyocytes 

and promote cardiac fibrosis [36]. Sanz et al. 

demonstrated that tumor necrosis factor-like weak 

inducer of apoptosis (TWEAK) levels were elevated 

during AKI and that pharmacologic inhibition  

of TWEAK inhibited cardiac remodeling [36]. 

Collectively, these data suggest that inflammation-

associated cytokines may be involved in transmitting 

signals from damaged kidney tissue to the heart 

resulting in myocardial depression.  

 

Given the critical role of TNF-α in triggering AKI-

related cardiovascular events and regulating myocardial 

contractility, several large multi-center trials have been 

performed to evaluate whether the TNF-α inhibitor 

etanercept could prevent heart failure. However, the 

results have suggested that etanercept has limited clinical 

efficacy and potentially results in worse patient 

outcomes [37]. 

 

Oxidative stress 

 

Oxidative stress results from an imbalance between the 

production and removal of reactive oxygen species 

(ROS). Four types of ROS have been defined: 

superoxide anion (O2
•-), hydroxyl radical (•OH), 

hydrogen peroxide (H2O2), and hypochlorous acid 

(HOCl). ROS are involved in the regulation of 

cardiomyocyte viability and function. At physiological 

concentrations, ROS act as second messengers that are 

required for intracellular signal transduction. However, 

high levels of ROS are toxic to cells because they can 

induce protein and lipid oxidation. ROS can directly 

damage DNA and cause cell death through oxidative 

stress-mediated apoptosis. Overproduction of ROS is 

caused by increased oxidative metabolism and decreased 

antioxidative capacity. ROS are derived from both 

endogenous and exogenous sources. Mitochondrial 

electron transport, xanthine oxidase (XO), and 

nicotinamide adenine dinucleotide phosphate (NADPH) 

are the primary generators of endogenous ROS [38, 39]. 

Radiation, xenobiotics, the inflammatory response, 

cigarettes, and alcohol are the primary exogenous agents 

that generate ROS.  

 

Antioxidative capacity is regulated by a series of 

antioxidants including superoxide dismutase (SOD), 

glutathione peroxidase (GPx), glutathione (GSH) and 

oxidized glutathione (GSSG) [40]. Several studies have 

revealed that antioxidants and ROS-induced lipid 

peroxidation products can function as biomarkers of 

AKI. Ware et al. evaluated the levels of circulating lipid 

peroxidation products in ICU patients by mass 

spectroscopy [41]. They found that plasma levels of F2-

isoprostanes and isofurans were highly correlated with 

renal damage, suggesting that lipid oxidation is 

predictive of acute kidney injury. Interestingly, both of 

F2-isoprostanes [42] and isofurans [43] have been 

monitored as markers of chronic and acute cardiac 

damage, respectively. Liver-type fatty acid-binding 

protein (L-FABP), a cytotoxic oxidation product 

secreted by proximal tubular epithelial cells, was 

identified as a predictive biomarker of AKI [44, 45]. 

Other biomarkers of kidney damage have also been 

shown to be predictive of acute and chronic cardiac 

damage (e.g. heart failure) [46, 47]. Cardiorenal 

“connectors” such as erythrocyte superoxide dismutase 

(SOD1), GSH, and NADPH have also been used to 

measure kidney and heart injury [48–53]. 

 

Parenica et al. performed a retrospective controlled study 

to investigate the role of AKI in ST-elevation myocardial 

infarction. They found that circulating biomarkers of the 

nitric oxide (NO) pathway were associated with AKI 

[54]. Additionally, they showed that increased NOx was 

correlated with 3-month cardiovascular mortality. Heme 

oxygenase 1 (HO-1) is the rate-limiting enzyme that 

catalyzes the oxidative degradation of cellular heme to 

liberate free iron, carbon monoxide (CO), and biliverdin 

in mammalian cells. HO-1 regulates oxidative stress, 

activates autophagy, suppresses inflammation, and 

promotes cell cycle progression [55]. HO-1 deficiency 

sensitizes kidneys to I/R injury whereas upregulation 

attenuates AKI. Loss of HO-1 results in an increase in 

IL-6, which induces post-transcriptional phosphorylation 

of STAT3 in the heart and kidney following injury [56]. 

Two other studies have demonstrated that HO-1 is 

overexpressed in the heart [57, 58]. Because oxidative 

stress-related molecules can induce damage in the heart 

and kidney, therapies that reduce oxidative stress could 

be effective in CRS-3 (Figure 1). The endothelial nitric 

oxide synthase (eNOS) system primarily regulates 

vascular tone, which is important for cardiac function. 

Interestingly, eNOS levels are downregulated in the 

kidney after AKI [59]. It is possible that signals 

transmitted from renal endothelial cells to cardiac 

endothelia cells may explain the connection between AKI 

and cardiac dysfunction. 
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Mitochondrial dysfunction  
 

Mitochondria regulate cellular energy production 

through the tricarboxylic acid (TCA) cycle in which 

oxygen and glucose and broken down to generate ATP 

and H2O. Byproducts of the TCA cycle including ROS 

and lactic acid are released from the mitochondria into 

the cytoplasm where they regulate cell proliferation, 

pH, metabolism, and cell death. Mitochondria also play 

important roles in activating apoptosis. Mitochondrial 

dysfunction results in reduced ATP production and a 

reduction in cellular energy metabolism [60]. Damaged 

mitochondria can release pro-apoptotic factors into the 

cytoplasm and trigger apoptosis [61]. Additionally, 

interactions between mitochondria and other organelles 

such as the endoplasmic reticulum can activate 

apoptosis [62, 63].  

 
The heart and kidney have high mitochondrial content 

compared to other organs, which makes them highly 

sensitive to the effects of mitochondrial dysfunction. 

Mitochondria-related oxidative stress can contribute to 

cardiorenal damage. Interestingly, alterations in mito-

chondrial morphology may play an important role in 

CRS-3. I/R injury can promote mitochondrial fission, 

which results in the division of a single mitochondria 

into two smaller units. Under normal physiological 

conditions, approximately 5% of renal tubules contain 

mitochondrial debris. However, approximately 50% or 

more of the tubules can be filled with fragmented 

mitochondria after AKI [64–66]. Mitochondrial fission 

is considered an early event in acute cardiac I/R injury 

that can induce cardiomyocyte apoptosis. Sumida et al. 

found that AKI induced mitochondrial fragmentation in 

heart tissue by promoting phosphorylation of dynamin-

related protein 1 (Drp1) [67]. Inhibition of mitochondrial 

fission through administration of the Drp1 inhibitor 

Mdivi-1 attenuated I/R-mediated kidney damage and 

improved cardiac performance following AKI [67] 

(Figure 1).  

 
Both oxidative stress and inflammation in the 

myocardium can induce mitochondrial fission [67]. 

Excessive mitochondrial fission results in a reduction in 

the mitochondrial membrane potential and the release of 

pro-apoptotic factors into the cytoplasm [68]. 

Mitochondrial fission can therefore function similarly to 

intracellular second messengers that sense extracellular 

signals (e.g. oxidative stress, inflammation, and 

hemodynamic changes) and then transmit these signals 

by undergoing changes in morphology. Alterations in 

mitochondrial shape suppress oxidative phosphorylation 

and activate mitochondria-dependent apoptosis, resulting 

in myocardial damage. Wang et al. demonstrated that 

mitochondrial calcium overload is also required for AKI-

mediated mitochondrial fission in cardiomyocytes [68]. 

Additionally, Wang et al. reported that AKI induces 

phosphorylation of 1,4,5-trisphosphate receptor (IP3R) 

and upregulation of mitochondrial calcium uniporter 

(MCU) in cardiomyocytes [66]. Phosphorylation of IP3R 

and upregulation of MCU contributed to mitochondrial 

overload in cardiomyocytes, resulting in phosphorylation 

of Drp1 and mitochondrial fission [66]. These results 

indicate AKI activates Drp1-related mitochondrial fission 

in cardiomyocytes. 

 

CONCLUSIONS 
 

In this review, we have summarized recent insights into 

the pathophysiological mechanisms underlying CRS-3. 

We propose a three-step mechanism that could explain 

the pathophysiology of CRS-3. Following AKI, the 

damaged kidney tissue first releases pro-inflammatory 

factors and oxidative metabolites into the circulation. 

Alterations in the neuroendocrine system also result in 

the secretion of several hormones into the blood. Next, 

kidney-derived biomolecules directly interact with 

receptors or adaptors on the surfaces of cardiomyocytes. 

It is also possible that they exert indirect effects on 

cardiomyocytes through other mechanisms. Finally, 

mitochondria respond to the kidney-derived biomolecules 

by changing morphology, which results in a reduction in 

ATP production and activation of apoptosis in 

cardiomyocytes. Our hypothesis has several limitations. 

First, the receptors or adaptors expressed on the surfaces 

of cardiomyocytes have not been verified. Second, 

mitochondria are not the only determinants of 

pathological alterations in cells. Intracellular acidosis, 

disorders of calcium metabolism, and mechanical 

pressure resulting from fluid overload may also trigger 

cardiomyocyte damage. Therefore, further studies of the 

relationships between mitochondria and other 

intracellular stress responses are required in order to 

understand the sequence of events that lead to cardiac 

damage following AKI. 
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