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Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics
analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-
purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker,
acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers,
optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and
practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements,
costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the
researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of
nonfunctional requirements.

1. Introduction

The current technological improvement of molecular biol-
ogy techniques results in a huge expansion of biological
data, whose satisfactory management and analysis are a
challenging task. In particular, the adoption of an adequate
computational infrastructure is becoming too expensive, in
terms of costs and efforts of establishment and maintenance,
for small-medium biotechnological laboratories.

The traditional approaches of exploiting grid computing
or buying computational power from a supercomputing
center, in fact, are likely to provide an insufficient possibility
to customize the computational environment. For example, it
is common in computational biology tomake use of relational
database andweb-oriented tools in order to perform analyses,
which are difficult to exploit without being the administrator
of the server. Another problem is the incredible number
of bioinformatics packages that are available in different

programming environments (such as R, Perl, Python, and
Ruby), which typically require many dependencies and fine-
tuned customization for the different users. Moreover, a large
computing center often requires buying a predefined offer
(i.e., a minimum fixed amount of computing time).

These are the reasons why the present trend in e-
Science is to deploy more flexible infrastructures, such as the
service oriented ones. Cloud Computing (CC) technology, in
particular the Infrastructure as a Service (IaaS) solution, pro-
vides full-computational infrastructures as a service through
internet without requiring long setup [1]. These platforms
foster the exploitation of available services paying only for the
time they are used andmake the computational environment
greatly customizable, thus improving flexibility. In fact, the
IaaS model allows a very high degree of customization, as
users are free to install newVirtualMachines (VM) ormodify
preconfigured ones, such as Cloud BioLinux [2] or CloVR
[3], enabling also fast and possibly computational intensive
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analyses. Concerning performance, a virtual infrastructure
of 17,024 cores built using a set of amazon elastic cloud
computing EC2 (http://aws.amazon.com/ec2/) VMs was able
to achieve 240.09 TeraFLOPS for the High Performance
Linpack benchmark, placing the cluster at number 42 in
the November 2011 Top500 list (http://aws.amazon.com/hpc-
applications/).

However, the current commercial cloud infrastructures
present several drawbacks. The first one is that not all the
Cloud providers are equivalent (http://www.businessweek
.com/articles/2012-05-07/the-economics-of-the-cloud), and
it can be difficult to evaluate which is the one that best fits
the users’ needs. Moreover, a factual limitation of most cloud
infrastructures concerns the poor offer of Quality of Service
(QoS) supplied. Generally, the only QoS feature granted
by providers is the availability of a service which is as the
closest as possible to the 24 × 7 model [4]. But granting
availability is not sufficient for many biotechnological
applications, which require non functional features that
are more specific as a high level of security or resilience.
Besides this, most of the public clouds support the execution
of any kinds of applications and may not represent a cost-
effective solution for researchers requiring complex analyses.
Another issue is that the current IaaS solutions are not
completely suitable for large-scale HPC scientific simulations
[5] even if several research efforts aim at a better support
(http://arstechnica.com/business/2012/05/amazons-hpc-clo-
ud-supercomputing-for-the-99/, http://www.hpcinthecloud
.com/). A possible answer to cope with these issues,
particularly for e-Science applications, comes from solutions
that leverage existing grid infrastructures to deploy cloud-
like services. This solution takes advantage of a more
rational and flexible usage of these huge heterogeneous
infrastructures to supply scientific users with customizable
and scalable access to grid resources [6].

An alternative approach to cloud services provision is
envisaged by important analysts such as Gartner, who pre-
dicted an exciting opportunity for the figure of the Cloud
Broker (CB) [7]. According to Gartner, a broker is any
service company that, acting as an intermediary between
users andproviders of cloud services, offers its expertise in the
evaluation of the proposals and in the subsequent adoption
or development of new products based on them [8]. CBs do
not represent a new construct since brokers are commonplace
in service oriented architecture. They can be considered as a
specialization but with the opportunity to fill the gap due to
the lack of suitable QoS levels. New players as small medium
enterprises in fact can enter the market as CB by offering
both customized and more application-oriented brokering
services, along with specific higher quality services delivered
on their private clouds.

In this paper, we provide insights to research groups
concerning the effectiveness of cloud computing with respect
to their needs in terms of trade-off between economic aspects
and higher flexibility. This discussion can be very useful
also for service providers that would like to approach this
application domain in order to understand necessity and
requirements of this field.

The analysis is based on the use of our brokering system
for hybrid IaaS clouds (i.e., composed of resources belonging
to public and private cloud infrastructures), improved to
support the execution of virtual machines also on grid
infrastructures. We considered a Drug Discovery (DD)
pipeline as case study, where the various operations are
characterized by different requirements and computational
load. The requested services are allocated to the public or
to the private cloud infrastructures based on the type of
customers’ QoS expectations and on the workload of the
private cloud resources, having the twofold goals of satisfying
the higher number of user requests and maximizing the
CB’s revenue. In our opinion, this kind of analysis is of
interest both for small laboratories of molecular biology, to
understand what the market can provide and at which cost,
and for ICT service provider to understand the requirements
of the computational biology domain.

The paper is structured as follows. Section 2 describes
an example of pipeline of operations for DD, followed by
Section 3 that reports related work. Section 4 presents the
brokering system. Section 5 details the examinedmetrics and
the simulation setup, while Section 6 presents and discusses
results. In Section 7, some conclusions are drawn.

2. An Example of Drug Discovery Pipeline

Modern DD is characterized by the need to examine huge
compounds libraries in short periods of time. The use
of in silico approaches for the selection of the best drug
candidates to study in wet labs is critical because it can
dramatically reduce the cost of the experimental phase.Many
economical efforts of pharmaceutical industries and small-
medium laboratories acting in the field of biotechnology are
currently invested in the preliminary DD process performed
using computational approaches. On the other hand, thanks
to the large availability of resources, programs, processes,
and protocols, in silico DD procedures are becoming more
reliable day after day. Numerous drugswere recently obtained
using DD pipelines, including Dorzolamide for the treatment
of cystoid macular edema [9], Zanamivir for therapeutic or
prophylactic treatment of influenza infection [10], Sildenafil
for the treatment of male erectile dysfunction [11], and
Amprenavir for the treatment of HIV infection [12].

Each laboratory and each pharmaceutical industry have
certainly refined their own specific DD pipeline, accord-
ing to their possibilities and experiences. The procedures
employed for DD are themselves well-kept secrets and can
vary a lot in relation to the knowledge about the biological
system, the computational and economic effort that can
be supported. Although in this work we do not want to
present a novel DD pipeline, a task that is widely dis-
cussed in the literature [13–17], we would like to exploit
the experience matured in many national and international
research projects in which experiments of DD have been
performed, such as Bioinfogrid (http://www.bioinfogrid.eu),
Italbionet (http://www.italbionet.it), Healthgrid, and Litbio
(http://www.litbio.org/) [18–22], to discuss some economic

http://aws.amazon.com/ec2/
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/
http://www.businessweek.com/articles/2012-05-07/the-economics-of-the-cloud
http://www.businessweek.com/articles/2012-05-07/the-economics-of-the-cloud
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
http://www.hpcinthecloud.com/
http://www.hpcinthecloud.com/
http://www.bioinfogrid.eu
http://www.italbionet.it
http://www.litbio.org/


BioMed Research International 3

Target
identification

Virtual
screening

Energy
refinement

Lead
optimization

Figure 1: Principal operations of a typical drug discovery pipeline.

and practical aspects of using modern cloud computing plat-
forms for this purpose. Relying on our knowledge, we present
an example DD pipeline that is composed of four principal
steps, which in our experience constitute the backbone of
every DD project and can be broadly summarized (see
Figure 1) in (i) drug target identification using genomics and
proteomics data, (ii) virtual high throughput screening of a
large dataset of synthesizable compounds, (iii) energy refine-
ment and analysis of the conformation, and (iv) lead opti-
mization using quantitative structure-activity relationships.

2.1. Target Identification. By employing modern concept of
biotechnology, theDDprocess nowadays starts with the iden-
tification of drug targets. Besides well-established targets, for
which there is a good scientific understanding supported by
a lengthy publication history, the current molecular biology
technologies in the field of genomics, transcriptomics, and
proteomics allow the identification of new targets. These
approaches require greater research investment, but they are
also the most promising ones. The combination of these
“omics data” can be performed using a systems biology
approach in order to enhance the possibility of identifying
non trivial biomolecular mechanisms of action.

Nonetheless, the creation of a systems biology model is
a long task, which skilled researchers accomplish by hand,
in particular when the model is quantitative and a mathe-
matical description of the enzyme and metabolite dynamics
is provided in function of their concentrations. For example,
the analysis of the extended glycolytic pathway in normal and
cancer cells has revealed that, besides the common employed
drug targets, some enzyme of the close connected pentose-
phosphate pathway can be targeted to fight the Warburg
effect, a characteristic of cancer cells [23].

In detail, the optimization of the model against a
specific cell condition consists in identifying some free
parameters of the model in order to fit experimental data.
This is a global optimization problem, usually addressed
using genetic algorithms, which can be very time consum-
ing, according to the number of parameters to identify.
Many packages exist that provide suitable functions for
this kind of optimization. A very common choice of free
software is R-Bioconductor (http://www.bioconductor.org/),
while among commercial solutions the use of MATLAB
(http://www.mathworks.it/products/matlab/) with the sup-
port of the system biology toolbox should be cited.

2.2. Virtual Screening. The process of lead compound
identification is the core of each DD experiment, and virtual

screening is probably the most common structure based
approach employed on this field. Virtual high throughput
screening consists in performing a large scale docking exper-
iment of a protein target against a large dataset of ligands
with possible pharmacological activity. Many drugs have
been developed starting from ligands identified using virtual
screening, such as inhibitors of the serine protease [24],
compounds for the seasonal flues [25], and compounds for
neglected diseases [26]. Clearly, for the development of a
virtual screening process, the structure of the target protein
must be available to researchers. Short molecular dynamics
can be used to relax the crystal structures or to optimize a
comparative model of the protein target and sample different
conformations of the target in order to improve the quality of
results.

A docking program must be chosen relying on many
factors, such as the performance of the underlying algorithm
and scoring functions with respect to the specific family
of proteins. Common choices among the free available
software are Dock [27] and Autodock [28], while among
the commercial package we can find FlexX [29], Glide [30],
and ICM [31]. The possibility to exploit commercial software
on a preconfigured virtual machine can be an added value
for a cloud provider specialized in the field of molecular
biology. The dataset of ligand to screen must also be chosen
with respect to the available knowledge of the protein of
interest, although a common choice is the ZINC database
[32], which collects 3.3 million chemical compounds anno-
tated with biologically relevant properties (molecular weight,
calculated Log 𝑃 and number of rotatable bonds) from
different vendors. These ligands have already been filtered
according to the Lipinski rule of five [33], which evaluate
the druglikeness of small molecule), and are classified in
target specific subcategories for particular protein target in
the DUD (http://dud.docking.org/) database which usually
provides a starting point for the virtual screening. If a real
ligand is known to bind a specific protein it can be interesting
to test small molecules with quite similar characteristics;
to accomplish this task another available molecule database
is PubChem (http://pubchem.ncbi.nlm.nih.gov/) under the
umbrella of National Institute of Health (NIH) which allows
similar researches relying on the chemical structure of a
molecule. Otherwise the ligand dataset can be designed by
employing combinatorial chemistry methods.

The virtual screening step presents also some data man-
agement issues: although the size of the output is not huge,
the number of compounds in analysis, the number of simula-
tions performed, and the number of different conformations
between the proteins and the ligands provided by the docking
algorithmusually require the use of a relational database to be
managed.

2.3. Energy Refinement. Docking screenings are very useful
for discarding compounds that clearly do not fit with the
identified target. However, the effective selection of lead
compounds is more difficult because docking software have
well-known errors in computing binding energy in the range
of some kcal [34]. Therefore, best compounds achieved
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through the virtual screening process usually undergo a
protocol of energy refinement implemented using molecular
dynamics [35]. This analysis consists in solving Newton’s
equations of motion for all the atoms of a protein, taking
as boundary conditions the initial protein structure and a
set of velocity having a Gaussian distribution. Indeed, by
employing specific simulations schemas and energy decom-
position algorithms in the postanalysis, molecular dynamics
allow achieving more precise quantification of the binding
energy [36]. Common techniques for energy estimation are
MM/PBSA and MM/GBSA, which consist in the evaluation
of the different terms that compose the binding energy.

In particular, it is possible to account for the binding
energy to the sum of molecular mechanical energies in the
gas phase, solvation contribution, evaluated, for example,
by using an implicit solvent model like generalized born
or by solving the Poisson-Boltzmann equation, and the
entropic contribution, estimated with normal mode analysis
approximation.

2.4. Lead Optimization. Once a set of lead compounds has
been identified, the last step of the DD process is the opti-
mization of the compound in order to achievemolecules with
improved potency compared to known ligands, if present
(VS and ER steps), reduced off-target activities testing the
obtained ligands against proteins related to the target, and
physiochemical/metabolic properties suggestive of reason-
able in vivo pharmacokinetics. The latter optimization is
accomplished through the evaluation of chemical descriptors
calculated employing quantitative structure-activity relation-
ship (QSAR) analysis, in particular evaluating the ADME
characteristics of the ligands through the Lipinski rule of five
[33] and the subsequent ligand modification to improve the
ADME properties.

Another application ofQSARanalysis is the improvement
of the final ligand set to be experimentally tested, relying
on the physiochemical characteristics of previously selected
ligands screened from different datasets, obtainingmolecules
with an estimated binding energy similar or improved com-
pared to the previously selected [37, 38]. In this context,
ligand modification, including the substitution of ligand
functional groups to improve the solubility, for example, is
one of the lead optimization strategies.

2.5. Computational Demand and Practical Requirements. The
four steps of this exemplifying pipeline for DD present dif-
ferent characteristics in terms of Information and Commu-
nication Technology (ICT) requirements.The computational
effort required for Target Identification (TI) analysis is nearly
important, and both parallel and distributed approaches can
be employed for the simulations. No specific requirement for
the network is necessary because simulations are performed
alone with no information exchange until the final statistical
analysis. Nonetheless, the optimization of thesemathematical
models can take several days on a singlemachine, considering
the number of parameters to estimate (typically from 10 to
50), the number of simulations required for each parameter
(from hundreds to thousands), and the time needed for

a single simulation, which can be in the order of 30 seconds.
However, the characteristics of the parallel infrastructures
are not very critical because simulations on the different
parameters can be carried out in an independent way until
the final collection of data, which makes this application also
resilient to failures. Security issues are strictly connected with
the data used for model optimization, which can impose
some security constrains if information employed is sensible.

In the second step of the workflow, the Virtual Screening
(VS), the size of the problem can result in an important
computational effort. By using large-scale computational
platforms, huge docking simulations can require a total
computational time on a single core of many CPU-years [39].
Nonetheless, in real case studies, the number of ligands to
screen is between 5,000 and 10,000 compounds. Screening
thousands of ligands against a receptor, or even different
conformations of it, usually takes some days depending
on the parallelism degree available on the infrastructure.
Security of this computation can be critical if ligands tested
are from the pharmaceutical industries. For this reason,
structural information of these ligands is often encrypted
to avoid any possible hack. Although each single docking
simulation is sensible to system failure, because typically no
partial data are recorded until the computation is finished,
the full task is composed of independent simulations, which
are singularly performed. Virtual screening is an early phase
analysis in the DD process so it is performed quite often even
if the full pipeline only seldom comes to the very end. On the
average, we can estimate that 75% of the TI steps are followed
by a VS analysis, which requires a time proportional to the
number of selected targets.

The computational effort required for the Energy Refine-
ment (ER) analysis is probably the most relevant of the
whole pipeline. In relation to the number of atoms involved
in the simulation (also considering the presence of the
explicit solvent, which is a common approach for molecular
dynamics) and considering the number of steps at which
the model is simulated (in our simulations from 5 to 300
nanoseconds), ER simulations can take weeks to compute
also on parallel architectures. Moreover, about 10% of the
starting dataset undergo the ER procedure; therefore, the
number of complexes submitted to this step can be consid-
erable. Molecular dynamics is well known to be very task
intensive, and parallel computations are required to have
results in a reasonable time. The parallelization paradigm on
distributed clusters is usually based on the division of the
simulated box assigning a set of atoms to each core. While
employing a parallel cluster for parallelization, the use of
high-performance network such as Infiniband is essential to
improve performance; the use of Gigabit Ethernet usually
prevents any benefit from using more than one server due to
the high number of communications required to synchronize
atoms at the box boundary. On the contrary, the use of a
fast network results in a quite linear scalability at increasing
the number of used CPUs. For example, by using 48 Xeon
cores interconnected with a QDR Infiniband, it is possible
to simulate a nanosecond of 250,000 atoms in 4 hours.
The security required for this kind of applications is similar
to the one of the previous step, and it is possible to set
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checkpoints in the computation in order to prevent the
complete loss of data in case of failure. Generally, 50% of the
DD analyses reach this operation, and it is common to run
up to ten ER simulations at this stage. It is worthy to note that
somemolecular dynamics packages commonly employed for
energy refinement, with particular concern to AMBER [40],
can be also performed using GPGPU architectures. There
is evidence (http://ambermd.org/gpus/) that exploiting the
novel Kepler NVIDIA architecture a considerable scalability
can be achieved, and also our tests are promising in this sense.
Nonetheless, considering that many other programs used for
molecular dynamics such as GROMACS [41], NAMD [42],
and CHARMM [43] do not have the same scalability on these
architectures, the exploitation of parallel computing is still
widely used for this kind of simulations. From the cloud
point of view, the use of GPGPU cards or the exploitation of
an Infiniband connection presents similar problems, which
means that a dedicated PCI device should be mounted to the
virtual machine, with an additional cost, which should be
valued according to the provided benefits. EC2 also provides
some virtual machines equipped with NVIDIA Tesla “Fermi”
M2050 GPUs.

The Lead Optimization (LO) step is the most important
because a positive result means the prosecution of the
analysis in the wet lab, but it is executed a few times, due
to project mortality along with the pipeline, and the less
demanding one in terms of computational cost. Only 25%
of the pipelines reach this operation that is performed on
a number of compounds varying between 5 and 10, for
an execution time that increases in a combinatorial way
with the number of selected ligands. Programs used for
this kind of analysis are often commercial (MacroModel
(http://www.schrodinger.com/productpage/14/11/) andMed-
stere (http://syrris.com/batch-products/bioisostere-softwa-
re)), although academic-free solutions are available (Dis-
covery Studio (http://accelrys.com/products/discovery-stu-
dio/qsar.html)). As before, the possibility for a cloud service
to provide access to this software, which can be also very
expensive, can be an aspect to consider from the economic
point of view. The time for this last step can be measured in
hours, working on a workstation or a small server, which
must be equipped with costly software and exploited by
expert researches.

From a computational and operative point of view, we
summarized in Table 1 the functional (i.e., system configura-
tion, type of required VM) and nonfunctional requirements
along with the operation-specific features (i.e., input size,
average arrival, and execution times) that characterize each
step of the exemplified pipeline. Table 1 also lists some
of the software solutions available as commercial or free
packages for each operation in the pipeline. The example
pipeline was implemented with a joint effort of the authors
by installing these packages on the appropriate VM template
(i.e., the one corresponding to the EC2 reference, as stated in
Table 1) and measured the performance (i.e., service demand
𝜇𝑘) obtained by the virtualized execution of the software
on real experiment data. The combination of system and
operation values as well as of nonfunctional constraints is
useful to provide a realistic, although approximate, account

of the computational behavior of the exemplified pipeline
model. Moreover, this set of data allowed us to analyze the
performance and the costs of the proposed hybrid cloud
broker in executing multiple pipelines, evaluated by means
of the implemented simulator as discussed in the following
sections.

We consideredAmazonEC2 as the reference for the cloud
providers because of the high quality of its infrastructure
for parallel applications. On the basis of the operations’
requirements, the Amazon EC2 candidate VM instances are
presented in Table 2. As regards the prices, we considered the
USEast (N.Virginia) region inDecember 2012 today they can
be different because they are highly volatile.

The Amazon’s EC2 Compute Unit (ECU) (http://aws
.amazon.com/ec2/faqs/#What is an EC2 Compute Unit
and why did you introduce it) corresponds to the equiv-
alent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or an
early-2006 1.7 GHz Xeon processor. In particular, the “C”
instance type corresponds to an 8-core Xeon X5570n and
D to a 16-core Xeon E5-2670. Considering also the ratio
capabilities/price and the constraints of the previous tables,
in our simulations we make use of the instance types C, D,
and also E as composed of two instances of type D, as shown
in Table 3 (see Section 5). It is possible in fact in Amazon to
create clusters with high performance by defining “placement
groups” (http://aws.amazon.com/hpc-applications/). Once
the instance types were defined, we experimented the
effective implementation of the operations considering
the hardware configuration described in Section 5.2.3. The
execution of the first three operations is carried out using
a virtual cluster of VMs, because of their high level of
data parallelism, as described before. The details of these
configurations and the intervals of the possible execution
times (i.e., the service demand times 𝜇𝑘) are shown in Table 1.

3. Related Work

Cloud computing in bioinformatics is presently used for
many tasks from next generation sequencing analysis
[44], data annotation [45], and genome processing [46,
47] to molecular modelling [48] and DD [1, 49]. In
particular, DD is one of the user scenarios developed
also within the virtual multidisciplinary EnviroNments
USing Cloud Infrastructures (VENUS-C) EU-funded project
(http://www.venus-c.eu/Pages/Home.aspx). VENUS-C aims
at providing new cloud solutions for individual and small
research groups across diverse disciplines through the deve-
lopment of a large cloud computing infrastructure for scie-
nce and SMEs in Europe. In particular, this infrastruct-
ure provides a QSAR (http://www.isgtw.org/announcement/
de-risking-drug-discovery-use-cloud-computing) service for
creating models able to predict biological activity of com-
pounds from their chemical structure. Such operation cor-
responds to the last step of the pipeline we presented in
Section 2.

The growing interest for CC in bioinformatics [50]
is due to the fact that it “can provide researchers with
the ability to perform computations using a practically
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Table 1: Characteristics of the operations of the drug discovery pipeline.

TI VS ER LO
Functional
Number of cores ≥16 ≥8 ≥32 ≥4
Network — — Infiniband —
RAM (GB) ≥32 ≥16 ≥64 ≥16
HDD (GB) — ≥500 ≥1000 —
Reference Amazon EC21
virtual cluster 20 × D 10 × 2 × D 1–10 × 2 × D 1 × C

Non functional
Security Low Medium Medium High
Availability/Resiliency Low Medium Medium Low
Operations parameters

Input data and size
10 K–100K
Parameter
simulations

5 K–10K
Compounds

1–10 Simulations
50K–250K Atoms

5–300
Nanoseconds

5–10 Compounds

Service demand time (𝜇𝑘)
with respect to the
reference Amazon EC2
virtual cluster

16–160 h 8–16 h 2–1200 h 1–6 h

Arrival rate (𝜆𝑘) per year
per research group 4 3/4 2/3 1/2

Packages

Commercial MATLAB FlexX, Glide, ICM AMBER,
CHARMM

MacroModel,
Medstere

Free/open source R Dock, Autodock GROMACS,
NAMD Omega

1See Table 2.

Table 2: Characteristics of the considered Amazon EC2 instance types.

Amazon EC2 instance types RAM EC2 compute unit Storage
On Demand
instances
price/h

Heavy utilization
reserved instances

price/h
A: High-Memory Double eXtra Large 34.2GB 13 850GB $0.9 $0.176
B: High-Memory Quadruple XL 68.4GB 26 1690GB $1.8 $0.352
C: Cluster Compute Quadruple XL 23GB 33.5 1690GB $1.3 $0.297
D: Cluster Compute Eight XL 60.5GB 88 3370GB $2.4 $0.361

unlimited pool of virtual machines, without facing the
burden of owning or maintaining any hardware infrastru-
cture,” as said by the J. Craig Venter Institute (http://www
jcvi.org/cms/research/projects/jcvi-cloud-BioLinux/over-
view/) describing the motivation for their Cloud BioLinux
image [2]. This can be considered the prosecution of the
effort to develop suitable grid infrastructure for manag-
ing, integrating, and analysing molecular biology data.
Starting from the experience in UK of myGrid (http://www
.mygrid.org.uk/), which proposed a platform for distribut-
ed analysis and integration of bioinformatics data, other ini-
tiatives followed in France, such as IdeeB (http://idee-
b.ibcp.fr/) GRISBI (http://www.grisbio.fr), and Renabi
(http://www.renabi.fr/), in Germany with D-Grid (http://
www.d-grid.de/) and MedGrid (http://www.medigrid.de/),

and in Italy with LITBIO, LIBI, ITALBIONET, and Intero-
mics (http://www.interomics.eu). At the moment, large EU
funded projects are ongoing for the creation of infrastru-
ctures aimed at the analysis of omics-data through dis-
tributed and cloud infrastructures, such as Elixir (http://
www.elixir-europe.org/), StratusLab (http://stratuslab.eu/),
Contrail (http://contrail-project.eu/), and Eurocloud (http://
www.eurocloudserver.com/about), which followed very
well-known initiatives such as EMBRACE (http://www.emb-
racegrid.info/).

There are also a number of private initiatives that aim
at supporting research, in particular in bioinformatics and
computational biology, using cloud Infrastructures. Exam-
ples are Era7Bioinformatics (http://era7bioinformatics.com),
DNAnexus (https://dnanexus.com), Seven Bridge Genomics

http://www.jcvi.org/cms/research/projects/jcvi-cloud-BioLinux/overview/
http://www.jcvi.org/cms/research/projects/jcvi-cloud-BioLinux/overview/
http://www.jcvi.org/cms/research/projects/jcvi-cloud-BioLinux/overview/
http://www.mygrid.org.uk/
http://www.mygrid.org.uk/
http://idee-b.ibcp.fr/
http://idee-b.ibcp.fr/
http://www.grisbio.fr
http://www.renabi.fr/
http://www.d-grid.de/
http://www.d-grid.de/
http://www.medigrid.de/
http://www.interomics.eu
http://www.elixir-europe.org/
http://www.elixir-europe.org/
http://stratuslab.eu/
http://contrail-project.eu/
http://www.eurocloudserver.com/about
http://www.eurocloudserver.com/about
http://www.embracegrid.info/
http://www.embracegrid.info/
http://era7bioinformatics.com
https://dnanexus.com
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Table 3: Commercial and open source cloud broker Platforms.

Cloud
service Users1 CI2 Type of X as a

Service QoS/SLA Billing/
Bench. SW3

Zimory4 Management
system

CB, SP,
CC All All Security,

resiliency/Y APIs

ComputeNext5 Service brokerage SP, CC — All (I) —/Y Y/Y APIs

CompatibleOne6 Cloud Broker All All All Security/Y OS
APIs

Gravitant cloudMatrix7 Services
brokerage

CB, SP,
CC All All Security/Y Y/Y APIs

enStratius8 Management
system

CB, SP,
CC All S, I Security Y APIs

RightScale myCloud9 Management
system SP, CC All (H) S, P Security Y APIs

Scalr10 Management
system SP, CC All All [OS]

APIs
Standing Cloud11 Marketplace All PB All

Artisan Infrastructure12 IaaS provider SP All Security,
resiliency/Y

StratusLab13 IaaS distribution CB, SP — I — — OS
APIs

Contrail14 Components CP, CB,
SP All P, I Security,

reliability/Y
OS
APIs

RESERVOIR15 Federated clouds
management CB, SP H I —/Y OS

APIs

MOSAIC16 Component
framework SP, CB H, P All Security/Y —/Y OS

APIs
1Cloud Provider, Cloud Broker, Service Provider, Cloud Consumer.
2Cloud Infrastructure: PuBlic, Private, Hybrid.
3License: Open Source.
4http://www.zimory.com.
5https://www.computenext.com.
6http://www.compatibleone.org.
7http://www.gravitant.com.
8http://www.enstratius.com.
9http://www.rightscale.com.
10http://www.scalr.com.
11http://www.standingcloud.com.
12http://www.artisaninfrastructure.com.
13http://stratuslab.eu.
14http://contrail-project.eu.
15http://www.reservoir-fp7.eu.
16http://www.mosaic-cloud.eu.

(https://www.sbgenomics.com), EagleGenomics (http://
www.eaglegenomics.com), MaverixBio (http://maverixbio
.com/), and CRS4 (http://www.crs4.it/). Noteworthy, also
large providers of molecular biology instrumentations, such
as Illumina, and huge service providers, such as BGI, have
CC services to support their customers.

A common situation for small-medium labs is in fact the
periodical need to process large amount of data. As said in the
introduction, the classical approach is to exploit the power of
the clusters (or supercomputers) owned by their institutions
(i.e., the university or research institute) or accessible through
grid environments, exploiting partnerships and grants, or by
paying the price for outsourcing to third party ICT providers.
Each of these choices implies to modify the code to get it
running on these resources, difficulties to have their software

installed, and long waiting time in a scheduling queue. This
is the reason why solutions relying on IaaS, where VMs are
available to install whatever software (and version) needed
by the research group, are highly desirable. Nonetheless, the
mere availability of the most commonly used bioinformatics
tools in a preconfigured VM is an added value, because they
are quite a large number and hard to build and maintain.

An interesting solution is represented by the Worker
Nodes on Demand Service (WNoDeS) [6], developed by
INFN,which is able to dynamically allocateVMon a resource
pool, in particular in the EGI grid computing environment.
The key added value of this tool is represented by its smooth
integration with the Local Resource Management System
(LRMS); therefore, it is possible to exploit the same resource
pool via the grid, local, and WNoDeS interfaces without the

http://www.zimory.com
https://www.computenext.com
http://www.compatibleone.org
http://www.gravitant.com
http://www.enstratius.com
http://www.rightscale.com
http://www.scalr.com
http://www.standingcloud.com
http://www.artisaninfrastructure.com
http://stratuslab.eu
http://contrail-project.eu
http://www.reservoir-fp7.eu
http://www.mosaic-cloud.eu
https://www.sbgenomics.com
http://www.eaglegenomics.com
http://www.eaglegenomics.com
http://maverixbio.com/
http://maverixbio.com/
http://www.crs4.it/
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need to partition it. With respect to our previous works, we
improved our brokering system in order to be able to interact
with it. Although this tool is installed on a few INFN grid sites
[51], which limits the size of the simulation that is possible
to perform, it has a great potential. As regards the aspects
related to the QoS requirements, they depend on the resource
provider; therefore, for high-level request it is necessary to
exploit commercial services different from the grid initiatives.

The interest about providing ICT services in the field of
molecular biology is great, as we can see, and this is only
the top of the iceberg if we consider that CC is supposed to
become of primary interest in the healthcare sector once the
concerns related to security and privacy will be adequately
solved. For these reasons, a sound evaluation of the economic
aspects involved in working in this field is of paramount
importance for a successful adoption of CC solutions for
bioinformatics applications, and the analysis proposed in this
paper goes in this direction.

Within the VENUS-C project, an interesting analysis
about the sustainability strategies was carried out [52].
According to that report, an e-Science cloud infrastructure,
in order to be sustainable, has to (i) expand the participation
of users within a research community and also to involve
other research communities, (ii) simplify the access to the
offered services and provide a customized support, and (iii)
improve virtualization in order to improve consequently the
availability, accessibility, efficiency, and cost-effectiveness of
the platform.

However, while it is easy to quantify pros and cons in
the adoption of a cloud solution for a single and possibly
fast operation [1, 53], it is more difficult to develop a suitable
forecastingmethod able to predict economic performances of
cloud technologies, in particular for long running workflows
as we did. In some cases, depending on the volume of data
and computation to perform, operating on a cloud provider’s
infrastructure seems to bemore expensive than providing the
necessary ICT infrastructure in-house. As recognized in a
technical report onCCpublished by theUCBerkeley Reliable
Adaptive Distributed Systems Laboratory [54], “when all the
costs of running a data centre are factored in, including
hardware depreciation, electricity, cooling, network con-
nectivity, service contracts, and administrator salaries, the
cost of renting a data centre from a Cloud provider is
marginally more expensive than buying one. However, when
the flexibility of the cloud to support a virtual data centre that
shrinks and grows as needed is factored in, the economics
start to look downright good.”

On the market, there are many companies offering gene-
ral-purpose cloud computing services (the public cloud)
withmany similar features, but it is hard to compare the value
of these services.This is due to several motivations, but prob-
ably the truth is that vendors do not want a too straight-
forward comparison (http://www.informationweek.com/
cloud-computing/infrastructure/why-cloud-pricing-compa-
risons-are-so-har/240001491). This is one of the reasons why
a brokerage service for the discovery of available resources
and the definition of service level agreements for their use is
highly desirable, as recognized by Gartner, and in this case

is of particular importance to smooth the issues related to
e-Science clouds [55].

Several commercial and open source cloud broker plat-
forms and tools support organizations in consuming and
maintaining cloud services, being IaaS, PaaS, SaaS, or NaaS
(network as a service), particularly when they span multiple
providers (see Table 3). These offers generally “automates
and accelerates the creation, launch, and management of
all types of scalable cloud environments—whether public
clouds, private cloud, virtual private clouds or hybrid clouds,”
and may be provided on-premises, as SaaS or both solutions.
More or less, all these tools grant QoS features like secu-
rity, reliability, and resiliency allowing SLA mechanisms to
enforce them. Some CB tools are more consumer or service
provider oriented, while others may be employed by cloud
providers or by cloud brokerage enterprises to start their
own core businesses. The last three systems listed in Table 3
are component-based frameworks originated from EU FP7
projects.

As regards the brokering strategies, several proposals
were presented in the literature, aiming at the design of
efficient algorithms for the negotiation of the resources, as
[56], at the minimization of energy consumption, or, on
the other hand, at maximizing the efficiency of resources,
as [57, 58]. Here, we focus on the evaluation of economic
aspects; therefore, we evaluate three simple but meaningful
strategies for the evaluation of the possible costs a laboratory
has to pay and the revenue a CB can obtain.

To ground our proposal with real market offers, we
evaluated the HPC features supplied by public cloud pro-
viders with respect to the requirements of the considered pip-
eline operations. Cloud computing infrastructures in general
provide a good support to loosely coupled programs where
processors work independently for long periods and ex-
change a limited amount of data [59]. However, Amazon
EC2 has set up a higher standard for performance with its
IaaS offer, providing a wider set of VM classes from micro
(for low throughput applications with periodic bursts) to
graphics processing units (GPUs) based, and presently it
appears as the most advanced offer (http://arstechnica.com/
business/2012/05/amazons-hpc-cloud-supercomputing-for-
the-99/) also compared to Microsoft Azure [60]. For this
reason, our analysis leverages on Amazon EC2’s instance
types and pricing models.

4. Hybrid Clouds Brokering System

Both public cloud providers and the CB itself can supply
the resources managed by a Hybrid Cloud (HC). The UML
sequential diagram of Figure 2 highlights a typical and quite
general scenario for HC. A customer requires the CB for
one of the services it provides (e.g., TI, VS, ER, and LO),
which are delivered by the CB through VMs equipped with
the necessary software.The brokering scheduler allocates the
VM to the private or public cloud zone depending on the
availability of feasible private resources and according to ser-
vice’s computational demand and nonfunctional constraints.
The CB offers different VM configurations for the services

http://www.informationweek.com/cloud-computing/infrastructure/why-cloud-pricing-comparisons-are-so-har/240001491
http://www.informationweek.com/cloud-computing/infrastructure/why-cloud-pricing-comparisons-are-so-har/240001491
http://www.informationweek.com/cloud-computing/infrastructure/why-cloud-pricing-comparisons-are-so-har/240001491
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
http://arstechnica.com/business/2012/05/amazons-hpc-cloud-supercomputing-for-the-99/
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Figure 2: UML sequential diagram of a request for service execution in a hybrid cloud.

expressed in the form of some Service Level Agreement
(SLA) templates depending on their requirements and price
schemas (see Table 3). This differentiated offer is aimed at
satisfying various kinds of nonfunctional requirements (e.g.
security and privacy constraints, high bandwidth network,
and resiliency to faults) as well as at presenting customers
with an articulated portfolio of prices from which they can
choose a tailored solution which best fits their needs.

With the purpose of maximizing the number of satisfied
users (by reducing their waiting time) along with the CB’s
revenue (by maximizing the execution of the VMs on its
private cloud), the proposed brokering algorithm takes into
account the characteristics of the requested services in terms
of their temporal and hardware requirements, thus achieving
a profitable use of its resources. In a mixed scenario with
possible competing customers (i.e., having different QoS
requirements), a too aggressive pursue of incomes may
negatively influence the satisfaction of a significant part of
them. Indeed, a näıve way to increase the total revenue is
to maximize the in-house execution of all services. Such
a greedy approach is generally hindered by two factors:
the limited number of in-house resources and the specific
requirements of each service that may force some requests to
run preferably on the public zone and reserve private space
to particularly critical ones (e.g. security constraints). It is
therefore important to carefully analyze the way requests for
service executions are better satisfied by in-house or by public
resources.

As discussed in Section 2.5, the services involved in the
DD scenario are characterized by different functional and
nonfunctional requirements. In particular, from Table 1, we
see that each class of service may be requested to be executed
on a secure and resilient system or be independent from
this constraint. In the following, we call Private cloud Zone
(namely, for short PZ) a request of the first kind and Any
cloud Zone (namely, AZ) a request which can be indifferently
executed on the private or the public zone. While AZ
requests, for definition, can almost immediately be accepted,
thus always meeting users demand, PZ ones have to be
mandatorily allocated on the private resource and therefore
may be subject of delays or, in the worst cases, rejections if
not enough space is found for their allocation in a predefined
amount of time.

Any allocation strategy, which strictly tries to satisfy the
majority of PZ requests, could lead to a conservative, hence,
less-profitable situation to reserve all in-house resources,
thus renouncing to possible revenue by rejecting AZ request,
even when there are free private resources. On the other
side, an allocation mechanism that indiscriminately assigns
AZ requests to private nodes increases the risk of missing
or delaying PZ requests. By taking into account system
utilization and the characteristic of each request, a viable
allocation solution will properly use part of the private
resources to run AZ services (aimed at increasing the total
revenue), keeping however a reasonable amount of them free,
ready to satisfy possible future PZ requests.
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4.1. System Architecture. In Figure 3, the architecture of the
brokering system we developed is shown. The user interacts
with the tool via a web interface that allows specifying the
service he/she needs (1). These parameters are sent to the
Broker that interacts with the private cloud to obtain the
resource status (2).This interaction is not possible, in general,
with the public clouds, which only provide the ability to
launch predefined VM templates and monitor them. It is
also to be considered that such information would also be
not necessary because usually public clouds have enough
resources to satisfymost of the requests.The broker scheduler
then decides where to allocate the request on the basis of
the policies described in Section 5 that consider the status
information, the type of service, and the required QoS and
issues the launch command on the selected cloud using the
proper API (3).

With respect to our previous works [61, 62], we improved
our system in order to be able to interact with WNoDeS
through the Open Cloud Computing Interface (OCCI)
standard (The OGF Open cloud Computing Interface,
(http://www.occi-wg.org/doku.php)), therefore we are now
able in theory to exploit the power of Grid computing
infrastructures for the execution of VMs. We say “in theory”
because so far the tool is limited to a few EGI sites; therefore,
we have to deal with public CCproviders also forAZ requests.
The hope is that initiatives similar to the aforementioned
grid-based ones will support this attempt of convergence
between grid and cloud computing. A further example is
also provided by the Sci-Bus project (http://www.sci-bus.eu),
which allows creating e-Science gateways for both the infras-
tructures.

4.2. Brokering Strategies. The multiple clusters of the HC
belong to two administrative zones: the private one, directly
operated by the CB, and the public one managed by commer-
cial providers, amounting for𝑁 and P (with𝑁 ≪ 𝑃) physical
servers, respectively. In the following, we characterize each
server 𝑠 by the tuple:

capability (𝑠)

= ⟨tot num core, tot amount RAM, tot amount HD⟩.

(1)

The brokering algorithms schedule job by applying
heuristics based on different quota of private resources to
execute the various service requests. The parameter 𝑄, 𝑄 ≤

𝑁, determines the private portion of servers dedicated to the
execution of type PZ requests.

Each request req of service execution is characterized by
an execution time according to the class of service requested
and possibly by a deadline. In particular, in the simulation we
assumed that AZ requests are executed on the public cloud
when a fixed deadline expires. Furthermore, according to its
hardware requirements, req is mapped to a specific virtual
machine described by the tuple:

vm (req) = ⟨numcores, amountRAM, amountHD⟩ . (2)

While we assumed that it is always possible to allocate
requests to the public zone at any moment, only a subset of

private ones is available, depending on its current workload.
At any instant, the number of available resources for a node 𝑠

executing 𝑅 requests is given by

available (𝑠) = capability (𝑠) − ∑

𝑗

vm (req
𝑗
) 𝑗 = 1, . . . , 𝑅,

(3)

where ∑
𝑗
vm(req

𝑗
) is the addition on vectors and − is the

subtraction operation on vectors.
The brokering scheduler allocates a VM to the private

zone for an arriving PZ request req if (4) holds; elsewhere req
is put in a waiting queue until an available server is found:

∃ 𝑠 ∈ private | vm (req) ≤ available (𝑠) . (4)

Moreover, for an AZ request to be allocated to the private
zone, the following has to conjunctly hold with (4):

∑

𝑠𝑗 ∈ private
available (𝑠𝑗) >

𝑄

𝑁

∗ ∑

𝑠𝑗 ∈ private
capability (𝑠𝑗) .

(5)

Condition (5) checks if the whole amount of avail-
able private resources is actually greater than the quota of
resources reserved only to PZ, determined by the parameter
𝑄 ∈ [0 ⋅ ⋅ ⋅ 𝑁]. Depending on the value of 𝑄, the brokering
algorithm allows depicting three allocation patterns, namely,
zone strategies: feasible (𝑄 = 𝑁), static reservation (0 < 𝑄 <

𝑁), and max occupation (𝑄 = 0). With Feasible (FE), all
private resources are dedicated to perform PZ requests only:
that is, the𝑄/𝑁 ratio is equal to 1, and condition (5) is neither
satisfied. According toMax Occupation (MO), no resource is
used exclusively to perform PZ: 𝑄/𝑁 = 0, and (5) is always
true. Static Reservation (SR) strategy, instead, reserves a fixed
quota of resources 𝑄 to execute PZ requests and lets 𝑁-𝑄
resources free to execute the other kind of requests (i.e., AZ).
As we discussed in Section 6, the choice of𝑄 affects both CB’s
revenue and user satisfaction and strictly relates to the real
system workload.

The adoption of each one of the three zone strategies (i.e.,
the value of Q) discriminates the behavior of the algorithm
in allocating requests to the private or public cloud. Once a
set of available resources has been found on the private zone,
a second level of scheduling decision may apply to select the
private servers eligible to allocate the scheduled service (see
Figure 2).

5. Materials and Methods

To analyze the achievements of the brokering algorithm with
respect to the three scheduling strategies FE, SR, and MO,
we developed a discrete event simulator [63], taking into
account the following description of the parameters and
metrics involved in the simulated scenario.

http://www.occi-wg.org/doku.php
http://www.sci-bus.eu
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Figure 3: The brokering system architecture.

5.1. Performance Metrics. The revenue of a CB is function
of the service prices that, in the case of hybrid cloud, may
include the cost of acquired resources from a public provider.
Given a request to execute, for a period t, a service of type 𝑘

(e.g., TI, VS, ER, and LO), a customer has to pay the CB the
price 𝑝𝑘:

𝑝𝑘 = 𝐵𝑘 + 𝑡 ∗ 𝐶𝑘, (6)

where 𝐵𝑘, the brokering service price, is the fee owed to
the CB to handle the request, and it is due irrespectively
whether the request is executed in-house or on the public
cloud. The second term of 𝑝𝑘 is the de facto provisioning
price, proportional to the execution time 𝑡, and depends on
the capabilities (e.g. number of cores, disk space, network
connection, and so forth) required by each specific service,
expressed by the hourly cost 𝐶𝑘, associated with the virtual
machine delivered. If the service is executed on the private
cloud, the CB revenue is given by the sum of the two
prices. Otherwise, the CB revenue is limited to 𝐵𝑘 and the
provisioning price is turned to the public cloud provider.The
revenue of the CB to execute the request 𝑗 on the server 𝑖,
where the class of 𝑗 is 𝑘𝑗 and the execution time is 𝑡𝑗, is

revenue𝑖𝑗 = 𝐵𝑘𝑗
+ 𝑡𝑗 ∗ 𝐶𝑘𝑗

, 𝑖 ∈ private,

revenue𝑖𝑗 = 𝐵𝑘𝑗
𝑖 ∈ public.

(7)

The (annual) total CB’s revenue, for its brokering activity,
accounts for all the 𝑋𝑖 requests executed on each server 𝑖 of
the whole hybrid cloud (𝑖 = 1, . . . , 𝑁 + 𝑃; 𝑗 = 1, . . . , 𝑋𝑖):

revenue = ∑

𝑖

∑

𝑗

revenue𝑖𝑗, (8)

where 𝑋𝑖 is the throughput [64], that is, number of requests
completed by each server 𝑖 (𝑖 = 1, . . . , 𝑁 + 𝑃) of the hybrid
cloud.

A second metric used to analyze performance behavior
of the brokering algorithm is the system utilization 𝑈. We

are obviously interested in the utilization of the private cloud,
under control of the CB, which is obtained considering the
busy time 𝑈𝑖 of each private server (𝑖 = 1, . . . , 𝑁):

𝑈 = ∑

𝑖

𝑈𝑖. (9)

Notwithstanding, for the kind of service considered, each
request can be “unfold” into different VMs that can be
allocated as soon as enough space is found; we measured the
user satisfaction has the average waiting time 𝑊𝑘 before a
PZ request of execution is completely allocated to the private
zone. Indeed, the AZ ones can be immediately satisfied on the
public zone and alsowhen executed on the private nodes, they
wait for a maximum deadline in the worst case. As opposite
PZ servicesmaywait days, until a sufficient amount of private
resources returns idle the execution of a complete pipeline,
made of four PZ requests (as in the proposed example),
requires an average waiting timeW, 𝑟 ∈ {TI,VS,ER, LO}:

𝑊 = ∑

𝑟

𝑊𝑟. (10)

5.2. Simulation Setup. In this section, we describe the param-
eters used to perform the experiments, which are the arrival
times and the average service times for the classes of requests,
the prices we considered, and the composition of the private
cloud infrastructure.

5.2.1. Arrival Times and Service Demand Times. The values of
the parameters used in the simulation are based on the infor-
mation collected in many years of research activity within
the bioinformatics group of the Institute for Biomedical Tech-
nologies. Moreover, relying on discussions carried out
in the frame of Italian initiatives (http://www.iit.it/en/nasce-
iddn-italian-drug-discovery-network.html, http://www.int-
eromics.eu/) and considering market analysis performed by
possible investors (www.iban.it/guidapratica.pdf), we make
the hypothesis that a research group may perform up to 4-
5 DD projects each year, and we considered the possibility

http://www.iit.it/en/nasce-iddn-italian-drug-discovery-network.html
http://www.iit.it/en/nasce-iddn-italian-drug-discovery-network.html
http://www.interomics.eu/
http://www.interomics.eu/
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of supporting up to 40 teams at European level (i.e., a total
of 160 pipelines). As regards the arrival and the service
demand times, we used synthetic workloads generated by
statistical functions. The frequency of arrivals of the requests
(𝜆𝑘) of each class of service 𝑘 ∈ {TI,VS,ER, and LO}

during the year is modeled with a uniform distribution, not
privileging particular time ranges (e.g. daytime/nighttime)
and month (e.g. weekdays/weekends). With respect to more
sophisticated solutions [65], this choice is justified by the
fact that some steps require execution times of several days,
and it seems not particularly relevant to distinguish when
they arrive. Also, the service demand times of the classes of
requests (𝜇𝑘) are uniformly distributed in the specific time-
range of their class (e.g. TS requests lay between 16 and 160
hours), as defined in Table 1.

5.2.2. Definition of Prices. This is the most important aspect
of the simulationsetting step. Among the public cloud
providers, Amazon EC2 provides suitable solutions for high
performance computing applications, so we analyzed its
pricing models (http://aws.amazon.com/ec2/pricing/) for
their adoption in our simulation. Three are the models
proposed: on-demand instances, reserved instances, and
spot instances. We disregard the last one, designed on a
bid-based approach on spare Amazon EC2 instances for
time-flexible and interruption-tolerant tasks, focusing
on the first two of them. Let us consider the most
powerful VM instance type among those provided
(http://aws.amazon.com/ec2/instance-types/), the Cluster
Compute Eight Extra Large (see Table 2). If we consider the
on-demand instance model, designed for users not paying a
yearly subscription, each instance costs $2.4 per hour, which
is $1,728 for a month and more than $20,000 for a year. If
the VM will be used for the whole year, the lowest price is
achievable using the heavy utilization reserved instances
formula, and it is of $3,163 plus a subscription of $5,000.
However, it has to consider that customers have to pay a
number of subscriptions equal to the number of VM they
want to run at once, and that they will pay the full price
even if they do not use the VM for some periods. In this
last case, customers could consider the medium utilization
reserved instances formula; the cost per hour becomes $0.54
and the annual subscription $4,146, but they will pay just for
the effective VM execution. We want to point out that the
simulated prices based on Amazon EC2 ones are close to the
prices exposed by the other public cloud providers for the
same kind of VMs provided.

In our opinion, all the Amazon pricing models are too
expensive for an e-Science environment; therefore, in our
simulation, we considered a cheaper scenario keeping how-
ever the same subdivision into two classes of users: sporadic
and frequent. According to the definitions of Section 4 we
assumed that sporadic customers would submit AZ requests,
while frequent users will submit the PZ ones. Therefore,
the first class of users will pay the Amazon price for on-
demand instances plus the brokering service 𝐵𝑘 that the
simulator computed as a 5% of the provisioning price. This
solution is reasonable as the brokering algorithm is always

able to allocate their requests (at least) on the public cloud
on the basis of the scheduling strategy and the private cloud
load. This class is intended for research groups performing
a limited number of requests and that do not require high-
levelQoS. For frequent users, or users requiring a high level of
security and resiliency, an annual subscription, not related to
the number of VMs they actually execute, is foreseen and the
less expensive price is applied.The amount of the subscription
fee will be not considered in this work because its definition
should take into account many factors related not only on
transferring the operational costs of a cloud infrastructure to
customers, but also on a balancing between the forecasted
usage of the cloud of a research group with respect to the
others. The importance of setting the fee properly is clear
also considering that the experimental results showed an
average cost around $1,100 to execute a complete pipeline for
frequent user while, for the same pipeline, sporadic users will
pay around $ 10,000. From a research group point of view,
the clear evaluation of the prices offer is strictly related to
the number and the type of requests it is going to submit
and is certainly a key factor in deciding to choose a cloud
solution instead of more traditional ones (as discussed in
Section 3).The other important aspect to consider besides the
mere price examination is the higher possibility to customize
the execution environment and to avoid the initial setup and
periodic maintenance of an in-house ICT infrastructure. For
sporadic customers, the brokering service 𝐵𝑘 owed to the CB
is counterbalanced by the fact that they can take advantages
of its intermediation with respect to a public cloud provider,
because the former grants to manage all the technical issues
to put in execution andmonitor the requiredVMs.Moreover,
a CB is able to provide well-tuned VM according to SLA
subscriptions that can also be equipped with nonopen source
software. Table 3 reports hardware configurations for each
type of VM instance (see Section 2.5) and the differentiated
hourly prices offer, supplied to PZ and AZ customers for the
execution of each pipeline operation.

5.2.3. Private Cloud System Configuration. Considering the
infrastructure currently available in the context of our
research institutes and taking into account the possibility of
dedicating part of this infrastructure to an external service,
the configuration of the private cloud infrastructure, we
adopted in our simulation, is a cluster composed of 10 diskless
nodes equipped with four 8-core Xeon processors, 128GB
of Ram, linked together via an Infiniband network, that
can be also used for high-speed communication inside the
virtual machine using PCI passthrough (http://www.linux-
kvm.org/page/How to assign devices with VT-d in KVM)
approach. The same method can be used to share the
NVIDIA K20 cards, providing the possibility of exploiting
these architectures inside the virtual machine of the cloud.
The storage facility that characterizes this simulation
framework is a SAN of 500 TB. On top of the system, the
OpenNebula 2.6 framework (http://www.opennebula.org/)
is installed. This means that, at a time, the cluster is able to
alternatively host 10 instances of type E, or 20 of D, or 40 of
C or any feasible combination of them.

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/instance-types/
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.opennebula.org/
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6. Simulation Results and Discussion

In the following, the three so-called zone allocation strategies,
FE, SR, and MO, are compared in relation to the utilization,
revenue, and user satisfaction metrics. To provide a more
exhaustive picture about the ability of our algorithm to
respond to different operating conditions, we first analyzed
its behavior with respect to a basic scenario in which a
uniform distribution between PZ and AZ requests has been
simulated. We then varied the fifty-fifty composition of the
arriving requests by alternatively considering a 75% versus
25% distribution of PZ (i.e., frequent users) and AZ (i.e.,
sporadic users). From this analysis, we then considered the
impact on expected results caused by variations of the system
configuration by upgrading the number of private nodes of
50% with respect to the basic scenario. In all cases, a large
number of iterations have been carried out in order to ensure
meaningfulness of simulated measurements. In particular,
for more than 100 iterations, we have not gotten appreciable
differences in the obtained results. The value of parameter 𝑄

for the SR strategy has been set to 50% (e.g. half the private
resources) for every scenario considered. All simulations take
place in a timeframe of one year, and a deadline of 48 hours
was set only for AZ requests.

6.1. Basic Scenario. Figure 4 reports system utilization at
varying number of arriving pipeline requests (𝜆). Utilization
is a useful systemmeasure that allows clarifying the behavior
of each strategy at increasing system workloads according to
the other metrics under analysis. From Figure 4, we see that
for a number of pipelines around 80, FE strategy uses less
than 50% of system resources, while SR and particularly MO
take busy up to 80% system resources. This fact is clearly due
to the conservative nature of FE, which uses private servers
only to execute PZ requests, thus leading several resources
idle. By contrast, SR and especially MO use up to all private
cloud nodes to execute as more AZ requests as possible. We
see that SR’s utilization is always a 10% underMO one’s due to
its less aggressive use of system resources. Utilization further
increases for higher load rates reaching almost saturation
for 𝜆 = 120. When a system approximates saturation,
its performance drastically worsens and it is no more able
to adequately respond to user expectations. This situation
impacts both on CB revenues and customers satisfaction.

Let us examine now the CB annual revenue. Figure 5
shows the expected annual average revenue according to
different values of the portion 𝑄 of the private cloud servers
reserved for PZ requests at varying 𝜆. For a number of
submitted pipelines less than 80, we can notice linear revenue
rising proportionally to 𝜆 increases for all values of the three
policies.While for FE, this trend ismaintained also for 𝜆 > 80

and both SR and MO revenues flex as the system gets closer
to saturation. Notwithstanding this discontinuous behavior,
MO policy allows higher revenue than the other two for all
load rates.This fact is due toMO ability of accepting a greater
number of AZ requests respect than SR and FE. The latter,
in particular, neglects any AZ request, thus, renouncing to
cash their 6-times greater price per VM (see Table 4), and
the gap amongst FE and the other two strategies, shown

0
20 40

60

80

100

20

40

80

120 160

Sy
ste

m
 u

til
iz

at
io

n 
(%

)

Pipelines

FE
SR
MO

Figure 4: Private zone utilization U at varying arrival rates.
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Figure 5: Annual CB’s revenue.

by Figure 5, accounts for the revenue achieved by accepting
sporadic customers pipelines (i.e., AZ ones).

The reason of not choosing always MO as unique alloca-
tion policy is due to its progressive inability of satisfactorily
responding to customers’ expectations.

Let us look at the other metric, the user satisfaction.
As explained in Section 5, to appreciate the variation of
that measure, each histogram in Figure 6 depicts, for each
𝜆/strategy pair, the average waiting time 𝑊 before a PZ
pipeline (i.e., composed of distinct PZ requests TI, VS, ER,
and LO) is completely assigned to the private cluster. We are
not interested here in examining waiting time of AZ requests,
as they are always executed by the deadline agreed with the
customers; that is, as said, if no space is found on private zone
AZ are allocated to the public one as soon as deadline expires.

Thewaiting time does not include execution time for each
request but just reports the “wasted” time before a PZ request
is taken in charge by the private cloud. It is important to
note that, in the given example of a DD pipeline, research
groups do not submit pipelines at once, that is, as a unitary
workflow of (upmost) four requests, but the result of one
operation determines if the following one will be executed or
not. For this reason the reported value has to be intended as
an estimate of the possible delay that has to be added both



14 BioMed Research International

Table 4: VM configurations and hourly provisioning price per type of requests.

Instance type RAM Cores Storage Operation AZ price/h PZ price/h
C 32GB 8 1690GB LO $1.3 $0.297
D 64GB 16 3370GB TI $2.4 $0.361
E 128GB 32 1-2 TB VS, ER $4.8 $0.722
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Figure 6: Average waiting times, in hours, per pipeline.

to the effective execution time as well as to the offline time
required to examine the results of each single submission and,
in case of success, the possible submission of the successive
operation of the pipeline.

While in our simulations we got an average pipeline
execution of about 310 hours (e.g. 88 for TI, 12 for VS,
206 for ER, and 4 for LO), the response time (i.e., sum of
execution time and waiting time) increases as the number of
pipelines, with 80 pipelines we have about half the waiting
time with respect to execution time for FE (i.e., 159 hours),
up to a waiting time exceeding the execution time for MO.
With system approaching saturation, it is easy to observe
how the waiting time becomes the major delaying factor of
the chain, greatly penalizing every submission request. An
obvious solution to bypass this issue is to upgrade the private
zone capacity by augmenting the number of nodes.

6.2. Alternative Scenarios. Before examining possible advan-
tages of a (certainly) costly upgrade of the CB asset, it is
important to analyze the impact of different distribution of
users (i.e., sporadic and frequent) on the system behavior.

Figures 7, 8, and 9, respectively, depict the results of
utilization U, annual revenue and average waiting time 𝑊 of
the three allocation strategies when the number of sporadic
users is 75% of the total workload.

Having lowered the number of PZ requests, we see from
Figure 7 that utilization greatly decreases in particular for FE
that, at 𝜆 = 80, uses just 23% of private server against a
45% of the basic scenario. This fact directly impacts on the
average waiting time that decreases to 52 hours from the 159
hours required in the fifty-fifty case. From Figure 9, we also
see that, with just 25% of frequent users, FE allows more
than acceptable waiting times also at higher workload (i.e.,
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Figure 7: Private zone utilization U with 75% sporadic users.

𝑊 = 181 at 𝜆 = 160). Quite sadly, Figure 8 shows that having
reduced the number of PZ requests of a 50% also halved
revenues of FE. Notwithstanding utilization for SR and MO
is not dramatically reduced with respect to the basic scenario,
we can appreciate considerable revenue increases both for SR
than MO. This fact is reasonably explained by the fact that,
in this scenario, the higher number of AZ requests, which
paymore with respect to the PZ ones, allows greater revenues
than before (e.g. MO achieved about $80,000 more).

Furthermore, the reduced number of PZ, that have to be
mandatorily executed on the private cloud, allows to lower
the average waiting times both for SR andMO. By comparing
Figures 9 and 6, we notice that at 𝜆 = 80, SR required 192
hours in average to execute a PZ pipeline against the 270
of the basic scenario, while MO takes around 308 hours,
respectively, to the previous 389.

Let us consider the opposite scenario, 75% of frequent
users against 25% of sporadic ones. Not surprisingly, all
the metrics considered show the worst performance also
with respect the basic scenario. The only exception is the
revenue achieved by FE, which is now 50% higher than
the basic scenario consistently with the 50% more of PZ
requests. Looking at utilization, we see from Figure 10 that
the higher number of PZ requests quickly pushes the system
near saturation; FE is about 65% at 𝜆 = 80, and both SR and
MO approximate 100% at 120 workloads. Moreover, this kind
of requests pay poorly to the CB (see Table 4) as shown in
Figure 11; thus, we have a dramatic revenue decrease both for
SR and MO which have to renounce to the higher revenue of
an AZ pipeline with respect to a PZ one (e.g. MO’s revenue is
about $70,000 less than before).

Figure 12 depicts the extreme degradation of waiting
times. The increase of 𝑊 is essentially due the majority of
requests that have to be strictly executed in-house. Just 25%
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Figure 8: Annual CB’s revenue with 75% sporadic users.
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Figure 9: Average waiting times per pipeline with 75% sporadic
users.

of the overall arriving workload can now take place on the
public cloud, while all the others (i.e., PZ ones) have to wait
for some private resource being free.The great differencewith
respect to the other two scenarios, particularly the previous
one, is the overwhelming abundance of PZ requests that tend
to block the system,more than the AZ do.We remind that AZ
requests leave the private zone to be allocated on the public
one as soon as the deadline is reached. It seems reasonable
to affirm that with the configuration of 10 nodes, this kind of
distribution of requests strongly penalizes both the CB and its
customers.

Once the attended composition of CB’s customers is
ascertained (or somehow estimated), the analysis of the
upgraded configuration scenario makes more sense. In the
following, we come back to consider the fifty-fifty customers’
scenario and examine variations of the threemetrics by a 50%
system upgrading amounting for 15 private zone nodes.

Figure 13 shows the reduction of resource utilization
obtained by upgrading the system of 50%. This reduction
is linear for FE: we have 𝑈 = 30% instead of the previous
45%, and anyway appreciable for the other two strategies.
Indeed, SR and MO are able to allocate internally a greater
number of AZ requests than before; thus, system utilization
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Figure 10: Private zone utilization U with 75% frequent users.
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Figure 11: Annual CB’s revenue with 75% frequent users.

improvement is less dramatic than FE but anyway significant:
at 𝜆 = 80, SR accounts for 𝑈 = 57%, and MO shows a
𝑈 = 66% compared to previous 𝑈 = 70% and 𝑈 = 80%
of the basic scenario.

From Figure 14, we can appreciate the revenue increases
that are achieved by SR and MO. To better highlight the
magnitude of these increases, we reported in Figure 15 the
percentage gain achieved with respect to the basic scenario.
We see that nothing or less changed for FE; it begins to slightly
improve just for 𝜆 > 80 (but for no more than 6% at 𝜆 =

160) when we have observed from Figures 4 and 6 that there
was degradation in utilization that impacted on waiting time
and hence in the number of PZ executed. With 50% more
private nodes, system is now ready to satisfy a greater number
of incoming requests. This major system capacity is better
shown by the results achieved by SR and MO at 𝜆 = 80;
they both measured a 45% revenue increase with respect to
the basic scenario that further augments at higher loads. No
surprisingly, the more computation availability, and the more
AZ requests performed in-house instead turned to the public
zone, the higher the revenues. Compared to Figure 5, we
notice that now the flection of revenue for SR andMO begins
at 𝜆 = 160 where system utilization approaches saturation
(𝑈 = 84% and 94%); in the basic scenario, we had 𝑈 = 86%



16 BioMed Research International

FE SR MO FE SR MO FE SR MO FE SR MO FE SR MO
20 40 80 120 160

Pipelines

TI
VS

ER
LO

27 46 51 97 12
9

16
0 36
0

43
7

54
3

19
68

20
61

22
18

45
82

46
77

47
97

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e w

ai
tin

g 
tim

e

Figure 12: Average waiting times per pipeline with 75% frequent
users.
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Figure 13: Private zone utilization U, with a 15-node system.

and 𝑈 = 95% before when 𝜆 = 120, which is exactly the 50%
more of arriving pipelines.

Having shifted the saturation to the higher loads, we see
from Figure 16 that, at 𝜆 = 80, customers are awaiting for
considerable less time than before. FE, SR, and MO have a
reduction of 80%, 71%, and 64%, respectively, with FE and
MO that show average waiting times around the 10% and 50%
of the average execution time of a PZ pipeline. Until 𝜆 = 120,
we notice acceptable waiting times for all three strategies with
MO that approaches the execution time (i.e., 304 hours). As
expected, 𝑊 degrades nearby system saturation even if at
least SR shows a waiting time quite similar to the pipeline
execution time (i.e., 300 hours).This last observation leads us
to conclude that aHCwith a 15-node private zone, configured
as specified in Section 5.2, seems able to yield considerable
revenues for the CBwithout penalizing customers even in the
case of great number of submitted pipelines.

7. Conclusions and Future Works

Cloud computing is an emerging paradigm for supplying ICT
infrastructures as a service also for e-Science applications,
being able to provide high-level solutions in terms of compute
capabilities and QoS. Cloud computing seems promising for
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Figure 14: Annual CB’s revenue with a 15-node system.
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Figure 15: Percentage revenue increases with respect to the basic
scenario (15 versus 10 nodes).

a number of factors: it supports the easy deployment of
services with respect to confirmed standard; the size of the
available hardware allows to effectively deal with workload
variations; preconfigured virtual machines can assist users in
quickly performing their analyses. Cloud computing is able
to provide clear advantages for small-medium laboratories
working in the field of biotechnology, which typically do
not have the possibility to invest a sufficient amount of time
and money in creating and maintaining an in-house ICT
infrastructure that suits the processing of the large amount
of bioinformatics data that are nowadays produced. On the
other hand, besides costs and QoS, security and customiz-
ability are critical points to consider when choosing ICT
providers. This situation makes the cloud computing market
an appealing opportunity for cloud brokers, a specialization
of broker entities present also in SOA, despite the presence of
leading companies as competitors.

In this paper, we presented a brokering system for hybrid
clouds and we analyzed some economic and practical aspects
of exploiting cloud computing for the in silico drug discovery
by studying the performance of three job-scheduling strate-
gies (i.e., FE, SR, andMO). Based on the reservation of a quota
of private cloud resources, the brokering tool manages the
allocation of users’ requests towards the public or the private
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Figure 16:Averagewaiting times per pipelinewith a 15-node system.

cloud zone depending on the QoS expectations and the
workload of in-house resources. Simulation results examined
the response of the various policies in terms of utilization and
user satisfaction as well as provided an analysis of economics
advantages for the two stakeholders of the scenario: the CB
and the small-medium biotechnological laboratories.

From the results analysis follows that, although MO is
certainly the best policy as regards CB revenue, it strongly
penalizes customers, especially at medium-high load rates,
due to its longer waiting times. For these reasons, SR, which
follow a less greedy approach, may represent a good com-
promise between CB economic goals and users’ satisfaction.
Moreover, we observed in Section 6.2 the importance of the
composition of the arriving customers. Sporadic customers
are preferable from the CB point of view as they allow greater
revenues (for SR and MO) meanwhile significantly reducing
waiting times. Obviously from the sporadic customer point
of view, the choice to become a frequent one, thus obtaining
considerable better prices for an entire pipeline execution, has
accurately been evaluated based on the number of pipelines
the group foresees to yearly submit to the cloud. We also
noticed that to better respond to an increasing number of
pipelines, a system upgrade could certainly be beneficial for
all themetrics, and the strategies considering this choice have
to be carefully evaluated by the CB in the light of the effective
number and composition of the expected pipelines.

Further directions of this study will consider energy-
savings methods which integrate VMmigration mechanisms
and take into account the energy-performance trade-off.
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