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Author’s View

Harnessing cytotoxic CD8+ T  cells 
against neoplastic lesions has been a major 
goal of anticancer immunotherapy.1 The 
clonal expansion and activation of these 
cells are triggered by antigen-specific 
interactions between their T-cell receptors 
(TCRs) and the cognate tumor-associ-
ated antigen (TAA) displayed in complex 
with MHC molecules on the surface of 
malignant or antigen-presenting cells.2 
Surprisingly, a recent report has shown that 
cytokine-based systemic immunotherapy 
can trigger the antitumor functions of 
memory CD8+ T  cells in the absence of 
specific antigenic stimulation.3 In par-
ticular, following the co-administration of 
interleukin (IL)-2 and a CD40-targeting 
agonist antibody to mice, memory CD8+ 
T  cells underwent a rapid expansion, 
upregulated killer cell lectin-like recep-
tor subfamily K, member 1 (KLRK1, best 
known as NKG2D) and granzyme B, 
and acquired broad lytic functions. These 
cells failed to upregulate programmed 
cell death 1 (PDCD1, best known PD-1) 

and CD25, suggesting that their activa-
tion was independent of TCR signaling. 
Furthermore, the authors demonstrated 
that antigen specificity is not mandatory 
for the expansion and antitumor activity of 
memory CD8+ T  cells as elicited by sys-
temic immunotherapy in TCR-transgenic 
mice. Immunotherapy-activated ovalbu-
min (OVA)-specific memory CD8+ T cells 
were indeed capable of lysing OVA+ as well 
as OVA− tumors in vitro and also medi-
ated significant antineoplastic effects in 
vivo. Taken together, these findings indi-
cate that memory CD8+ T cells activated 
by IL-2 and CD40 signaling can acquire 
an unusual innate-like phenotype and 
become capable of mounting antigen-inde-
pendent cytotoxic responses against tumor 
cells. Human T cells with a similar pheno-
type were observed in melanoma patients 
upon localized imiquimod-based immu-
notherapy,3 suggesting that such immune 
responses may be conserved across species.

Recent studies have demonstrated that 
bacterial, viral and parasitic infections can 

also trigger memory CD8+ T cells to pro-
liferate and become potent effector cells in 
the absence of specific antigenic stimula-
tion via a process of natural inflammation 
known as “bystander” activation.4–6 In a 
Listeria monocytogenes (Lm) immuniza-
tion mouse model, Soudja et al. showed 
that Lm-specific memory CD8+ T  cells 
can acquire strong effector functions and 
expression of activation markers without 
the requirement for antigen recognition.4 
Such activation and differentiation of 
memory CD8+ T cells into potent effector 
cells, which contribute to anti-bacterial 
immunity, was shown to be orchestrated 
by IL-15 and IL-18, which are secreted by 
inflammatory monocytes upon exposure 
to various classes of microbial pathogens. 
Along similar lines, Chu et al. subse-
quently showed that bystander-activated 
memory CD8+ T  cells can control the 
early pathogen load by killing target cells 
through an NKG2D-dependent mecha-
nism, importantly mediating anti-influ-
enza responses prior to the initiation of 
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ALT-803, an interleukin-15-based superagonist, induces memory CD8+ T  cells to proliferate, upregulate receptors 
involved in innate immunity, secrete interferon γ and acquire the ability to kill malignant cells in the absence of antigenic 
stimulation. Thus, ALT-803 can promote the expansion and activation of memory CD8+ T cells while converting them into 
innate immune effector cells that exhibit robust antineoplastic activity.
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adaptive immunity.5 In a mouse influenza 
model, Tietze et al. found that adoptively 
transferred OVA-specific memory CD8+ 
T cells proliferated in the lungs and dis-
played increased levels of NKG2D, but 
not CD25, in response to influenza infec-
tion.6 In this setting, the intranasal block-
ade of NKG2D resulted in a significant 
increase in viral replication in the early 
phase of infection. These studies dem-
onstrate that microbial pathogens induce 
a rapid, antigen-independent expansion 
of memory CD8+ T  cells at the site of 
inflammation, resulting in the elicitation 
of NKG2D-dependent innate immune 
responses against infectious agents.

In studies described above, either 
multiple immunostimulatory proteins or 
inflammatory mediators were required 
to expand and activate memory CD8+ 
T cells in the absence of specific antigenic 
stimulation. Conversely, we have recently 
shown that the systemic administration of 

an IL-15 superagonist complex, ALT-803 
(Fig.  1), is sufficient to trigger memory 
CD8+ T-cell responses that mediate robust 
antitumor effects in several mouse models 
of myeloma.7 ALT-803 contains a mutant 
form of IL-15 (IL-15N72D) that exhibits 
a 4–5-fold increase in biological activity as 
compared with wild-type IL-15 due to an 
improved affinity for the IL-2 receptor β 
chain.8 In ALT-803, IL-15N72D is bound 
to a dimeric IL-15 receptor α chain-IgG Fc 
fusion to form a complex with optimized 
in vivo activity, being at least 25-fold more 
potent than soluble IL-15.8,9 In addition, 
ALT-803 has a significantly longer serum 
half-life in vivo than wild-type IL-15 (25 h 
vs. < 40 min). Hence, a single intravenous 
injection of ALT-803 is capable of induc-
ing mouse CD8+ T-cell and natural killer 
(NK)-cell proliferation at a dose at which 
an equimolar dose of IL-15 has no effects.9

The administration of ALT-803 pro-
moted the rapid expansion of memory 

CD8+ T cells, but not naïve CD8+ T lym-
phocytes, in mice (Fig. 1).7 Similar to what 
was reported in the context of the IL-2- and 
CD40-based immunotherapy,3,6 ALT-803-
activated memory CD8+ T  cells upregu-
lated NKG2D, but not PD-1 or CD25, on 
their cell surface and secreted high amounts 
of interferon γ (IFNγ) without requiring 
antigen-specific stimulation in vivo. These 
lymphocytes also exhibited nonspecific 
cytotoxicity against cancer cells of several 
types, including myeloma cells, in vitro. 
Consistent with the results obtained with 
IL-2 and CD40-targeting agonist anti-
bodies,3,10 we found that these nonspecific 
memory CD8+ T-cell responses could not 
be induced by IL-15 alone, indicating that 
the long-lived, potent immunostimulatory 
properties of ALT-803 might alleviate the 
requirement for CD40 (or other co-stimu-
latory) signaling.

The treatment of mice bearing 5T33 
or MOPC-315 myelomas with ALT-803, 

Figure 1. ALT-803 promotes innate-like CD8+ T-cell effector activity and protective antitumor immunity in myeloma-bearing mice. ALT-803 is a supra-
molecular complex that exhibits superagonist activity and is comprised of a mutant form of interleukin-15 (IL-15N72D) associated with a dimeric IL-15 
receptor α chain sushi domain (IL-15RαSu)–IgG1 Fc fusion. The N72D substitution confers to IL-15 increased affinity for the IL-2 receptor β chain (IL-2Rβ) 
and enhanced biological activity. In addition, association of IL-15N72D with IL-15RαSu further improves the biological activity of IL-15 in vivo, resulting in 
the potent activation of IL-2Rβ/γ-bearing natural killer (NK) cells and T lymphocytes. (A) In myeloma-bearing mice, ALT-803 promoted the rapid expan-
sion of memory CD8+ T cells but not naïve CD8+ T lymphocytes. (B) Such memory CD8+ T cells secreted high levels of interferon γ (IFNγ) and upregulated 
killer cell lectin-like receptor subfamily K, member 1 (KLRK1, best known as NKG2D) but not of programmed cell death 1 (PDCD1, best known as PD-1) and 
CD25, on their surfaces. (C) ALT-803-activated cells also mediated nonspecific cytotoxicity against myeloma cells and other tumor cells, via a mechanism 
that was partially dependent on IFNγ. By activating such a response, ALT-803 was capable of eliminating well-established myelomas from the bone 
marrow and significantly prolonging the survival of tumor-bearing mice. (D) Short-term ALT-803 treatment also provided tumor-bearing mice with 
protective immunity against a subsequent inoculation of myeloma cells. This protective response appeared to rely on CD8+ T lymphocytes. Presumably, 
ALT-803 treatment stimulated naïve and/or memory CD8+ T cells specific for tumor-associated antigens (TAAs) to acquire effector functions against a 
subsequent tumor challenge.
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but not IL-15, rapidly eliminated malig-
nant cells from the bone marrow and 
prolonged survival, often curing mice, 
in a CD8+ T-cell dependent manner.7 
NK cells were not required for such 
anti-myeloma activity. Conversely, the 
ALT-803-mediated elevation of CD8+ 
T cells in the bone marrow correlated with 
therapeutic responses, supporting the 
hypothesis that ALT-803 induces innate-
like memory CD8+ T  cells that effi-
ciently kill myeloma cells. Furthermore, 
as it also activates NK cells in vitro and in 

vivo,9 ALT-803 might have the potential 
to elicit broad innate immune responses 
against neoplastic and infected cells.

Finally, we observed that the curative, 
short-term administration of ALT-803 
to tumor-bearing mice provided them 
with a CD8+ T cell-dependent protection 
against a subsequent rechallenge with 
myeloma performed months later.7 These 
findings suggest that ALT-803 also elic-
its efficient adaptive immune responses, 
resulting in the generation of long-term 
T cell-based antitumor immunity. Thus, 

ALT-803 stands out as a potent immu-
nostimulant that is capable of simultane-
ously activating the innate and adaptive 
arms of the immune system to elicit 
both rapid and long-lasting protective 
responses against infectious or neoplastic 
challenges to the host.
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