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ABSTRACT
Background  Despite the necessity, there is no reliable 
biomarker to predict disease severity and prognosis of 
patients with COVID-19. The currently published prediction 
models are not fully applicable to clinical use.
Objectives  To identify predictive biomarkers of COVID-19 
severity and to justify their threshold values for the 
stratification of the risk of deterioration that would require 
transferring to the intensive care unit (ICU).
Methods  The study cohort (560 subjects) included 
all consecutive patients admitted to Dubai Mediclinic 
Parkview Hospital from February to May 2020 with 
COVID-19 confirmed by the PCR. The challenge of finding 
the cut-off thresholds was the unbalanced dataset (eg, 
the disproportion in the number of 72 patients admitted to 
ICU vs 488 non-severe cases). Therefore, we customised 
supervised machine learning (ML) algorithm in terms of 
threshold value used to predict worsening.
Results  With the default thresholds returned by the ML 
estimator, the performance of the models was low. It was 
improved by setting the cut-off level to the 25th percentile 
for lymphocyte count and the 75th percentile for other 
features. The study justified the following threshold values 
of the laboratory tests done on admission: lymphocyte 
count <2.59×109/L, and the upper levels for total bilirubin 
11.9 μmol/L, alanine aminotransferase 43 U/L, aspartate 
aminotransferase 32 U/L, D-dimer 0.7 mg/L, activated 
partial thromboplastin time (aPTT) 39.9 s, creatine kinase 
247 U/L, C reactive protein (CRP) 14.3 mg/L, lactate 
dehydrogenase 246 U/L, troponin 0.037 ng/mL, ferritin 498 
ng/mL and fibrinogen 446 mg/dL.
Conclusion  The performance of the neural network 
trained with top valuable tests (aPTT, CRP and fibrinogen) 
is admissible (area under the curve (AUC) 0.86; 95% CI 
0.486 to 0.884; p<0.001) and comparable with the model 
trained with all the tests (AUC 0.90; 95% CI 0.812 to 
0.902; p<0.001). Free online tool at https://​med-​predict.​
com illustrates the study results.

INTRODUCTION
Despite the necessity, there is no reliable prog-
nostic biomarker to predict disease severity 
and prognosis of patients with COVID-19.1 
Studies on COVID-19 have built up several 
types of prediction models. These have been 

the models designed to indicate the disease 
risk in the general population, the diagnostic 
models based on medical imaging and the 
prognostic models. Unfortunately, these 
models have had some limitations that have 
precluded their use in clinical practice.2

Models using laboratory findings as the inputs
Researchers tried to establish the role of labo-
ratory findings in the diagnosis of COVID-
19.3 They showed that the severe cases of 
COVID-19 were associated with D-dimer 
level over 0.28 µg/L, interleukin (IL)-6 level 
over 24.3 pg/mL3 and lactate dehydrogenase 
(LDH) activity with an upper limit cut-off 
in the range of 240–255 U/L.4 However, the 
use of these laboratory parameters with the 
above-mentioned cut-off values was limited 
for the following reasons. First, these studies 
were conducted on severe forms of the 

Strength and limitations of the study

►► The research is based on a unique study cohort that 
is representative of the entire population because of 
the national standard that required all patients with 
confirmed COVID-19 to be admitted to acute care 
hospitals regardless of their symptoms or illness 
severity.

►► To distinguish the patients with the confirmed 
COVID-19 who may worsen while treated, we justi-
fied the threshold values of the laboratory tests done 
on admission.

►► The prediction of the future deterioration by the 
neural network is reliable even with the top three 
valuable laboratory tests (activated partial throm-
boplastin time, C reactive protein and fibrinogen) 
used for training (area under the curve 0.86; 95% CI 
0.486 to 0.884; p<0.001).

►► The limitation of the study was the unbalanced data-
set (eg, the disproportion in the number of patients 
admitted to the intensive care unit vs non-severe 
cases).
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disease. Limited research was done on patients who were 
asymptomatic or had mild disease.3 5 Second, the whole 
spectrum of the regularly used clinical laboratory data is 
unavailable for non-severe patients. Thus, the published 
papers add justification on the diagnostic utility of sepa-
rate laboratory findings, instead of working out reliable 
diagnostic criteria for a set of them.

Gong et al6 have generated a tool for the early predic-
tion of severe COVID-19 pneumonia out of the following 
data: age, serum LDH activity, C reactive protein (CRP), 
the coefficient of variation of red blood cell distribu-
tion width, blood urea nitrogen, direct bilirubin, lower 
albumin. The resulting performance was not high 
(sensitivity 77.5%, specificity 78.4%).6 Supposedly, this is 
because the dataset used as the input consists of excep-
tionally the age and laboratory findings.

In another model, the inputs included basic informa-
tion, symptoms and the results of laboratory tests. After 
the feature selection, the number of key features was 
set to just three laboratory results: LDH, lymphocytes 
and high-sensitivity CRP. The model was trained with 
the follow-up studies of the general, severe and critical 
patients.1 By feeding machine learning (ML) algorithm 
with the results obtained at the time of admission and in 
follow-up studies, the authors worked out a decision rule 
to predict patients at the highest risk. However, physi-
cians are interested in the early prediction of the disease 
outcomes, and it is highly disputable that the model will 
not loose its predictive potential if applied exceptionally 
to the data received on admission.

We believe that a more accurate model can be built 
based on the simultaneous interpretation of laboratory 
results, clinical data and physical examination findings 
(eg, body mass index, body temperature, respiratory 
rate) at the time of presentation. The analysis using an 
ML algorithm could provide an accurate prediction of 
the disease severity.

Data used by clinicians for stratifying risks
Clinicians routinely use physical examination find-
ings and laboratory parameters for risk stratification 
and hospital resources management. Commonly, each 
laboratory test kit has the only cut-off value to segre-
gate the normal status from a pathology. We believe 
that threshold values should be re-adjusted for each 
disease rather than used as a common cut-off value for 
all pathologies.

As a standard of care, baseline blood tests and inflam-
matory markers are obtained on admission to the 
hospital. The proper approach for the risk assessment 
should allow physicians to forecast the patient’s future 
worsening out of the initial findings on admission. This is 
what we intend to do by applying an ML approach to the 
predictors routinely used in clinical practice. There are 
some promising data for the following set of prognostic 
biomarkers of COVID-19 severity.

Inflammatory markers
There is evidence that IL-6 and tumour necrosis factor 
(TNF)-α do not indicate the level of COVID-19 progres-
sion.7 Some markers of inflammation are elevated in 
the serum of patients with COVID-19 compared with 
the healthy people, that is, the serum SARS-CoV-2 viral 
load (RNAaemia) is closely correlated with drastically 
elevated IL-6 levels in critically ill patients with COVID-
19.8 However, there is no significant difference between 
severe and mild groups.7 In contrast to this, the indicators 
are reflective in the progression of the diseases caused 
by other coronaviruses (eg, Middle East respiratory 
syndrome (MERS), SARS).9 This may be explained by the 
huge amino acid differences in viral proteins of distinct 
coronaviruses. Even with different MERS-CoV strains, 
common cytokine signalling by TNF and IL-1α results in 
the differential expression of innate immune genes.10

Ferritin
Ferritin is a marker of iron storage. However, it is also 
an acute-phase reactant, the level of which elevates in 
processes of acute inflammation, whether infectious or 
non-infectious. Marked elevations have been reported in 
cases of COVID-19 infection.11

D-dimer
A common finding in most patients with COVID-19 is 
high D-dimer levels (>0.28 mg/L), which are associated 
with a worse prognosis.3 12 An exceptional interest of 
physicians in this biomarker comes from the fact that the 
vast majority of patients who died of COVID-19 fulfilled 
the criteria for diagnosing the disseminated intravascular 
coagulation. This is why the incidence of pulmonary 
embolism in COVID-19 is high. In this condition, the 
D-dimer concentration will definitely rise up because it 
is a product of degradation of a blood clot formed out of 
fibrin protein.13 Thromboembolic complications explain 
the association of low levels of platelets, increased levels of 
D-dimer and increasing levels of prothrombin in COVID-
19.14 Alternatively, the D-dimer level may go up as a direct 
consequence of SARS-CoV-2 itself.15

Reasonably, laboratory haemostasis may provide an 
essential contribution to the COVID-19 prognosis and 
therapeutic decisions.16 Researchers tried to forecast the 
severity of COVID-19 with D-dimer as a single predictor. 
They showed that D-dimer level >0.5 mg/L had a 58% 
sensitivity, 69% specificity in the forecast of the disease 
severity.17 In another study, D-dimer level of >2.14 mg/L 
predicted in-hospital mortality with a sensitivity of 88.2% 
and specificity of 71.3%.18 Another study highlighted that 
a D-dimer threshold of >2.66 mg/L detected all patients 
with a pulmonary embolus on the chest CT.15 So, the high 
levels of D-dimer are a reliable prognostic biomarker of 
in-hospital mortality.

Fibrinogen
In patients with COVID-19 admitted to ICU for acute 
respiratory failure, the level of fibrinogen is significantly 
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higher than in healthy controls (517±148 vs 297±78 mg/
dL).12 The small vessel thrombi revealed on autopsy in 
lungs and other organs suggest that disseminated intra-
vascular coagulation in COVID-19 results from severe 
endothelial dysfunction, driven by the cytokine storm 
and associated hypoxaemia. As standard-dose deep vein 
thrombosis prophylaxis cannot prevent the consumptive 
coagulopathy, monitoring D-dimer and fibrinogen levels 
are required. This will promote the early diagnostics of 
hypercoagulability and its treatment with direct factor Xa 
inhibitors.14 19

Activated partial thromboplastin time
In a study conducted in February 2020, the levels of 
activated partial thromboplastin time (aPTT) as well as 
white blood cells (WBC), lymphocytes, aspartate amino-
transferase (AST), alanine aminotransferase (ALT) and 
creatinine, differed negligibly between severe and mild 
patients.3 At the same time, other researchers showed 
inconsequential distinction in aPTT in survivors versus 
non-survivors.20 According to the results of another study 
published in March 2020, no significant difference in aPTT 
values were found in the cohort of severe cases versus the 
non-severe one.6 The results obtained in another study in 
April in Italy were the same.12 The common limitation of 
these early studies was a small sample size. Finally, a meta-
analysis justified that the elevation of D-dimer, rather than 
prothrombin time and aPTT, reflects the progression of 
COVID-19 towards an unfavourable outcome.21

LDH and creatine kinase
Increased levels of the enzymes may reflect the level of 
the organ damage in a systemic disease.4 22 Reasonably, 
they may serve as biomarkers for COVID-19 progression.

C reactive protein
In the early stage of COVID-19, CRP levels are positively 
correlated with the diameter of lung lesions and severe 
presentation.23

Liver enzymes and total bilirubin
COVID-19 leads to elevated liver biochemistries (eg, 
the level of AST, ALT, gamma-glutamyl transferase, total 
bilirubin) in over 50% of patients on admission. AST-
dominant aminotransferase elevation reflects the disease 
severity and true hepatic injury.24 25

Objectives
We decided to identify predictive biomarkers of COVID-19 
severity and to justify their threshold values. Hypotheti-
cally, the absolute values of the biomarkers on admission 
to the clinics could provide physicians with an accurate 
prognosis on the future worsening of the patient that 
would require transferring the individual to the intensive 
care unit (ICU). Getting a reliable tool for such a prog-
nosis will support decision making and logistical planning 
in clinics.

To address the objective, we designed a set of the 
following tasks:

►► To study the linear separability of the laboratory find-
ings values in patients with confirmed COVID-19 who 
were transferred to ICU versus non-severe cases of 
the disease, and to make the comparative analysis of 
the ICU department cases (both the deceased and 
survived cohorts) with other patients with COVID-19.

►► To identify the risk factors by selecting the most valu-
able features for predicting the deterioration that 
would require transferring the patient to ICU.

►► To work out the threshold criteria for the major clin-
ical data for the early identification of the patients 
with a high risk of being transferred to ICU.

►► To identify the accuracy of the prediction of the 
patient’s deterioration by the ML algorithm and by a 
set of the newly created threshold values of the labo-
ratory and clinical findings.

MATERIALS AND METHODS
Study design and sample
We did a retrospective analysis of the clinical data 
obtained as a standard of primary and secondary care. 
The study sample included all the consecutive patients 
admitted to Dubai Mediclinic from 24 February to 1 July 
2020, who fit the criteria of eligibility (total 560 cases). 
Using this sample, the intention of the study was met, that 
is, to allow for the early prognostic stratification.

The inclusion criteria were as follows: age 18 years or 
older; inpatient admission; SARS-CoV-2-positive real-time 
reverse transcription PCR from nasopharyngeal swabs 
only, at our site. Those patients who met the inclusion 
criteria for our studies were included in the study sample. 
All the patients were discharged at the time of writing the 
paper.

The remarkable feature of our study is that at the begin-
ning of the pandemic, all the patients with COVID-19 
verified by PCR were hospitalised in the Mediclinic even 
if they did not present any symptoms. We observed many 
mild and asymptomatic forms of the disease, with all 
the required spectrum of analyses being conducted. All 
patients who were hospitalised stayed in Dubai Mediclinic 
until they were afebrile for >72 hours and had SpO2 value 
not <94%.

We assessed the duration of viral shedding as the 
number of days from the disease onset when the diag-
nosis was confirmed (eg, the first positive PCR test) 
to the first negative PCR test.26 All the patients hospi-
talised to the Mediclinics hospital were subject to the 
regular collection of nasopharyngeal swabs by a stan-
dard technique. Furthermore, after the patient stopped 
presenting disease symptoms, the specimen collection 
continued on a daily basis until two subsequent negative 
PCR tests for COVID-19 >24 hours apart. In the case of 
the mild disease course, patients might be transported 
to isolation facilities before being discharged home (see 
the flow chart diagram in figure 1). If the facilities were 
run by Mediclinic, we had their follow-up PCR results. 
For those patients who went to other isolation facilities 
not connected to Mediclinic, we could not study the 
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duration of viral shedding (the data are missing for 27 
out of 560 patients).

The treatment was administered in full accordance with 
‘National Guidelines for Clinical Management and Treat-
ment of COVID-19’. The indications for the supportive 
oxygen therapy were (a) the oxygen saturation level below 
94%, (b) the respiratory rate (RR) above 30 breaths per 
minute, (c) both of them. In case of suspicion of super-
imposed bacterial pneumonia, physicians ordered empir-
ical broad-spectrum antibiotics. The administration of 
the antiviral and antimalarial drugs followed the national 
guidelines.27

Patient and public involvement
No patient involved. The data were collected retrospec-
tively from the medical record system.

Methods used
To address the first task, we studied the separability of labo-
ratory findings values on admission to Dubai Mediclinic 
concerning the future transfer of the patient to the ICU 
department. To carry out the comparative analysis of 
features with regard to transferring to ICU, we used a set 
of non-parametric tests. The relationships involving two 
variables were assessed with the Mann-Whitney U test or 
Kruskal-Wallis test for the continuous features, and with 

Fisher’s exact test or χ2 test for the quantitative ones. 
The data were expressed as IQR, median±SD or number 
of cases and their percentage. The missing data for the 
comparative analysis were treated with the complete-case 
analysis method.

To address the second task, we used a set of different 
methods. First, we trained the neural network (NN) 
ML model on each variable separately. To come up with 
laboratory data cut-off levels which may be considered as 
biomarkers of severe course of the disease we assessed 
their statistical significance against chance performance. 
We calculated 95% CI for receiver operating character-
istic (ROC) and ROC AUC scores with the bootstrap tech-
nique and p values with permutation tests.

Second, we used ML tree-based methods (AdaBoost, 
Gradient Boosting, Random Forest and Extra Trees) to 
check if there were unique patterns within the data that 
could unambiguously identify the event of transferring 
the patient to ICU from the data obtained on admission. 
For the list of features used as predictors, see online 
supplemental appendix 1. To assess the importance of 
the variables, we ranked all features concerning their 
impurity-based predictive potential. For ranking, we used 
a set of classifiers and then averaged all the received 
scores. Missing data in all ML models were replaced by 

Figure 1  The flow of patients with COVID-19 in Dubai Mediclinic. ICU, intensive care unit.

https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
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the mean or median values with regard to the continuous 
or quantitative feature, respectively using single imputa-
tion method.

To tackle the third task, we used two approaches: a 
threshold moving technique (Youden’s index)28 and a 
heuristically chosen percentile-based cut-off level. The 
problem of predicting the transfer to ICU had a severe 
class imbalance. Therefore, we needed to focus on the 
performance of the classifier on the minority class 
(admitted to ICU patients). The sensitivity and specificity 
of the supervised ML classification model (NN) were used 
to evaluate the quality of the chosen optimal threshold 
for each important laboratory finding.

To evaluate the classifier output quality, we trained several 
ML classification models using a stratified 10-fold cross-
validation technique to generalise the models to the true 
rate error. For each fold, we used 90% of the data to train 
the model and then tested it with the rest 10%. The deci-
sion matrices built on the test dataset for all folds were 
combined and used to calculate the performance metrics.

RESULTS
Comparison of the ICU versus non-ICU patients
The problem of predicting admission to ICU has a severe 
class imbalance (488 vs 72). Therefore, we need to focus 
on the performance of the classifier on the minority class 
(the patients admitted to ICU).

We look at the linear separability of the groups of 
numerical data composed from the laboratory findings 
values with regard to their quartiles. In figure 2, box plots 
for the laboratory findings data are presented with the 
red dashed line that marks the 75th percentile for the 
subjects that were not transferred to ICU. The assump-
tion is to use the third quartile (Q3) start point value as 
the threshold if there is separability between ICU and 
non-ICU groups. In diagrams in figure  2, the red line 
indicates the 75th percentile for not admitted to the ICU 
group. The exception is the diagram for the lymphocyte 
count, where it stands for the 25th percentile.

The results of the comparative analysis of features with 
regard to transferring to ICU and the final outcomes of 
the disease are presented in table 1. We excluded from 
further analysis the laboratory findings that did not signifi-
cantly differ in the distribution of two groups. Therefore, 
we considered the list of 13 variables: WBC, lymphocyte 
count, total bilirubin, ALT, AST, D-dimer, aPTT, creatine 
kinase (CK), CRP, LDH, troponin, ferritin and fibrinogen 
on admission.

Feature ranking with regard to ML model performance
The features of the dataset listed in online supplemental 
appendix 1 were ranked with four tree-based ML classi-
fiers (eg, Random Forest, AdaBoost, Gradient Boosting 
and ExtraTrees). Tree-based models provide measures 
of feature importances. The classifiers are based on the 
mean decrease in impurity. The impurity is quantified 
by the splitting criterion of the decision trees. Averaged 

values of impurity-based attribute ranks were calculated 
as the mean of rank values for the algorithms (see online 
supplemental figure 1). The classification performance is 
seen in online supplemental figure 2.

The cut-off levels of the laboratory findings
To come up with laboratory data cut-off levels, which 
may be considered as biomarkers of the severe course of 
the disease, we trained the NN ML model on each vari-
able separately and assessed their statistical significance 
against chance performance. We calculated 95% CI for 
ROC and AUC scores with the bootstrap technique and p 
values with permutation tests (see table 2).

Table 2 shows that there is a notable difference between 
the performance of the model in terms of ROC AUC and 
the performance at chance level. High-performance 
measures were obtained for aPTT, CRP and fibrinogen 
values (sensitivity and specificity of 0.9877 and 0.4028, 
respectively). The values increased to 0.9754 and 0.75, 
respectively, for all 13 significant tests. So we used the 
performance of the classification model based on the 
combination of these 3 and 13 features.

First, we trained the ML classification model based on 
the data taken from only one lab feature using a stratified 
10-fold cross-validation technique. Then, we built ROC 
for the test data of all 10 folds (see diagrams in online 
supplemental figure 3).

To improve the model’s efficiency and to choose the 
cut-off value set for some laboratory findings data, we 
used a threshold moving technique along with a super-
vised ML classification model (NN).

The ML estimator assigns threshold values for inter-
preting probabilities. The default threshold returned 
by the estimator to class labels is 0.5. However, when the 
dataset is unbalanced, tuning this hyperparameter can 
improve the model’s efficiency by finding the optimal 
threshold. This is crucial when the importance of 
predicting the positive class (admitted to ICU) outweighs 
true negative predictions. Performance metrics calcu-
lated for all laboratory features with regard to the optimal 
threshold value are presented in table 3. The table displays 
the sensitivity, specificity and AUC values obtained after 
applying the threshold moving technique. We marked 
in bold the AUC values which are higher than the ones 
displayed in online supplemental figure 3A. The optimal 
cut-off value returned by the technique is shown in the 
appropriate column.

As per the box plots regarding the laboratory findings 
values in the ICU versus the non-ICU cohort of patients in 
figure 2, we decided to check whether the performance 
of the model is good if we applied thresholds in the 
following manner. For lymphocyte count, we set the cut-
off level to the 25th percentile (values lower than or equal 
to the chosen level were set to 1 or 0 otherwise). For the 
other features, we set the thresholds to the 75th percen-
tile (values higher or equal to the cut-off limit were set to 
1 or 0 otherwise). The performance of the models with 
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https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
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regard to the aforementioned cut-off levels is presented 
in table 3.

Online supplemental figure 4A shows the performance 
of the logistic regression model built on the binary data 
by applying the cut-off level for the threshold moving 
technique. Online supplemental figure 4 illustrates the 
same information for the percentile’s cut-off levels.

The performance of the classification models
The applied ML algorithms were trained with stratified 
10-fold cross-validation technique. The predictors used 
are listed in online supplemental table 1. The perfor-
mance of the classification models such as Gradient 

Boosting, AdaBoost, ExtraTrees, Random Forest, NN, 
logistic regression with and without L1 regularisation 
is presented in online supplemental figure 2, online 
supplemental table 2. It displays all 560 test points concat-
enated from test (actual and predicted) label values for 
each fold. Online supplemental tables 3 and 4 show the 
performance metrics obtained by the NN model with 
the highest output quality. Online supplemental figure 
3 displays ROC curves and AUC for the NN model with 
different variables, observed on admission, as predictors. 
Online supplemental figure 4 illustrates the quality of 
the performance for the binary data obtained by using 

Figure 2  Variation of laboratory findings values in the intensive care unit (ICU) cohort (orange box plot) versus the non-ICU 
cohort of patients (blue box plot). ALT, alanine aminotransferase; aPTT, activated partial thromboplastin time; AST, aspartate 
aminotransferase; LDH, lactate dehydrogenase; WBC, white blood cell.

https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
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the threshold moving or percentile-based heuristic 
approach.

DISCUSSION
Severity of the disease course in SARS-CoV-2 infection
There are different risk factors for COVID-19 severity. 
Finding and justifying them are the issues of the ongoing 
studies because of the persistence of the viral infection. In 
research on the severe respiratory illness for COVID-19, 
the authors justified the age above 65 years as a predictor 
of clinical outcomes of interest.29 The data we received 
support this fact. In the same study, the authors showed 
inconsistent results regarding the race of the patient. 
In the univariate model, the race was a non-significant 
predictor of the disease severity, however it turned out 
to be significant in the multivariate prediction. We did 
not find ethnic differences between ICU and non-ICU 
cohorts, but observed a notable difference in the outcome 
of the disease within these groups (eg, discharged vs 
deceased patients). According to other studies, age is 
the largest contributor to risk of death for SARS-CoV-2, 
the impact of the race or ethnicity on the disease course 
remains not fully understood. The researchers have diffi-
culty adjusting the samples for comorbidities as physicians 
did not examine all the patients thoroughly before the 
disease.30 31 Presumably, the same limitations account for 
disparities between the studies in which the authors try to 
consider comorbidities (eg, asthma, diabetes, hyperten-
sion and chronic kidney disease) as risk factors. To over-
come the limitation, we decided to base the prediction 

on the laboratory findings on admission. They are stan-
dardised and unambiguously interpretable.

Biomarkers of the deterioration of the patients
It is common sense that people with unmanaged chronic 
conditions are more vulnerable to severe outcomes. 
High-sensitive laboratory findings are a reliable tool for 
assessing pathologies of these kinds. Reasonably, these 
findings may serve as predictors of the disease progression.

As it comes from feature selection, LDH activity is the 
laboratory finding that has maximal informative value for 
the prediction of worsening of the patient (see online 
supplemental table 1). This keeps up with the results of a 
pooled analysis that show an association of elevated LDH 
values with a sixfold increase in odds of developing severe 
disease. Notably, the LDH cut-off in the included studies 
ranged from 240 to 253.2 U/L. The threshold value for 
the LDH activity in our study is 246 U/L, which is close to 
the median of the range.4 It is also known to be a predictor 
of worse outcomes in inpatients.32 In our study, LDH is 
the top rank predictor of disease severity, CK levels have 
a medium informativeness. Both of them are non-specific 
biomarkers of energy deficiency and hypoxia. The levels 
of CRP have an expectedly high predictive value as they 
reflect the activity of an inflammatory process.

The concentration of D-dimer seems to be a more 
promising biomarker of COVID-19 severity because of the 
endothelial dysfunction mechanism which is specific for 
this viral infection (see ‘Data used by clinicians for strati-
fying risks’ subsection). For the same reason, aPTT is an 
interesting predictor for SARS-CoV-2-infected patients. 
Therefore, recent studies justified the coagulation indica-
tors on admission (eg, D-dimer, aPTT, prothrombin time 
and fibrinogen) as significant indicators of severe course 
of COVID-19.33

Online supplemental table 1 shows that fibrinogen 
values are not predictive of disease severity. The expla-
nation to this discrepancy is many missing values for this 
indicator in our database. As it is seen from table 1, the 
total number of 153 cases (27%) were missing. We had 
to replace them with the mean values to perform the 
multivariate prediction with the tree-based model. The 
replacement decreased the real prognostic value, which 
was expected to be high. In contrast to this, the univariate 
model based on fibrinogen levels had the best classifying 
metrics compared with other predictors. Its ROC AUC 
value is 0.7704 (see table 2).

Threshold criteria for the major clinical data
With the ML approach, we justify the cut-off thresholds for 
the major laboratory tests regularly done on admission.

The disproportion in the number of patients admitted 
to ICU versus non-severe cases was challenging. There-
fore, we customised the ML algorithms in terms of 
threshold values used to predict worsening. For each 
laboratory findings feature, we (1) fit the model to the 
training dataset using 10-fold cross-validation technique, 
(2) predicted the probabilities on the test dataset, (3) 

Table 2  Statistical significance of ROC AUC for predicting 
transfer to ICU out of the laboratory findings on admission

No Feature AUC 95% CI P value

1 AST 0.4882 (0.399 to 0.595) 0.828

2 ALT 0.5057 (0.482 to 0.538) 0.331

3 Total bilirubin 0.5573 (0.443 to 0.557) 0.077

4 LDH 0.5652 (0.515 to 0.644) 0.072

5 WBC 0.5727 (0.427 to 0.573) 0.035

6 Lymphocyte 0.5881 (0.474 to 0.588) 0.01

7 Troponin 0.6088 (0.5 to 0.609) 0.008

8 D-dimer 0.6151 (0.5 to 0.615) 0.004

9 CK 0.6918 (0.6 to 0.725) <0.001

10 Ferritin 0.6973 (0.616 to 0.74) <0.001

11 aPTT 0.7534 (0.219 to 0.755) <0.001

12 Fibrinogen 0.7704 (0.718 to 0.771) <0.001

13 CRP 0.8194 (0.798 to 0.822) <0.001

 � aPTT+CRP+fibrinogen 0.8618 (0.486 to 0.884) <0.001

 � All together 0.9019 (0.812 to 0.902) <0.001

ALT, alanine aminotransferase; aPTT, activated partial 
thromboplastin time; AST, aspartate aminotransferase; CK, 
creatine kinase; CRP, C reaction protein; ICU, intensive care unit; 
LDH, lactate dehydrogenase; WBC, white blood cell.

https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
https://dx.doi.org/10.1136/bmjopen-2020-044500
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found the optimal threshold value which maximises the 
ROC AUC measure.

The optimised threshold values (marked in bold in 
table 3) can be used to predict the supposed deterioration 
of the patient from the initial findings at presentation. 
Some of the thresholds are close to the normal reference 
values, but not completely. For instance, the cut-off for 
CRP is 3 times bigger than the top reference value. The 
cut-offs that we found for WBC and total bilirubin are 
within the range of normal values for these laboratory 
findings. That is why it is challenging to interpret them.

The prediction based on CRP with ROC AUC equal 
to 0.8403 proved to be most accurate. A meta-analysis 
done by other authors showed the possibility to predict 
mortality for COVID-19 out of CRP with the same level 
of accuracy (ROC AUC 0.84).17 Unfortunately, they did 
not state clearly the time point for collecting the samples.

In our study, the performance of the disease severity 
prediction based on the coagulation indicators was not so 
high (eg, D-dimer 0.7228; fibrinogen 0.6774). However, 
it almost equals the results of ROC analyses for mortality 
risk by other authors who received AUCs value of 0.742 
for D-dimer on admission and 0.643 for aPTT on admis-
sion.33 Other authors reached even better performance 
for the prediction of in-hospital mortality based on 
D-dimer on admission (AUC 0.85).

Despite the similarities in performance metrics, the 
studies cannot be compared as they are based on different 
inclusion criteria, study cohorts and threshold values 
found. In general, our findings support the idea of other 
researchers to use laboratory findings on admission for 
risk stratification. Moreover, they encourage the further 
studies to implement new biomarkers into prognostic 
models along with the proven ones.17

The multivariable prediction of the severity of COVID-19
For better prediction, it is recommended that several 
biomarkers are analysed concomitantly. A combination 
of 3 and 13 most valuable ones, if fed to the deployed ML 
algorithm, provides a reliable prognosis. Online supple-
mental figure 2 clearly shows that there is a separability 
pattern within all variables used to build the predictive 
model. When we rank the features in accordance with 
their importance, most laboratory findings variables are 
listed at the top (see online supplemental table 1). It also 
helps to justify the threshold values, presented in this 
study.

Limitations
There are several limitations in the current study. First, 
the dataset is unbalanced. Therefore, we customised 
the supervised ML algorithm in terms of the threshold 
value used to predict worsening. Second, the severity and 
mortality of the included patients might not be represen-
tative of the community because of the latent course of 
the mild and asymptomatic cases. Third, the population 
of Dubai is specific in terms of unequal age distribution 
and ethnic heterogeneity. However, one may consider the 

last feature as a strength because we can generalise the 
results to the world population. Fourth, although other 
clinical examinations (eg, diagnostic imaging) could 
provide additional information, we limited the predictors 
of disease deterioration to laboratory findings. Nonethe-
less, this was enough to build up an ML algorithm with 
good performance. The concomitant analysis of the top 
three valuable biomarkers on admission provided a reli-
able prognosis without radiological predictors. Another 
advantage of the choice we made is the high applicability 
of study results into practice. The justified cut-off thresh-
olds for the laboratory tests are easy to use on admission 
to the hospital.

CONCLUSION
►► By comparing the data for the patients who were 

transported to ICU with those who did not worsen 
throughout the hospitalisation, we selected a set of 
laboratory findings with the significant differences 
on admission to the clinics. The variables were used 
as the predictors to build up the classification model. 
The performance of the models was low, with the 
default thresholds returned by the ML estimator, we 
improved it by setting the cut-off level to the 25th 
percentile for lymphocyte count and the 75th percen-
tile for other features.

►► To distinguish the patients with confirmed COVID-19 
who may worsen while treated, we justified the 
following threshold values of the laboratory tests 
done on admission: lymphocyte count <2.59×109/L, 
and the upper levels for total bilirubin 11.9 μmol/L, 
ALT 43 U/L, AST 32 U/L, D-dimer 0.7 mg/L, aPTT 
39.9 s, CK 247 U/L, CRP 14.3 mg/L, LDH 246 U/L, 
troponin 0.037 ng/mL, ferritin 498 ng/mL and fibrin-
ogen 446 mg/dL.

►► The performance of the neural network to predict the 
future deterioration out of the top three valuable tests 
(aPTT, CRP and fibrinogen) is admissible (AUC 0.86; 
95% CI 0.486 to 0.884; p<0.001). It is comparable with 
the model trained with all the tests (AUC 0.90; 95% CI 
0.812 to 0.902; p<0.001).
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