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Abstract: The incidence of dental caries, especially root caries, has risen in elderly populations in
recent years. Specialized restorative materials are needed due to the specific site of root caries and the
age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials
commonly used clinically cannot fully meet the requirements in this population. Specifically, the
antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials
need to be significantly improved for dental caries in the elderly. This review mainly discusses the
strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement,
and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries
materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and
explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative
materials for caries in the elderly, especially for root caries, need to be further developed and applied
in clinical practice.

Keywords: elderly populations; commercial dental restorative materials; composite materials; poly-
mer and biopolymer; antimicrobial materials; remineralization materials; self-healing materials

1. Introduction

The aging of the population is a worldwide phenomenon, and increased life ex-
pectancy impacts the human oral health status. The elderly face challenges of age-related
changes in general and oral health. The incidence of dental caries is high in elderly popu-
lations [1], which is a growing public health issue due to the dramatic increases in tooth
retention rate. According to the Fourth Oral Epidemiological Survey of China in 2015,
the prevalence of dental caries was 98.0% in people aged 65 to 74, and the elderly were
more likely to develop root caries than coronal caries. The prevalence of root caries in this
group was 61.9%, only 3% of which were restored. In the USA, it was estimated that 60%
of people > 65 years old suffered from root caries [2]. Similar to other caries, root caries
is mainly treated by a restorative procedure, usually ending up in failure due to the high
proportion of secondary caries and restoration fracture [3]. Caries in the elderly, leading
to a higher prevalence of recurrent caries, require more oral treatments than other caries,
with a heavy economic burden on society and the medical health service. Specific oral
microorganisms [4] and changing anatomic structures require specialized restorative mate-
rials to treat caries in the elderly. However, the clinically available restorative materials,
including amalgam, glass ionomer cement, and light-cured composite resin, cannot fully
meet the requirements. Therefore, the antibacterial, adhesive, remineralization, mechanical,
and anti-aging properties of the materials should be dramatically enhanced to meet the
restorative needs of the elderly. This review was undertaken to discuss the strengths and
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weaknesses of the currently available materials and review previous studies on novel
anticariogenic materials that can be potentially used in the clinic to restore caries in the
elderly.

2. The Challenges of Dental Restorative Materials in the Elderly

With the impaired immune function in the elderly, the local oral environment faces
many challenges concerning the restorative treatment of dental caries.

Figure 1 summarizes the challenges of dental restorative materials in elderly popula-
tions.

Figure 1. The elderly are confronted with the following changes: Salivary gland atrophy, susceptibility
to periodontitis, non-carious cervical lesions (NCCL), and root caries.

Restorative materials for dental caries in the elderly should exhibit antibacterial prop-
erties. The decreased salivary flow (i.e., hyposalivation) and reduced bicarbonate concen-
tration in the elderly lead to a weak acidic local oral environment [5,6]. The cementum and
root dentin are more vulnerable to acid attack and demineralization in a weak acidic envi-
ronment, resulting in root caries. In the root caries, in addition to Streptococcus mutans [7]
and Lactobacillus acidophilus, Actinomyces species and Candida albicans are also detected
in large amounts, which might play critical roles in the development of these lesions [8,9].
Therefore, the local environment of root caries is more diverse and the treatment of root
caries in the elderly needs to target a variety of microorganisms. In the elderly, wearing
removable partial dentures, frequent sugar intake, poor oral hygiene [10], and rougher
surface of teeth root would increase bacterial biofilms accumulation. Moreover, the elderly
are more susceptible to microbial infections as their saliva clearance rate and immunity are
compromised. Changes in microbial flora, increased biofilms adhesion, decreased saliva
clearance, and immunity give rise to a higher demand for the antibacterial property of
dental materials in the elderly. The property includes inhibiting the growth of Streptococcus
mutans [11], Lactobacillus acidophilus, Actinomyces species, and Candida albicans [12], reducing
the adhesion of bacterial biofilms, and being biologically safe.

Restorative materials in the elderly should also provide remineralization and adhesive
properties. The elderly are more susceptible to gingival recession and periodontitis [13],
leading to the cementum and dentin of root surfaces to be exposed. In addition, a thin
cementum can be lost by brushing teeth or dental plaque biofilm acid, exposing the
root dentin. The carbonate content of hydroxyapatite (HA) in dentin increases with age,
resulting in increased dentin sensitivity to acid and making it more soluble than other
ages [14]. Therefore, exposed root surfaces with thin or even no cementum are vulnerable
to acid attack, resulting in root caries. In other words, the elderly are more vulnerable
to demineralization. As a result, dentin remineralization is necessary for root caries.
For the elderly, ideal remineralized restorative materials should be able to carry out the
following: Remineralize the demineralized dentin, have a long-term remineralization
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effect, be suitable for patients with a dry mouth (i.e., xerostomia), and not promote calculus
production.

On the other hand, it is difficult to isolate the moisture in the periodontal pockets
when root caries is close to gingival during restorative treatments [15]. It is worth noting
that root caries is usually dentin caries, challenging dentists in two ways. One is resin-
dentin bonding. The “hybrid layer” formed by the resin-dentin diffusion has a great
influence on the bonding strength of the restorative materials [16]. However, the dentin
tubules in the elderly are degenerative and mineralized [17]. Matrix metalloproteinases
(MMPs) from dentin, activated by acid, can degrade the hybrid layer [18]. Therefore, the
mineralized dentin of the elderly cannot be etched well, resulting in a weak adhesion
layer. Hence, adhesion to dentin might be achieved by self-etching adhesives according to
the adhesion-decalcification concept. In general, the periodontal condition and dentinal
structure necessitate that the dental restorative materials in the elderly must promote
dentin remineralization and achieve strong bonding with the root surface.

Other challenges for dental restorative materials in the elderly are mechanical and
anti-aging properties. Apart from the hardness and elastic modulus, the fracture toughness
of dentin reduced with the increasing age, making teeth more likely to be fatigued [19].
The restored teeth are also less resistant to fatigue cracks [20]. A study showed that the
cervical area of the teeth is a stress concentration area during mastication [21,22]. As a
result, root caries in the elderly is a high risk of tooth fracture. The chemical and physical
factors in the oral environment such as microbial metabolites, saliva, gingival crevicular
fluid, intraoral loads (forces) will degrade restorative materials. Over time, it will cause the
occurrence of microleakage, change color of restorative materials, and increase roughness,
eventually leading to secondary caries [23]. Therefore, dental restorative materials for the
elderly require upstanding mechanical properties and should resist degradation due to the
complex oral environment. First of all, the materials must be wear-resistant and absorb the
occlusal force, with less stress shrinkage. They should also be able to repair cracks in the
dental tissue, reducing the risk of secondary caries and tooth or restoration fracture.

Considering the physical and local physiological changes in the elderly, dental caries
in the elderly should be treated with special care. The restorative materials for caries should
have considerable antibacterial, remineralization, adhesive, mechanical, and anti-aging
properties.

3. Currently Available Restorative Materials for the Elderly
3.1. Amalgam

Amalgam can release silver ions and mercury ions to inhibit the growth of Streptococcus
mutans and Actinomycete biofilms, with no bacterial resistance [24]. It seldom causes
microleakage and secondary caries, therefore, amalgam is suitable for subgingival cavities
to a certain extent. However, to obtain good retention, the dental tissue has to be extensively
removed, as the amalgam and the tooth can only be mechanically interlocked [25]. As
a result, the remaining insufficient tissue on roots might not be able to bear too much
occlusal force and is easily broken. However, this might be compensated by its elastic
modulus, which is similar to dentin and its excellent mechanical properties [26]. In addition,
amalgam can endure saliva and gingival crevicular fluid and is not degraded. Therefore,
amalgam can be preserved in the oral environment for a long time compared to other
restorative materials [27]. However, the disadvantages of amalgam are also evident. The
leakage of mercury is a potential risk to human health [28], and the release of mercury
into the environment causes environmental pollution. Moreover, the color of amalgam
is too different from that of teeth, and it cannot meet the aesthetic needs of anterior root
caries [29]. In summary, the disadvantages of amalgam outweigh its advantages. Amalgam
is gradually being eliminated from clinical practice since other more suitable materials are
widely used.
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3.2. Glass Ionomer Cement

The glass ionomer cement (GIC) commonly used in clinical practice can be divided
into three types: Conventional, resin-modified, and high-viscosity GIC [30]. Glass ionomer
can release fluoride ions [31], therefore, it exhibits antibacterial and remineralization prop-
erties [32]. Studies have shown that glass ionomer can inhibit the growth of Streptococcus
mutans and Lactobacillus, therefore, it can prevent secondary caries to a certain extent but
cannot inhibit the growth of Candida albicans [33], one of the pathogenic bacteria respon-
sible for root caries [34]. Since the release of fluoride ions is related to the glass ionomer
composition, most high-viscosity and resin-modified glass ionomers have a lower total
fluoride ion release than the conventional ones [35], therefore, conventional glass ionomers
have better antibacterial properties [36]. The remineralization properties of glass ionomer
are also related to the release of fluoride ions [37]. Glass ionomer can promote the reminer-
alization of partially demineralized tooth hard tissues but cannot remineralize completely
demineralized tooth hard tissues [38]. Concerning caries in the elderly, the existing glass
ionomer has certain antibacterial and remineralization properties [38]. However, due to
fact that the release of fluoride ions from glass ionomer is explosive in the early stages,
decreasing slowly to a very low concentration in later stages, it does not have controlled
release and long-term release [39], necessitating an improvement in this respect.

Glass ionomer has self-adhesive properties, through a chemical combination with
the tooth hard structure, and can be used in a humid environment [40]. Except for the
resin-modified glass ionomer, which requires light curing, other glass ionomer types do
not require light curing [41], therefore, it is low-technique-sensitive, and the operating
time is short. The treatment of root caries in the elderly might be hampered by gingival
crevicular fluid exudation, making it difficult to prevent moisture [15]. In addition, the
elderly cannot easily tolerate lengthy clinical procedures. Therefore, the self-adhesive
properties of glass ionomer are advantageous in the treatment of caries in the elderly. The
mechanical properties of conventional glass ionomers are the worst among all [42]. The
hardness and long-term wear of modified high-viscosity glass ionomer and resin-modified
glass ionomer are far lower than the conventional ones [43]. Since caries in the elderly,
especially root caries, do not withstand high occlusal loads, the mechanical properties of
glass ionomer are suitable for the elderly. In summary, conventional glass ionomers have
good antibacterial and remineralization properties, and modified glass ionomers have
better mechanical properties and retention rates. For caries in the elderly, glass ionomer is
a good choice. However, further improvements are still necessary.

3.3. Light-Cured Composite Resin

Light-cured composite resin is more commonly used for the restorative treatments
of dental caries in seniors. Composite resin restorations lack antibacterial properties and
accumulate dental plaque [44]. It was reported that the percentage of Streptococcus mutans
and Candida albicans in the dental plaque on the resin was higher than that of amalgam
and GIC [45]. Biofilms might cause secondary caries [46] and materials aging. There are
already some composite resins with fluoride ion-releasing ability for clinical applications,
such as Beautifil II [47,48], Dyract Extra, etc. These fluorine-releasing composite resins
can slowly release fluoride ions over a long time [49], considered to be beneficial for
antimicrobial properties and remineralization. Conventional composite resins and tooth
structures are bonded through adhesives. Self-etching adhesives are more suitable for
dentin caries [50,51], but still difficult for the sclerotic aging dentin.

The mechanical properties of the composite resin are acceptable and better than the
glass ionomer cement [52,53]. However, the particulate filler resin composite is of low
mechanical strength, which may cause high local stress concentrations and damage the
restoration. Fiber-reinforced composites (FRC), widely used in engineering, have been
clinically approved for restorative dentistry for decades [54]. The physical and chemical
properties and various research models of this engineering material have been widely stud-
ied in other fields [55]. Fibers in the FRC increase toughness and other physical properties
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of the material compared to the regular composite resin [56]. Fibers will prevent crack
propagation through restorations and mimic the stress absorbing properties of dentin [57].
As dentin replacement, short fiber-reinforced composites, such as everX Flow and everX
Posterior, display an exceptionally high fracture toughness and low wear depth [58]. Teeth
filled by the FRC might be less likely to develop secondary caries and bulk fracture. How-
ever, a significant disadvantage of composite resin is the polymerization shrinkage, causing
microleakage and affecting the bonding [59,60]. The mechanical properties of composite
resins are often affected by aging and the degree of polymerization.

In conclusion, composite resins also have some advantages, such as good appearance,
compressive strength [61], and wear resistance (Table 1). However, decreased mechanical
properties, restoration fracture, pulp irritation [62], and secondary caries are common
problems of composite resin restorations [63]. It is still urgent to improve the properties of
light-cured composite resin to meet the requirements of restorative treatments of caries in
the elderly.

Table 1. Comparison of currently available restorative materials for elderly populations.

Antibacterial
Property Adhesive Property Remineralization

Property
Mechanical

Property
Anti-Aging

Property
Aesthetic
Property

Amalgam + − − + + −
Conventional Glass

Ionomer Cement + + + − − −

High-Viscosity Glass
Ionomer Cement

(Ketac Molar
Easymix, etc.)

+ + + + − −

Resin-modified Glass
Ionomer Cement
(Fuji II LC, etc.)

+ + + − + +

Conventional Light
Curing Composite

Resin
−

−
(Without adhesive

system)
− + − +

Fluoride-releasing
composite

(Compomer, e.g.,
Dyract Extra, etc.;

Giomer, e.g., Beautifil
II, etc.)

Further studies
are needed

−
(Without adhesive

system)

Further studies
are needed + − +

Short Fiber-reinforc
ed composite

(everX Flow, everX
Posterior, etc.)

Further studies
are needed

−
(Without adhesive

system)

Further studies
are needed + + +

“+” Indicates that the property is clinically acceptable; “−” indicates the opposite.

4. Novel Anticariogenic Restorative Materials

Figure 2 summarizes the timeline of novel anticariogenic restorative materials.

4.1. Antimicrobial Materials

As mentioned previously, with changes in the types of cariogenic microorganisms,
increased biofilms adhesion and secondary caries [64] in the elderly populations, dental
restorative materials need to inhibit root caries biofilms and reduce the proportion of
acid-producing bacteria [65,66]. However, restorative materials used clinically do not
have ideal antimicrobial properties for the elderly. In recent years, some researchers have
studied antimicrobial materials [67–70] that might be used for caries restorative procedures
in the elderly. Those novel materials can reduce the number of cariogenic bacteria, have
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long-term antibacterial effects, and are expected to acquire both antibacterial and anti-
aging properties. Antibacterial materials could be divided into non-releasing materials and
releasing materials.

Figure 2. (A) Antibacterial materials. (B) Remineralization materials. (C) Self-healing materials.
(D) Timeline.

The releasing agents range from chlorhexidine (CHX) to silver diammine fluoride
(SDF). CHX was mixed as a filler with resin monomers [71,72] for its broad-spectrum
antibacterial capacity to prevent root caries biofilms formation (Streptococcus mutans, Lac-
tobacillus acidophilus, Actinomycetes) [72,73]. However, CHX might disturb the oral micro-
ecological balance [74] and its long-term antimicrobial activity relies on the recharge of
CHX [72]. Ishiguro et al. [75] introduced SDF as a tooth surface coating agent and found
that the SDF-coated root dentin exerted a strong inhibitory effect on the acid production
by Streptococcus mutans through releasing silver, but the effect decreased after 1 week of
aging. Hence, researchers turned their attention to non-releasing materials.

When the root lesions progress to cavities, carious tissue excavation and restorative
treatment are required. As restorative materials used clinically do not have ideal an-
timicrobial properties, researchers attempt to incorporate antibacterial components into
the adhesive systems [76–78] or restorative materials [79–81]. Quaternary ammonium
methacrylates (QAMs) are a class of cationic compounds with a broad spectrum of antimi-
crobial activity [82,83], low capacity to induce drug resistance [84–87], and low toxicity [88].
The antimicrobial mechanism of QAMs was considered “contact killing”, since the positive
quaternary amine charge could destroy the bacterial membrane which was negatively
charged [89]. Compared with the releasing materials, QAMs can be copolymerized with
the resin matrix [90] and fixed in the polymer network with a prolonged antimicrobial
activity. Thomé et al. [91] found that the 12-methacryloyloxydodecylpyridinium bromide
(MDPB)-containing composite inhibited the progression of artificial secondary root caries
by Streptococcus mutans. Other novel multifunctional restorative materials have been de-
veloped in the laboratory by adding components with different capabilities. Zhou et al. [92]
developed a nanocomposite with remineralizing and antibacterial properties via nanoparti-
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cles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate
(DMAHDM). The composite inhibited root caries biofilms of Streptococcus mutans [93,94],
Lactobacillus acidophilus, and Candida albicans [95,96] in a recurrent root caries model and
protected dentin hardness. These novel composite resins might successfully inhibit root
caries in the elderly, control subgingival plaque, and reduce microleakage [97]. However,
more comprehensive laboratory assessments, such as adhesive and anti-aging properties
and further clinical evaluations are necessary before their widespread clinical applications.

4.2. Remineralization Materials

The elderly often suffer from gingival recession, causing the root surface to be exposed
and more sensitive to acid attack. Since there is a decrease in the pH of the local oral
microenvironment in this population, the teeth are more susceptible to demineralization.
Generally, root caries in the elderly always develops rapidly and deeply, therefore, the
remaining tooth structure is sometimes insufficient. As a result, restorative materials
should have remineralizing properties. Due to the limited remineralizing properties of
the glass ionomer cement and fluoride-releasing composite resin, various novel materi-
als have been developed to promote the remineralization of demineralized enamel and
dentin. Researchers have incorporated calcium phosphate compounds, fluoride, polyami-
doamine (PAMAM), and bioactive glass (BAG) into glass ionomer and composite resin
to improve their remineralizing properties. These novel materials could release calcium,
phosphate, and fluoride ions to promote the remineralization of tooth hard structures.
Since amorphous calcium phosphate (ACP) is the main component of hydroxyapatite, the
development of restorative materials containing ACP has attracted widespread attention.
The first to develop was the composite resin with ACP as an inorganic filler, which could
release a large amount of calcium and phosphate ions. It had good hydrophilicity and
biological safety. However, the mechanical properties of ACP were low, and the bond-
ing properties of the material decreased significantly after water aging, resulting in the
restoration fracture. Therefore, it cannot meet clinical needs for the elderly caries. With
the emergence of nanotechnology, a variety of calcium phosphate nanoparticles as inor-
ganic fillers [98,99], such as dicalcium phosphate anhydrous (DCPA), dicalcium phosphate
dihydrate (DCPD), tetracalcium phosphate (TTCP), and amorphous calcium phosphate
nanoparticles (NACP), have been gradually developed. The nano-amorphous calcium
phosphate could meet the requirements for remineralization in the elderly. First of all,
these agents were pH sensitive and released more calcium and phosphate ions in an acidic
environment [100], thus responding to demineralization in a short time [101]. Moreover,
they could recharge and supplement ions with calcium phosphate liquid to achieve long-
term remineralization [102,103]. The mechanical properties of the nano material was still
lower than the clinical universal composite resin material, not sufficient to satisfy the
treatment of caries in the elderly. Nanocomposite containing CaF2 nanoparticles had pH
sensitivity, released fluoride ions in a short time under low pH conditions, and effectively
promoted remineralization. However, after 87 days, fluoride ion releasing was the same
in different pH solutions, therefore, it lacked long-term pH-sensitive function [104]. The
mechanical properties were better than those of the clinical resin-modified glass ionomer
(RMGI) at the initial stage and after 2 years of water aging. The resin composite material
containing the LiAl-F layered double hydroxide (LDH) had fluoride-release-and-recharge
ability after 3 months of water aging. Moreover, its mechanical strength was better than
RMGI [105]. Therefore, the above two materials could release a lot of fluoride ions and be
recharged. However, the ability to release fluoride ions after long-term water aging, adhe-
sive performance, etc., still required further experimental evidence. PAMAM dendrimers
could be used as organic nucleation templates to induce biomimetic new-grown crystals
on the demineralized dentin [106]. The novel composite resins containing NACP and
PAMAM [107,108] could effectively promote the remineralization of root surface dentin.
The BAG had a high ratio of calcium-to-phosphorus, promoting the formation of apatite
crystals. Tezvergil-Mutluay et al. developed a fluoride-containing composite (BAG-F) [109].
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BAG-F could induce the completely demineralized dentin surface to remineralize after 30
days. It could biologically inhibit MMP and the Cathepsin K (CTP), reducing the original
protein crystals on the resin-tooth essence decomposition. Therefore, the composite resin
containing PAMAM and BAG might meet the needs of caries remineralization in the elderly,
but there was still a lack of long-term in vitro, animal, and clinical experiments to illustrate
the remineralization function.

The above materials have been shown to have good remineralization ability. Some
materials also have good mechanical properties, meeting the requirements of restorative
materials for caries in the elderly. However, there is still a lack of long-term in vitro
and clinical experiments to prove the remineralization ability, mechanical properties, and
anti-aging properties of these novel materials.

4.3. Self-Healing and Low-Shrinkage Materials

The treatment of root caries in the elderly requires restorative materials with good
antibacterial properties. The microleakage caused by the polymerization shrinkage and
microcracks of the composite resin will increase plaque adhesion, causing secondary caries.
Therefore, reducing the polymerization shrinkage and timely repair of the microcracks are
potential strategies. Novel materials have been developed to deal with these two issues,
including self-healing composite resins and low polymerization shrinkage composite
resins.

The self-healing composite resin has self-healing microcapsules. When the resin
cracks, the microcapsules are broken to release the healing fluid to repair the cracks. Wu
et al. developed a self-healing composite resin using triethylene glycol dimethacrylate
(TEGDMA)-N,N-dihydroxyethyl-p-toluidine (DHEPT) (TEGDMA-DHEPT) as the heal-
ing fluid. When the microcracks generated, benzoyl peroxide (BPO) in the resin matrix
triggered TEGDMA to repair the cracks. George Huyang has developed a new type of
SHDC [110]. The microcapsules contained a healing powder (HP, strontium fluoroalu-
minosilicate particles) and a healing fluid (HL, polyacrylic acid aqueous solution). As
the microcracks developed, they would release HL. This liquid then reacted with the HP
particles exposed through the crack formation process to form an insoluble reaction product
filling and sealing the crack. The self-healing resin had a self-healing rate of up to about
90%, and could repair most cracks. Moreover, the incorporation of microcapsules did not
affect the mechanical properties of the material. Therefore, it might be a method to solve
the microcracks in composite resins, especially in the elderly.

Concerning the polymerization shrinkage of composite resins, low polymerization
shrinkage composite resins have been developed. Young Park et al. developed the nor-
bornene sulfide (MDNS)-phthalate allyl sulfide (PAS) material, incorporating allyl sulfide
functional groups into the norbornene-methacrylate comonomer resin. The presence of
allyl sulfide allowed the addition-fragmentation chain transfer (AFCT) to reduce the stress
in methacrylate-based systems (stress reduction of more than 96%), while retaining excel-
lent mechanical properties. Wang et al. incorporated methacrylic polyhedral oligomeric
silsesquioxane (POSS) into a new type of nano-SiO2 dental composite resin. The polymer-
ization shrinkage volume of the conventional composite resin was about 1.5 times that
of POSS. POSS could also strengthen the elastic modulus and hardness of the composite
resin [111]. Concerning caries in the elderly, low-polymerization shrinkage materials could
reduce polymerization shrinkage, thereby reducing the breakage and microleakage of the
restoration [112]. However, due to the complex and ever-changing internal environment of
the oral cavity, in vivo and clinical experiments are still required.

In summary, many novel restorative materials have been developed. Some have al-
ready been used in clinics, such as fluoride-releasing composites and short fiber-reinforced
composites. Fluoride-releasing composites might provide antibacterial and remineralizing
properties, but further research is needed. Short fiber-reinforced composites increase tough-
ness and other physical properties of the material compared to conventional composite
resins [113]. However, these materials are not enough to meet all the requirements of
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root caries restoration in the elderly. Other novel materials which have not been used in
clinical practice have antibacterial properties, some have remineralization properties, and
some can repair microleakage and reduce polymerization shrinkage. For the caries of the
elderly, these novel restorative materials can improve the deficiencies of the commonly
used restorative materials in clinics in one or more aspects, but unfortunately there is
no one specific for the caries of the elderly. Therefore, further research focusing on the
restorative materials for caries in the elderly is necessary.

5. Conclusions

With the evolution of dental caries treatment to accommodate personalized treatments,
patients have increasing expectations on the therapeutic effect of restorative materials
for specific caries. Novel restorative materials with antimicrobial, remineralizing, and
other properties were designed and synthesized. However, few studies have evaluated
the restorative materials of caries in the elderly, especially root caries. In addition, the
intelligent control of the release of antimicrobial materials has received little attention.
Furthermore, the problems of moisture isolation, microleakage, and aging resistance of
restorative materials have not been satisfactorily solved. Therefore, the restorative materials
specifically for caries in elderly populations need to be studied and then applied in clinics,
which is expected to offer tremendous benefits to geriatric oral health.
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