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Abstract: Hospital acquired thrombocytopenia (HAT) is a common hematological complication
after surgery. This research aimed to develop and compare the performance of seven machine
learning (ML) algorithms for predicting patients that are at risk of HAT after surgery. We conducted
a retrospective cohort study which enrolled adult patients transferred to the intensive care unit
(ICU) after surgery in West China Hospital of Sichuan University from January 2016 to December
2018. All subjects were randomly divided into a derivation set (70%) and test set (30%). ten-fold
cross-validation was used to estimate the hyperparameters of ML algorithms during the training
process in the derivation set. After ML models were developed, the sensitivity, specificity, area under
the curve (AUC), and net benefit (decision analysis curve, DCA) were calculated to evaluate the
performances of ML models in the test set. A total of 10,369 patients were included and in 1354
(13.1%) HAT occurred. The AUC of all seven ML models exceeded 0.7, the two highest were Gradient
Boosting (GB) (0.834, 0.814–0.853, p < 0.001) and Random Forest (RF) (0.828, 0.807–0.848, p < 0.001).
There was no difference between GB and RF (0.834 vs. 0.828, p = 0.293); however, these two were
better than the remaining five models (p < 0.001). The DCA revealed that all ML models had high net
benefits with a threshold probability approximately less than 0.6. In conclusion, we found that ML
models constructed by multiple preoperative variables can predict HAT in patients transferred to
ICU after surgery, which can improve risk stratification and guide management in clinical practice.

Keywords: hospital acquired thrombocytopenia; machine learning; predictive models; surgery;
critical care

1. Introduction

Platelets are directly involved in thrombus formation and inflammatory regulation,
and thrombocytopenia is a common complication in intensively ill patients [1]. The inci-
dence of hospital acquired thrombocytopenia (HAT) in adult critically ill patients admitted
to the intensive care unit (ICU) ranges from 8.3% to 67.6%, and the incidence of HAT during
ICU treatment can reach 14~44% [2,3]. The current evidence reveals that HAT is associated
with increased bleeding and transfusion risk, ICU mortality and length of stay, and need
for organ support [3,4].

HAT is a common phenomenon after major operations such as hip replacement,
abdominal surgery, and heart surgery. Because of tissue damage and blood loss, the platelet
count usually drops to the lowest point between 1 and 4 days after surgery, rises back to
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preoperative levels between 5 and 7 days, and reaches the highest level around the 14th
day [5]. It seems to be a short, transient, and reversible clinical process, which is not related
to the patient’s postoperative recovery. However, more and more evidence show that this
is not a meaningless process. A study reported that platelets < 75 × 109/L after cardiac
surgery is an independent risk factor for adverse events such as acute kidney injury (AKI),
infection, and stroke [6]. Tew et al. [7] found that the platelet count of children undergoing
cardiac surgery was negatively correlated with serum creatinine, and the lowest platelet
count was closely related to the severity of AKI. Therefore, identifying patients at risk
of developing HAT transferred to ICU after surgery is important for risk stratification,
improving quality of care, and facilitating clinical decision-making.

There are several risk scores proposed to predict the likelihood of heparin-induced
thrombocytopenia (HIT), the Warkentin 4T score was common used in practice [8] and the
HIT expert probability score showed a very good negative predictive value (NPV, 97%)
for ruling out HIT [9]. A systematic review found that a PLASMIC score (contains seven
variables) threshold of over or equal to five is associated with high sensitivity and NPV of
predicting thrombotic thrombocytopenic purpura (TTP) in patients with suspected TTP [10].
Another study found that acquired thrombocytopenia after transcatheter aortic valve
replacement was strongly associated with baseline (low platelet count, leucocyte count),
procedural (eg. major vascular complication), and post-procedural adverse events (sepsis,
AKI); however, they did not develop a predictive model that can be used for predicting
acquired thrombocytopenia [11]. Thus, to the best of our knowledge, there is currently
no study that has established diagnostic models by machine learning (ML) method to
evaluate the occurrence of HAT in patients after surgery. With the rapid development of
ML technology, it has been widely used in various diseases [12–15]. The advantage of ML
algorithms is that they can explain high-order nonlinear interactions of predictors and
obtain more stable predictions [16]. In this study, we aimed to use ML algorithms with the
clinical and laboratory test data before surgery to predict the occurrence of HAT in patients
transferred to ICU after surgery.

2. Methods
2.1. Study Design

This study used a database of patients who transferred to ICU after surgery in West
China Hospital of Sichuan University. This single-center database retrospectively enrolled
the adult patients (≥18 years old) transferred to ICU after surgery between January 2016
and December 2018. The exclusion criteria were: (1) thrombocytopenia before surgery
(platelets < 100 × 109/L); (2) age < 18 years; (3) taking thrombocytopenia drugs within
3 months; (4) history of acute blood loss or transfusion during the perioperative period;
(5) primary diseases that cause thrombocytopenia such as aplastic anemia, hematological
malignancies, etc.

2.2. Data Collecting and Predictors

First, we obtained demographic characteristic, vital sign, comorbidity (hypertension
and diabetes), Acute Physiology and Chronic Health Evaluation II (APACHE II), sequential
organ failure assessment (SOFA), and laboratory indicators from the database. Laboratory
indicators were measured after admission and, whenever necessary, according to attending
physicians’ judgment. The laboratory value was determined in the Laboratory Department
of West China Hospital within 2 h after the blood was collected. SOFA and APACHE II
were evaluated by the attending physician who saw the transferred patients.

White blood cell count (WBC), hemoglobin, and platelets were analyzed by an auto-
mated hematology analysis system, Beckman Coulter LH750 (Beckman Coulter Inc., Brea,
CA, USA). Activated partial thromboplastin time (APTT), prothrombin time (PT), fibrin,
and fibrinogen degradation products (FDP) were measured by a Sysmex CA-7000 analyzer
(Siemens Healthcare Diagnostics, Shanghai, China). Procalcitonin and interleukin-6 were
tested by a Cobas S6000 Hitachi (Roche Diagnostics, Quebec, H7V 4A2, Canada).
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2.3. Endpoint

Since the normal range of platelets in the Chinese population is lower than that of
the European and American population [1,17], according to expert consensus of Crit-
ical Care Medicine Committee of Chinese Medical Association, HAT was defined as
platelets < 100 × 109/L that transferred to ICU after surgery in this study [18].

2.4. Machine Learning

To achieve the purpose of the research, 7 supervised ML algorithms were used
to develop classification models: (1) Random Forest (RF), (2) Gradient Boosting (GB),
(3) Logistic Regression (LR), (4) XGBoost, (5) multi-layer perceptron (MLP), (6) support
vector machine (SVM), and (7) K-nearest neighbor (KNN), since they are commonly used
and can identify non-linear relationships between variables [19,20]. First, we chose the
algorithm of the model and some model parameters arbitrarily, and provided derivation
data for each model. Together with the training step, the model gradually adjusts some
trainable parameters to optimize performance by itself. After training, all model parameters
were fixed.

RF builds a Bagging ensemble based on decision tree learner, and further introduces
random attribute selection in the training process of decision tree. It builds each tree using
random features of random variables, then finally returns the average predictions of each
tree [21]. GB is a technique that learns from its mistakes, and it iterates multiple regression
trees to make joint decisions. When using the squared error loss function, each regression
tree will learn the conclusions and residuals of all previous trees and fit them to obtain the
current residual regression tree [16]. LR (aka logit, MaxEnt) is an easy-to-implement and
excellent performance classification model for linear separable problems, it implements
regularized logistic regression using the “liblinear” [22]. XGBoost is a novel boosting
tree-based ensemble algorithm and has been widely used due to its ability of employing
both continuous and categorical variables, interpretably, without the need for scaling, and
its capacity for handling of sparsity [23]. XGBoost improves the classification accuracy
iteratively by optimizing a custom objective function (an instance of process, also called
“boosting”). MLP is a feedforward artificial neural network model with multiple neuron
layers. MLP is implemented using many parameters, so that they can flexibly approximate
any smooth function. Except for the last layer with sigmoid activation function for binary
outcome, all layers have a ReLu activation function [24]. SVM constructs hyperplanes
of the covariates’ space that separates the observations according to their category. The
separation is achieved by using kernel functions to expand the feature space to allow
non-linear relationships between results and covariates so that complex relationships can
be detected and modeled [25,26]. KNN is a data mining algorithm based on statistics. For
newly input test samples, it selects k nearest neighbor samples with the smallest Euclidean
distance from the test sample in the training data set, and makes predictions based on the
information of these k nearest neighbor samples [27].

2.5. Derivation and Test Set and Cross-Validation

The derivation-test set is an effective strategy to reduce the model overfitting. In this
study, all subjects were randomly divided into derivation set and test set at a ratio of 7:3.
The models were trained in the derivation set and the test set was not used until the models
were constructed.

Furthermore, a k-fold cross-validation was proposed to better estimate the perfor-
mance of the model and has been used in various literatures [28–30]. Briefly, data are
divided into k subsets of similar size, the model can be trained on every subset but 1 and
then tested on that left-out subset, so that k times of training and testing of the model can
be completed, and finally the mean value of k test results is returned.

During the training of models, hypermeters of models were optimized with a grid
search algorithm. Grid research is a method of optimizing hypermeters through ex-
haustive search (Supplemental Table S1). In this study, 10-fold cross-validation was per-
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formed in the derivation set to select the optimal parameters of the models by evaluating
their performances.

2.6. Feature Selection and Oversampling

To improve the interpretability and generalization ability of models, we performed
feature selection to keep only relevant variables in the construction of models using the
filter, wrapper, or embedding method in different algorithms. For example, in the Boruta
algorithm [31], a wrapper method built based on random the forest algorithm was used to
calculate the importance of features.

Since the samples of HAT and non-HAT patients is unbalanced, we used the Synthetic
Minority Oversampling Technique (SMOTE) to compensate for unbalanced data. The
SMOTE is an oversampling algorithm that analyzes minority samples and artificially
synthesize new samples into the data set, it is an improved method to reduce overfitting of
models based on random oversampling [32].

2.7. Statistical Analysis

Data were presented as mean and standard deviation or median and interquartile
ranges (IQR) according to the distribution of continuous variables, and the differences were
compared by a t-test or Mann–Whitney U-test. Categorical variables were presented as
numbers and percentages, and examined by the chi-square test.

We describe algorithm performance in the test set by the area under the curve (AUC)
to quantify how well the machine learning models discriminated between those who were
with and without HAT. Additionally, other performance indicators such as sensitivity,
positive predict value (PPV), specificity, and negative predict value (NPV) were also
calculated for measurement of each model [33,34]. To further explore which model has
advantages among these 7 ML models and whether they were worth using in clinical
practice, decision curve analysis (DCA) was performed to evaluate the models [35]. All ML
models were developed in Python 3.7 (Python Software Foundation, Fredericksburg, VA,
USA). A two-sided p-value of <0.05 was considered statistically significant.

3. Results
3.1. Study Population

Figure 1 shows the patient flow chart, 2817 patients were excluded according to the
exclusion criteria, and a total of 10,369 patients enrolled in this study, with a mean age of
54.4 ± 15.2 years, and 6117 (59.0%) male. The derivation set comprised 7258 patients, in 954
(13.1%) of which HAT occurred during ICU stays, and the test set comprised 3111 patients,
in 400 (12.9%) of which HAT occurred. Basically, there were no statistical differences
in clinical characteristics and laboratory indicators between the derivation and test set
(Supplemental Table S2).
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Patients’ baseline characteristics are listed in Table 1. In general, patients in whichHAT
occurred were older, and had a higher rate of hypertension and diabetes. In the HAT group,
the platelet, platelet crit, hemoglobin, and albumin level were significantly lower than the
non-HAT group. On the other hand, the coagulation predictors (activated partial thrombo-
plastin time, prothrombin time, thrombin time, and fibrinogen degradation products) were
significantly higher and the hospital stays were longer than those without HAT (p < 0.001).

Table 1. Cohort characteristics.

Variables HAT (n = 1354) Non-HAT (9015) p

Age, y 57.9 ± 14.4 53.8 ± 15.2 <0.001
Male, n (%) 795 (58.7) 5322 (59.0) 0.815
BMI, kg/m2 22.98 ± 2.48 23.32 ± 2.56 0.283

Hypertension, n (%) 276 (20.4) 1564 (17.3) <0.001
Diabetes, n (%) 154 (11.4) 785 (8.7) <0.001

Hemoglobin, g/L 108.3 ± 23.0 115.4 ± 21.3 <0.001
Red blood cell, ×1012/L 3.6 ± 0.8 3.9 ± 0.7 <0.001

MCHC, g/L 327.9 ± 15.0 329.3 ± 13.7 0.001
White blood cell, ×109/L 12.0 ± 5.7 12.1 ± 5.0 0.102

Platelet, ×109/L 126 (111–152) 172 (137–220) <0.001
Platelet crit 0.17 ± 0.07 0.23 ± 0.08 <0.001

Platelet distribution width 16.6 ± 4.0 15.3 ± 3.3 <0.001
Mean platelet volume, fl 12.2 ± 1.5 11.7 ± 1.4 <0.001

Hematocrit, L/L 0.33 ± 0.07 0.35 ± 0.06 <0.001
Direct bilirubin, µmol/L 8.3 (5.5–14.5) 6.1 (4.3–9.1) <0.001

Albumin, g/L 30.7 ± 6.7 33.7 ± 6.4 <0.001
APTT, s 39.1 ± 17.3 32.4 ± 10.6 <0.001

PT, s 15.0 ± 6.3 13.0 ± 3.8 <0.001
Thrombin time, s 21.7 ± 14.0 19.4 ± 8.3 <0.001

FDP, mg/L 11.2 (6.1–21.5) 6.9 (3.5–13.4) <0.001
Procalcitonin, ng/ml 0.6 (0.1–3.0) 0.2 (0.1–0.7) <0.001
Interleukin-6, pg/ml 174.6 (54.7–567.4) 97.5 (29.9–282.9) <0.001
Lactic acid, mmol/L 2.0 (1.4–3.1) 1.7 (1.3–2.7) <0.001
Chlorine, mmol/L 108.1 ± 7.9 105.3 ± 6.4 <0.001

APACHE II 18 (13–22) 14 (9–18) <0.001
SOFA 9.3 ± 3.4 7.2 ± 2.9 <0.001

Hospital days, d 19 (13–28) 16 (11–22) <0.001
ICU days, d 4.8 (2.0–11.1) 2.0 (1.0–4.1) <0.001

HAT, hospital acquired thrombocytopenia; MCHC, Mean red blood cell hemoglobin concentration; APTT, activated partial thromboplastin
time; PT, Prothrombin time; FDP, fibrinogen degradation products; APACHE II, Acute Physiology and Chronic Health Evaluation; SOFA,
sequential organ failure assessment.

3.2. HAT and Adverse Outcomes

Generally, patients with HAT during ICU hospitalization were more likely to have
adverse outcomes. Separately, 278 patients (20.5%) died in the HAT group (Figure 2A), and
the mortality was approximately three times that of non-HAT patients (6.7%). The average
length of ICU stay was 4.8 days in patients with HAT, longer than 2.0 days for non-HAT
patients (Figure 2B). Similarly, the SOFA and APACHE II score of HAT patients was much
higher than non-HAT patients (Figure 2C,D).
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3.3. Performance of ML Models

Figure 3 showed that the ML models had variable discriminability in predicting the
occurrence of HAT. Table 2 listed the performance of each model, the AUC of all seven
ML models exceeded 0.7, and the highest was GB (AUC = 0.834, 95% CI: 0.814–0.853,
p < 0.001), with a sensitivity of 79.3% and specificity of 73.7%. The highest sensitivity
achieved by XGB was 84.5%, with a specificity of 61.9%. The best specificity was Random
Forest (79.1%) with a sensitivity of 73.8%. The highest PPV was RF (34.3) and the highest
NPV was SVM (99.1). The AUC of ML models before feature selection were shown in
Supplementary Table S3 and Figure S1.

Table 2. Performance of machine learning models in the test set.

ML Algorithms AUC 95% CI Sensitivity PPV Specificity NPV

RF 0.828 0.807–0.848 0.738 34.3 0.791 95.3
GB 0.834 0.815–0.853 0.793 30.7 0.737 96.0
LR 0.798 0.773–0.822 0.780 26.8 0.686 95.5

XGB 0.801 0.780–0.823 0.845 24.6 0.619 96.4
MLP 0.804 0.782–0.826 0.720 30.4 0.757 94.8
SVM 0.704 0.679–0.729 0.685 22.1 0.649 99.1
KNN 0.708 0.679–0.736 0.710 22.9 0.647 93.8

ML, machine learning; AUC, area under the curve; CI, confidence interval; PPV, positive predict value; NPV, negative predict value; RF,
random forest; GB, gradient boosting; LR, logistic regression; XGB, XGBoost; MLP, multi-layer perceptron; SVM, support vector machine;
KNN, K nearest neighbor.
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Likewise, the DCA (Figure 4) demonstrated that the net benefit of all ML models
surpassed that of predicting all or none patients having HAT when threshold probability
was approximately less than 0.6.
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3.4. The Comparison of Machine Learning Models

The two highest AUCs of ML models were GB (0.834, 0.814–0.853, p < 0.001) and
RF (0.828, 0.807–0.848, p < 0.001). There was no difference between GB and RF (0.834 vs.
0.828, p = 0.293), however, these two were better than the remaining five models (p < 0.001)
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(Figure 3 and Table 2). Consistently, DCA showed that the net benefit of GB and RF were
similarly and slightly higher than other models (Figure 4).

3.5. Important Features of ML Models

To gain insights into the relevance of feature, after calculating the importance of each
feature, the five most important features are shown in Table 3. Platelet, procalcitonin, and
prothrombin time seemed to be the important features in three ML models, and activated
partial thromboplastin time, direct bilirubin, and interleukin-6 appeared in two models.

Table 3. Top five important features in ML models.

GB RF XGB

1 Platelet Platelet Platelet
2 Procalcitonin Direct bilirubin Procalcitonin
3 Direct bilirubin Procalcitonin Interleukin-6
4 APTT PT APTT
5 PT Interleukin-6 PT

ML, machine learning; GB, gradient boosting; RF, random forest; XGB, extreme gradient boosting; APTT, activated
partial thromboplastin time; PT, Prothrombin time.

4. Discussion

In this large retrospective cohort study of over 10,000 patients transferred to ICU after
surgery, we developed and compared seven supervised ML algorithms in predicting the oc-
currence of HAT in the studied population. The GB and RF were both found to have the best
performance, including improved AUCs and net benefits. To the best of our knowledge, this is
the first study that comprehensively examined the efficacy of ML models for predicting HAT in
a large population of adult patients transferred to ICU after surgery.

Platelets are small pieces of cytoplasm that detached from the cytoplasm of mature
megakaryocytes in the bone marrow. Healthy human bone marrow megakaryocytes pro-
duce about 150 × 106 platelets every day, and their lifespan is about 10 days [36]. Platelets
play an important role in primary hemostasis, tissue repair, inflammation regulation, and
immune responses [37]. Under pathological conditions, platelets may promote excessive
inflammation and are associated with organ damage such as AKI and acute lung injury.
In this report, the occurrence of HAT was 13.1%, this is a little higher than previously
reported in the literature (5–10%); however, it is worth mentioning that their HAT was
defined as less than 150 × 109/L [38,39]. The type of surgery affects the rate of platelet
consumption, cardiac surgery such as artificial heart valves, artificial blood vessels, vascu-
lar catheterization, and extracorporeal circulation, can cause physical damage to platelets;
HAT usually occurs in the two to three days after surgery. A single-center retrospective
study which enrolled nearly 14,000 non-cardiac surgery patients found that preoperative
platelet transfusion did not improve the outcomes; however, these patients had lower
baseline platelet levels before surgery [40]. Patients with HAT after surgery are associated
with an increased risk of bleeding, transfusion risk, and mortality. Hence, there is a need
for clinical based models that can identify the risk of HAT in these patients.

To date, there is a lack of accurate prediction models for predicting HAT in patients
transferred to ICU after surgery. In the present report, we utilized machine learning
algorithms as a novel analytic approach, since they have the property of processing big
data and identifying non-linear interactions. We found that all ML models performed
well, as their AUC of predicting HAT exceeded 0.7; meanwhile, the ROC analysis revealed
that GB and RF had higher AUC than other models. There was no difference in AUC
comparison and net benefit between GB and RF, however, each has its own advantages in
sensitivity and specificity. Although both GB and RF are tree-based integrated algorithms,
they are different in their method of construction and internal evaluation [41,42], thus
variables importance ranking can differ among different models. Interestingly, both GB and
RF models ranked the characteristic importance of platelets, procalcitonin, direct bilirubin,
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and prothrombin time in the top five. Although all included patients’ platelets more than
100 × 109/L, the platelet count in the HAT group were much lower than non-HAT patients.
Platelets have been recognized to play an important role in inflammation and immune
responses, platelets release numerous inflammatory mediators that modify leukocyte and
endothelial responses in the procession of inflammation [43]. This is consistent with the
increase in procalcitonin in patients with HAT and the ranking of the importance of features
in this study.

There are several limitations of this study. First, due to the single-center retrospective
design, the ML models were derived using data only available at the time of pre-operation;
therefore, the number of predictors in the models were relatively small, and models have
to be extended carefully. In addition, we found that the features given by GB, RF, and
XGB were concentrated and strongly related to the predicting label. Second, the models
were validated in the same retrospective database. However, we used a derivation-test and
10-fold cross validation methods to reduce the overfitting of models; the models had quite
discriminatory abilities (AUC) to identify patients who are more likely to develop HAT
after surgery. Finally, the number of patients in the HAT group and non-HAT group were
unbalanced, although we used the SMOTE method for oversampling of the HAT group;
however, it was artificially synthesized new samples rather than original data.

5. Summary

In the current study, we constructed and validated seven supervised ML models
in predicting HAT in patients transferred to ICU after surgery. We found that the AUC
of ML models all exceeded 0.70, and the highest was GB (AUC = 0.834). Besides, GB
and RF seemed to achieve the higher performances within these models, but there was
no difference between GB and RF (0.834 vs. 0.828, p = 0.293). The ML models derived
in the retrospective postoperative database may be a promising opportunity to predict
HAT. Although external validation is necessary to improve the accuracy, this study lends
substantial support to the application of ML-based prediction of the occurrence of HAT as a
decision-making technology. For future researche, some novel ML algorithms such as deep
learning and meta-heuristic approaches can be used to predict HAT; besides, time-series
physiological data were routinely obtained in ICU and contain massive information of
predicting process of disease, whether they can be used as an attempt of predicting HAT
after surgery is also intriguing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11091614/s1, Table S1: Hyperparameters of Machine Learning models, Table S2:
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before feature selection, Figure S1: ROC of machine learning models before feature selection.
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