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Objective : Cerebral aneurysms (CAs) and abdominal aortic aneurysms (AAAs) 
are degenerative vascular pathologies that manifest as abnormal dilations 
of the arterial wall. They arise with different morphologies in different 
types of blood vessels under different hemodynamic conditions. Although 
treated as different pathologies, we examine common pathways in their 
hemodynamic pathogenesis in order to elucidate mechanisms of formation.

Materials and Methods : A systematic review of the literature was performed. 
Current concepts on pathogenesis and hemodynamics were collected and 
compared.

Results : CAs arise as saccular dilations on the cerebral arteries of the cir-
cle of Willis under high blood flow, high wall shear stress (WSS), and 
high wall shear stress gradient (WSSG) conditions. AAAs arise as fusiform 
dilations on the infrarenal aorta under low blood flow, low, oscillating 
WSS, and high WSSG conditions. While at opposite ends of the WSS 
spectrum, they share high WSSG, a critical factor in arterial remodeling. 
This alone may not be enough to initiate aneurysm formation, but may 
ignite a cascade of downstream events that leads to aneurysm development. 
Despite differences in morphology and the structure, CAs and AAAs share 
many histopathological and biomechanical characteristics. Endothelial cell 
damage, loss of elastin, and smooth muscle cell loss are universal find-
ings in CAs and AAAs. Increased matrix metalloproteinases and other 
proteinases, reactive oxygen species, and inflammation also contribute to 
the pathogenesis of both aneurysms. 

Conclusion : Our review revealed similar pathways in seemingly different 
pathologies. We also highlight the need for cross-disciplinary studies to 
aid in finding similarities between pathologies.
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INTRODUCTION Aneurysms are vascular pathologies that arise as ab-

normal expansion in a portion of an artery due to fo-
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cal weakness within the vessel wall. The etiology of 

aneurysms is poorly understood, however, aneur-

ysmal degeneration appears to be a multifactorial 

process resulting from changes in hemodynamic con-

ditions and alterations in vascular wall biology that 

lead to loss of structural proteins and wall strength 

with subsequent dilation. 

The two most common aneurysms are cerebral 

aneurysms (CAs) and abdominal aortic aneurysms 

(AAAs). Rupture of these aneurysms is a major 

source of morbidity and mortality. Ruptured CAs are 

the leading cause of non-traumatic subarachnoid hem-

orrhage,44)129) and ruptured AAAs are the 13th overall 

leading cause of death in the United States. The high 

burden of morbidity is the basis for current ongoing 

research to understand the underlying mechanisms of 

disease and developing technologies to prevent aneur-

ysmal rupture.

Traditionally, efforts to further understand and treat 

CAs and AAAs have been conducted by separate 

groups of different disciplines. The two pathologies 

are rarely viewed in the same category. Despite ana-

tomical differences, we believe that there are some 

similar and intersecting pathways for the pathological 

mechanisms at play. In addition, some differences be-

tween CAs and AAAs can yield further interesting in-

sight into the unique hemodynamic effects that result 

in pathology. By conducting a thorough and focused 

review of the two topics, we aim to create a review 

that critically compares the two pathologies, while 

highlighting similarities that can broaden under-

standing of vascular pathology.

CLINICAL OVERVIEW

Based on estimates, 3.5-6.5% of the population over 

age 30 harbors an unruptured CA.9)85)94)123)125) CA rup-

ture results in subarachnoid hemorrhage (SAH), 

which has a mortality of 40-50%,42)94) and more than 

half of survivors are left disabled.29)46) CAs can be 

classified according to three groups, based on size: 

small with diameters less than 10 mm, large with di-

ameters of 10-25 mm, and giant with diameters larger 

than 25 mm. There are, however, many other ways to 

classify CAs.9)

AAAs are a relatively common vascular pathology 

with estimated incidence ranging from 5-9% in pa-

tients older than age 50.6)20)88) Patients harboring an 

AAA are asymptomatic until the aneurysm ruptures, 

resulting in severe morbidity and mortality.20) AAAs 

are defined as localized dilations of the abdominal 

aorta that exceed the normal diameter of the aorta by 

greater than 50%. AAAs expand at rates up to 

0.25-0.75 cm per year, initially slower, then faster as 

they become larger.10) If not treated, many lesions will 

continue to enlarge until they rupture.44)

CAs and AAAs have many risk factors in common. 

Both are associated with older age, cigarettes, hyper-

tension, and familial predisposition. However, these 

aneurysms have different gender prevalence. CAs are 

more common in females, with a nearly 2:1 female to 

male ratio,1)8)49)55)90)95)98) whereas AAAs are over-

whelmingly more common in males, with a 4:1 male 

to female ratio.35)51)64)65) In addition, as described 

above, they have different morphologies and develop 

under different hemodynamic conditions. Most CAs 

arise as saccular (berry-like) dilation on the cerebral 

arteries of the circle of Willis under high blood flow, 

high wall shear stress (WSS), and high wall shear 

stress gradient (WSSG) conditions. AAAs arise as fu-

siform (spindle-like) dilations on the infrarenal aorta 

under low blood flow, low, oscillating WSS, and high 

WSSG conditions. Despite marked differences in their 

morphology and the structure of the arteries in which 

they form, CAs and AAAs share many histopatho-

logical and biomechanical characteristics.44)

HEMODYNAMICS

Hemodynamics is the study of blood flow and the 

factors that govern flow through the blood vessels. 

Heart contractions produce pulsatile changes in blood 
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Hemodynamic term Definition

Adverse flow gradient
Resistance to forward blood flow, usually the result of peripheral resistance in distal vessels; created by high 
resistance downstream to blood flow

Blood flow
Volume of blood moving through a given region in a certain amount of time; expressed at volume/unit 
time; inversely related to peripheral resistance

Blood pressure
Force blood exerts against inner wall of vessels as it flows through them; directly proportional to blood 
flow

Blood velocity Speed of blood moving through the vessels; inversely proportional to cross sectional area of the vessel

Boundary layer
Layer of blood immediately adjacent to the vessel wall where blood flow is slower due to frictional forces 
between the blood flow stream and the adjacent vessel wall

Disturbed flow
Disruption in the normal, laminar pattern of blood flow, causing the orderly movement of blood flow seen 
in laminar flow to become disturbed

Division of flow
When the blood flow stream becomes divided, usually occurs at the apex of an arterial bifurcation as flow 
is redirected into the branches

Eddy
Swirling of blood; reverse current created when blood flows past an object that interferes with its direct 
streamline path

Flow reattachment Point where blood, separated from the vessel wall, reattaches to the wall

Flow reversal
Occurs when the velocity of the boundary layer decelerates to zero and reverses; usually due to an 
adverse flow gradient acting against the forward direction of flow

Flow separation
When portion of boundary layer reverses direction and is forced away from the vessel wall by more distal 
blood also being forced in the reverse direction

Impinging flow Occurs when the direct force of the blood flow stream perpendicularly impacts the vessel wall

Laminar flow
Streamlined blood flow with layers of blood moving in an orderly manner parallel to each other and to 
the walls of the vessel

Peripheral resistance
Opposition to blood flow generated largely by friction between blood and the vessel wall; determined 
largely by changes in the radius of the vessels; inversely proportional to the cross sectional area of the 
vessel

Pulsatile flow Flow with periodic variations

Oscillating flow Flow that moves back and forth from one position or direction to another

Recirculating flow Flow the moves in a circle or circuit; oftentimes the result of an adverse flow gradient

Retrograde flow Flow moving in the direction opposite to that of normal, forward flow

Stagnation zone Region where local blood velocity is brought to zero before blow flow is redirect or reverses direction

WSS
Frictional force exerted on the intimal surface of the vessels by blood as it flows along the inner surface of 
the vessel; directly proportional to blood flow

WSSG
Generated by variations of WSS along the vessel wall; temporal WSSG occurs when there are changes in 
WSS over small period of time; spatial WSSG occurs when there are differences in WSS along adjacent 
regions of the vessel wall at the same point in time

WSS = wall shear stress; WSSG = wall shear stress gradient

Table 1. Definition of basic hemodynamic terms

pressure and flow that fluctuate according to the car-

diac cycle. Blood flow patterns and hemodynamic 

forces are not uniform throughout the vascular 

system. In straight segments of arteries, blood flow is 

anterograde and laminar.87) This is the normal pattern 

of blood flow throughout most of the circulatory 

system.87) However, blood flow is unsteady and may 

become disturbed at bifurcations, curvatures, or other 

regions with complex geometry, resulting in dis-

organized, irregular secondary flow patterns.31)87) 

Some of these patterns will be described as relevant 

throughout this paper. See Table 1 for terms related 

to hemodynamics. 

Blood flow generates hemodynamic forces that act 
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on blood vessel walls.86) Wall shear stress (WSS) is the 

frictional force exerted by blood as it flows along the 

intimal surface of the arterial wall.74)87)125) WSS is re-

lated to blood flow, such that increased flow leads to 

increased WSS and decreased flow leads to decreased 

WSS.

Anterograde, laminar flow provides a continuous, 

directed WSS, which is distributed uniformly along 

the vessel wall. When blood flow is disturbed, WSS is 

also disrupted, causing variation in the WSS along the 

adjacent wall. Temporal differences in WSS occur 

with increases or decreases in WSS over a short peri-

od of time at the same location and create an oscil-

latory shear index (OSI). Spatial differences in WSS 

between two close points of a cell layer at the same 

point in time create a wall shear stress gradient 

(WSSG), such as when flow is accelerating (positive 

WSSG) or decelerating (negative WSSG).75) 

Accelerating flow (positive WSSG) creates a stretch-

ing force within the surface of endothelial cells (ECs) 

as frictional drag increases in the direction of 

flow.24)67)122) In contrast, decelerating flow (negative 

WSSG) can cause compression within the surface of 

ECs.24) These forces may augment or diminish the 

stretch already exerted across the ECs by the WSS 

generated by the blood flow.24)

Hemodynamics: cerebral arteries

The circle of Willis is the cross-circulation of cere-

bral arteries that supplies blood to the brain and sur-

rounding structures.87) It is formed by the confluence 

of the right and left internal carotid arteries anteriorly 

and the basilar artery posteriorly. There is consid-

erable normal anatomic variation within the circle of 

Willis.87) CAs predominantly arise along or within the 

vicinity of the circle of Willis, with over 85% of CAs 

occurring in the anterior part of the circle of Willis.9)63)

The cerebral arteries have small radii, thus, they are 

exposed to relatively higher baseline blood flow and 

WSS than other vessels.94) In addition, the tortuosity 

and sharp curvature of the circle of Willis give rise to 

a complex geometry and unique hemodynamic envi-

ronment as blood flow can become disturbed in these 

regions.38)94)125) As mentioned above, CAs appear most 

frequently at the apex of bifurcations, but they are al-

so found at the outer lateral wall of curved arterial 

segments.2)9)27)63)87)97)108)110) These areas are charac-

terized by impinging blood flow with high WSS and 

high WSSG.63) Impinging flow occurs when the direct 

force of the blood flow stream acts perpendicular to 

the vessel wall. This results in a local pressure ele-

vation where the blood flow stream impacts the ves-

sel wall at the site of the bifurcation,9) as well as a 

high and spatially varying WSS downstream of the 

impingement point.75)

Bifurcations and the outer lateral wall of sharp cur-

vatures act as flow dividers. When a vessel bifurcates, 

blood flow impinges at the apex of the bifurcation 

and divides as it is redirected toward the outer wall 

of the branches. Blood flow is fastest at the bifurca-

tion and slowest near the outer wall of the proximal 

branch. Similarly, at sharp curvatures, the outer later-

al wall acts as a one-way flow divider redirecting 

blood from the outer wall of the curvature toward the 

inner wall. At sharp curvatures, blood flow is fastest 

near this outer lateral wall where flow is divided and 

slowest near the inner wall of the curvature. In these 

regions, blood flow oftentimes becomes disturbed, 

giving rise to secondary patterns of flow.59)60)87)102)128) 

(Fig. 1)

As mentioned previously, CAs predominantly arise 

at bifurcations along the circle of Willis. The hemody-

namic stresses at these regions are the result of im-

pinging flow as well as high WSS and high 

WSSG.15)111) Impinging flow occurs when the direct 

force of the blood stream perpendicularly impacts the 

arterial wall. This impacting force results in a local 

pressure elevation on the arterial wall in the region of 

impact.9)27) As the bloodstream approaches the bi-

furcation, it impinges at the apex, and the apical wall 

divides the flow stream by deflecting blood towards 

the branches.63) This creates a central stagnation zone 

at the apex, where the local velocity is brought to 

zero at the apical wall as it is redirected,94) which cre-
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Fig. 1. This depicts a cerebral artery bifurcation and serves as a 
representation of impinging flow at the apex of the bifurcation 
(A) and acceleration zone with high wall shear stress and high 
wall shear stress gradient (B). This image is adapted from Meng, 
et al., 2007.75)

ates a region of higher pressure immediately proximal 

to the apex as flow accumulates behind the stagnation 

zone, and a region of lower pressure at the entrances 

to the branches immediately distal to the apex. As a 

result of this pressure gradient, blood flow accelerates 

as it enters the branches to a maximum velocity, and 

then begins to decelerate toward baseline, physiologic 

velocity. In this acceleration zone, the already high 

WSS generated by the impinging flow at the apex be-

comes increasingly higher, with the highest WSS at 

the point of the maximum velocity.75) As a result of 

the accelerating flow, the arterial wall in the accel-

eration zone experiences a progressively increasing 

WSS along the direction of flow, and this large spatial 

gradient in WSS causes high, positive WSSG.92) This 

progressively increasing WSS gives rise to a large 

WSSG in the region immediately distal to the apex.75) 

At high flow velocities, blood at the boundary of the 

arterial wall separates from this wall as it accelerates 

in the branch and reattaches downstream. If flow in-

creases even more, a helical pattern of flow may de-

velop in this pocket where flow separated from the 

wall. This further disturbs flow in this region and 

generates even larger variations in WSS, leading to a 

higher WSSG.92) These secondary patterns of blood 

flow generated by the bifurcation and sharp curva-

tures of vessels govern the local distribution of WSS 

and WSSG along the vessel wall in these regions.11)104)

Evidence for the role of disturbed hemodynamics in 

the pathogenesis of CAs

There is significant anatomic variation within the 

normal human circle of Willis.87) According to one re-

port, up to 60% of people do not have a completely 

closed circle.63) The WSS experienced at a bifurcation 

is dependent on its geometry, including the radii of 

all vessels involved and the bifurcation angle.94) Thus, 

anatomic variations in vessel diameter, bifurcation an-

gle, and local asymmetries have considerable effects 

on blood flow and WSS.87)125) This has the potential to 

create a hemodynamic environment that predisposes 

to aneurysm formation.52)63)94) Thus, the presence of 

anatomical variations, particularly those resulting in 

asymmetries along the circle of Willis, is thought to 

have a significant role in aneurysm formation by in-

fluencing the local hemodynamic environment.27)41)52)87)

Increased arterial flow to the cerebral arteries has 

been shown to exacerbate the already disturbed he-

modynamic environment, and evidence suggests that 

this further contributes to the predisposition for CA 

formation in these regions. CAs are associated with 

vascular anomalies, such as fenestrations, persistent 

carotid-basilar anastomoses, internal carotid agenesis, 

and high-flow arteriovenous malformations, which re-

sult in increased blood flow to the cerebral arteries 

and/or asymmetries in the distribution of hemody-

namic forces along the circle of Willis.9)14)66)91)103) CAs 

are commonly observed on arterial pedicles that feed 

arteriovenous malformations, which suggests that the 

increased arterial blood flow due to arteriovenous 

shunting provides a conducive environment for 

aneurysm formation.12) In addition, experimental stud-

ies using animals have demonstrated that CAs can be 

formed by altering the hemodynamic stresses along 

the circle of Willis.30)37)40) 

Disturbed patterns of flow generated at the stagna-

tion zone increase as the bifurcation angle becomes 

blunter, and studies have shown that CAs occur at 

higher frequencies at blunter bifurcation angles.4)125) 

Asymmetries in the daughter vessels branching from 
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Fig. 2. A representation of laminar flow adjacent to an arterial 
wall during a systole-diastole phase resulting in retrograde flow.

the bifurcation also appear to predispose to CAs. 

Hemodynamics: Aorta

The aorta, the largest artery in the human body, is 

highly distensible with very low resistance to flow. As 

the heart ejects blood during systole, the aorta stretch-

es to accommodate this large volume of blood, and 

while the heart is refilling during diastole, the aorta 

recoils, driving blood forward throughout the rest of 

the vascular system. 

Aneurysms may develop at any location along the 

aorta, but the AAA is the most common aortic 

aneurysm. More than 90% of AAAs arise in the in-

frarenal segment of the abdominal aorta, located be-

low the renal arteries and above the aortic bifurcation 

into the iliac arteries. The normal infrarenal aorta is 

approximately 12 cm long, 2 cm in diameter, and 2 

cm thick.

There is marked variation in the hemodynamic con-

ditions along the length of the aorta, and this is 

thought to contribute to the predilection of aneurysms 

to form in the distal aorta.25) One of the most sig-

nificant differences is between the resting aortic WSS 

in the suprarenal and infrarenal segments of the 

aorta.25) In the suprarenal aorta, flow is anterograde 

and laminar throughout the entire cardiac cycle, pro-

viding continuous, directed WSS. In the infrarenal 

aorta, flow is anterograde at the beginning of the car-

diac cycle, however, toward the end of systole and 

throughout diastole, there is reverse, recirculating 

flow and low, oscillating WSS.25) (Fig. 2) 

The disturbed flow patterns observed in the in-

frarenal aorta during the latter part of the cardiac cy-

cle are the result of high peripheral resistance in the 

arteries that supply blood to the lower extremities.116) 

During resting conditions, the muscles of the leg re-

quire little blood flow, so that there is high peripheral 

resistance to flow. These resistive hemodynamic con-

ditions impose an adverse pressure gradient on the 

infrarenal aorta.116) An adverse pressure gradient oc-

curs when the pressure increases in the direction of 

flow, and it essentially opposes the forward flow.

At the beginning of systole, when blood pressure is 

the highest, flow is able to overcome the adverse 

pressure gradient and continue moving forward. As 

blood pressure decreases at the end of systole and 

throughout diastole, the adverse pressure gradient be-

gins to retard flow. The effect of this adverse pressure 

gradient is felt most strongly near the arterial wall in 

the layer of flow at the boundary of the vessel wall 

where flow is already slower due to friction from the 

adjacent arterial wall. At some point, the adverse 

pressure gradient slows the flow velocity at the boun-

dary layer to zero and then reverses the flow. This 

causes flow separation as the boundary layer of the 

immediately upstream forward flow is diverted away 

from the wall as it flows around the reversed 

flow.26)100) As separated flow moves past the reversed 

flow, it reattaches to the arterial wall downstream. 

The flow separation and reattachment divides flow 

into a recirculating flow and a downstream flow with 

its boundary layer passing over the region of 

recirculation. The region of recirculating flow is some-

times referred to as the recirculation bubble. With the 

start of the next cardiac cycle, blood pressure in-

creases and is able to overcome the adverse pressure 

gradient, and the recirculating flow reverses direc-

tions and flows in the forward direction again.

The adverse pressure gradient leads to deceleration 

of blood in the infrarenal aorta and, subsequently, re-

sults in a low WSS. The flow reversal as well as sepa-

ration and reattachment of flow create large differ-

ences in WSS along the infrarenal aortic wall.  In ad-

dition, the pulsatile nature of the blood flow gen-

erates oscillations in flow with WSS moving back and 

forth in direction during different parts of the cardiac 
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cycle. These flow patterns give rise to high spatial 

and temporal WSSG experienced by the vessel wall in 

the infrarenal aorta.

Thus, development of AAAs occurs under con-

ditions of high peripheral resistance, which leads to 

diminished anterograde flow in the distal aorta. This 

creates a unique hemodynamic environment charac-

terized by disturbed, recirculating flow and low, oscil-

latory WSS and high WSSG.7)70)79-82)84)93)

Evidence for the role of disturbed hemodynamics in 

the pathogenesis of AAAs

As described above, AAAs have a strong predi-

lection to form under the disturbed, oscillatory flow 

and low WSS environment of the infrarenal aorta. 

AAAs are associated with various conditions, such as 

major limb amputations, spinal cord injury (SCI), and 

peripheral artery occlusive disease, that alter and/or 

reduce blood flow to the lower extremities.32)101)118)119)127) 

Narrowing of peripheral arteries, due to reduced 

blood flow demand (long resting periods in patients 

with SCI) or total occlusion of arteries, increases the 

resistive hemodynamics of the peripheral arteries, 

which increases the adverse pressure gradient in the 

aorta exacerbating the disturbed, oscillatory flow and 

low WSS environment in the infrarenal aorta.116)130) 

Patients with major lower limb amputations are five 

times more likely to develop AAAs compared with 

non-amputee patients, likely secondary to ligation of 

the distal femoral artery.120) Interestingly, the mor-

phology of the aneurysms in amputee patients ap-

pears to be strongly influenced by the laterality of the 

amputation. This supports the observation that chron-

ically decreased and/or altered blood flow in the dis-

tal aorta contributes to the pathogenesis of AAAs.

Patients with SCI have been studied as an extreme 

example of chronically decreased blood flow to the 

lower extremities. These studies have demonstrated 

an association of SCI with increased distal aortic di-

ameter and narrowing of the iliac arteries. These pa-

tients have significantly diminished anterograde flow 

and WSS in the distal aorta throughout the cardiac 

cycle,25) which suggests that these disturbed hemody-

namic conditions contribute to the pathogenesis of AAAs. 

In addition, the narrowing of the iliac arteries sup-

ports that chronically decreased blood flow results in 

inward vascular remodeling and narrowing of the iliac 

arteries and other arteries of the lower extremities.113)127)

Exercise is associated with a decreased risk of 

AAAs.25) Exercise increases blood flow to the lower 

extremities, reducing the resistive hemodynamics of 

the peripheral arteries.116) It has been shown that as 

blood flow increased during exercise, the retrograde, 

oscillatory flow and WSS observed in the infrarenal 

aorta during rest disappeared.115) Studies have shown 

that, even with a modest amount of activity, blood 

flow in the distal aorta remains anterograde through-

out most of the cardiac cycle, nearly eliminating retro-

grade and oscillatory flow. This suggests that exercise 

may exert its protective effects against AAAs by di-

minishing hemodynamic conditions associated with 

aortic pathology.25)

WSSG as a common thread

Clearly, CAs and AAAs exist under very unique he-

modynamic circumstances as well as anatomically 

and geometrically different locations. Although the 

two pathologies exist at the opposite ends of the WSS 

spectrum (See Fig. 3), they both experience high WSSG. 

These changes in blood flow have been shown to be 

a critical factor in inducing arterial remodeling.38)42) 

Through a process called vascular remodeling, ar-

teries adapt and change in response to variation in 

their hemodynamic environment.38) Vascular remodel-

ing usually occurs as an adaptive process by which 

the vessel undergoes alterations in size and/or com-

position in order to maintain vascular homeostasis; 

however, in some circumstances, unusual and maybe 

chronic hemodynamic conditions may cause an ab-

normal, or pathological, biological response. This ab-

normal response is hypothesized to play an important 

role in the pathogenesis of aneurysm.38)87) The process 

of vascular remodeling is thought to be a funda-

mental part of many vascular diseases.31)
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Fig. 3. A computational fluid dynamic representation of an early stage abdominal aortic aneurysm (A) and a cerebral bifurcation with 
proximal stenosis (B) and a formed cerebral aneurysm (C). Scale represents wall shear stress (dyns/cm2). The images shown in B and C 
are taken from Kono, et al., 2013.56)

MECHANOBIOLOGY AND THE CELLULAR 

RESPONSES OF DISTURBED 

HEMODYNAMICS

Aneurysm formation involves processes that cause 

degradation of the structural components and loss of 

mechanical integrity of the arterial wall.89) This is 

largely targeted at degradation of elastin as this per-

mits the initial dilation of the vessel.19) Loss of elastin 

is thought to represent an early step in the patho-

genesis of aneurysms, as this permits the initial bulge 

in the wall.58) Subsequently, there is loss of smooth mus-

cle cell (SMC)s and a dynamic turnover in collagen.44) 

The exact mechanism of aneurysm initiation remains 

unclear, but evidence suggests that an initial insult to 

the arterial wall may trigger a pathological chain of 

events that ultimately results in the development of 

an aneurysm. Once this initial insult occurs, the proc-

ess of aneurysm development appears to be 

self-sustaining.74) A growing body of evidence sup-

ports the role of disturbed hemodynamics as a critical 

component in the initiation of aneurysms.16)74) EC 

damage is a universal pathological finding in both 

CAs and AAAs, and although very different from 

each other, it is possible that the unique hemody-

namic environments in which CAs and AAAs arise 

cause mechanical damage to the arterial wall through 

EC loss or dysfunction. This mechanical damage 

alone may not be enough to initiate aneurysm for-

mation, but it may ignite a cascade of downstream 

events leading to development of aneurysms. 

Blood flow and the hemodynamic forces that it ex-

erts on the surrounding vessel wall have a pivotal ef-

fect on the vasculature.21)71)99)112) ECs are constantly ex-

posed to blood flow and the hemodynamic forces it 

generates. Through a process called mechano-

transduction, ECs sense their hemodynamic environ-

ments by converting mechanical stimuli into bio-

chemical signals that modulate the structure, composi-

tion, and function of the various components of the 

vessel wall.43) ECs respond to alterations in these he-

modynamic forces, specifically WSS, by initiating a 

process of vascular remodeling in order to return 

WSS to its baseline value.23)31)47)48)74)

Proposed mechanisms of pathogenesis for CAs

Most CAs arise as saccular dilations composed of a 

thin-walled sac connected to the parent vessel by an 

orifice called the neck.9) The aneurysm sac typically 

points in the direction blood would flow in the ab-

sence of a bifurcation.2)58) They are characterized by 

disruption of the ECs, degradation of the internal 

elastic lamina, and SMC loss with thinning of the tun-

ica media,3)28)39)50)54)57)74)75)83)109)124)126) with locally in-

creased metallomatrix proteinases (MMPs) being re-

sponsible for the degradation.53)72)122) The wall of CAs 

appears to progressively transform from nearly intact 

tissue at the neck to severely degenerated at the 

fundus.58)117) Wall thinning and SMC loss is the most 
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prominent at the fundus, which may be completely 

lacking SMCs. In addition, there is decreased collagen 

and fibronectin within the wall, and collagen that is 

present appears disorganized.9)16)27) Increased MMPs 

have been found in the walls of CAs.13) Oftentimes, 

thrombus is observed within the aneurysm sac.9)

Experimental studies with animals as well as human 

autopsy studies have observed that the initial nidus of 

the CA is, oftentimes, located slightly distal to the 

fundus.9)117) As the aneurysm sac grows, the bifurca-

tion becomes involved as well,117) which suggests that 

CAs initiation occurs at the most distal part of the ac-

celeration zone where WSS and WSSG are the 

greatest.75)99)109) Studies have shown that the presence 

of high WSSG in addition to high WSS may have 

damaging effects on the vessel wall that lead to de-

structive, pathological remodeling.17)56)61)62)75)99) Specifically, 

this combination of hemodynamic factors has been 

shown to cause mechanical damage to ECs, leading to 

EC loss and dysfunction.74)77)99) EC damage may im-

pede the ability of the arterial wall to respond nor-

mally to changes in its hemodynamic environment.16)75) 

The impact of this hemodynamic environment on the 

vessel wall may represent a fundamental step in ini-

tiating the cascade of events that leads to CA 

development.61)75)77) 

High WSS induces nitric oxide (NO) secretion by upre-

gulating endothelial nitric oxide synthase (eNOS).76)114) 

Under high WSS conditions, eNOS stimulates outward 

vascular remodeling.23)114) Interestingly, however, stud-

ies have shown that under conditions of high WSS 

and high WSSG, when ECs are  damaged, as they ap-

pear in CAs, this results in loss of eNOS expression, 

impairing production and secretion of NO by ECs.46) 

It is possible that EC damage is a result of either 

chronic exposure to persistent, high WSS or to the co-

existence of high WSS and WSSG. This reduces NO 

bioavailability, and under high WSS conditions, the 

reduction in NO stimulates SMC expression of iNOS 

to produce NO. In addition, after de-endothelializa-

tion, most luminal smooth muscle cells of the neo-

intima are in contact with blood flow and express in-

ducible nitric oxide synthase (iNOS) in vivo, and in 

vitro studies have shown that this is in response to 

exposure to WSS.33)122) The iNOS isoform, however, 

produces much larger amounts of NO compared with 

the eNOS isoform. These excessive amounts of NO 

are thought to react with the reactive oxygen species 

(ROS), causing oxidative damage to ECs and other 

components of the arterial wall. 

Inflammatory cells are observed in the wall of CAs, but 

there is no evidence to suggest that inflammatory cells 

are present during the initiation of aneurysm.53)58)72)75)109) 

Although alterations in WSS, both high and low, are 

associated with increased expression of surface adhe-

sion markers and EC permeability, adhesion of in-

flammatory cells requires both the presence of adhe-

sion molecules on the surface as well as the residence 

time that the circulating inflammatory cells spend in 

any one region of the arterial wall.38) Thus, the high 

flow environment experienced by the cerebral vessels 

prevents inflammatory cell adhesion and infiltration 

by decreasing the residence time. Additionally, be-

cause NO is a potent anti-inflammatory agent that in-

hibits adhesion of circulating inflammatory cells to 

the EC surface, the excessive NO probably contributes 

to this absence of inflammatory cells at initiation of 

aneurysm. 

Interestingly, a recent study using a rabbit model 

found that, despite absence of macrophages and other 

inflammatory cells during CA initiation, MMPs were 

increased. This study found that MMPs co-localize 

with SMCs, suggesting that SMCs are responsible for 

MMP production during CA initiation. Thus, under 

high WSS, and high WSSG during CA initiation, 

SMCs appear to behave as pro-inflammatory cells by 

secretion of MMPs necessary for CA remodeling.72) 

Progressive SMC loss and the resulting medial thin-

ning is another prominent feature of CAs.74)75) SMC 

loss is believed to be a combination of decreased SMC 

proliferation and increased SMC apoptosis. Normally, 

under high WSS conditions, transition of SMCs from 
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Fig. 4. Comparison of the proposed pathological mechanisms of 
cerebral and abdominal aortic aneurysm formation.

a contractile phenotype to a more proliferative one oc-

curs, resulting in production of ECM proteins, growth 

factors, and proteases that are important for remodel-

ing of the vessel wall. Indeed, under high WSS and 

high WSSG, we have observed a loss of SMC con-

tractile phenotype,72) but these altered SMCs do not 

appear to be synthetic, as cell proliferation is actually 

decreased  and apoptosis increased,53)75) resulting in 

SMC loss. However, they do exhibit pro-inflammatory 

behavior, upregulating NF-κB and MCP-1 as well as 

producing MMP-2 and -9, which has been hypothe-

sized as a result of EC signaling under such hemody-

namic conditions.72) In addition, proliferation of SMCs 

is inhibited by NO, and it is likely that excessive NO 

contributes to SMC loss by inhibiting proliferation 

and inducing apoptosis.68)94) In addition to decreased 

proliferation, production of ECM proteins and other 

important factors by these SMCs is reduced, which 

further contributes to degeneration of the arterial wall 

as degraded ECM components are not replaced.

Proposed mechanisms of pathogenesis for AAAs

AAAs arise as fusiform dilations with an enlarged 

and elongated course, which circumferentially in-

volves the parent vessel with no defined neck.9) They 

involve extensive structural remodeling of the entire 

circumference of a segment of the aorta, and are char-

acterized by degradation of elastin and other ECM 

proteins, loss of SMCs, and abnormal collagen.69) 

Other pathologic features of AAAs include intense in-

flammatory infiltrate, consisting mostly of macro-

phages and leukocytes, and increased expression of 

MMPs.69) In greater than 90% of AAAs, an endolumi-

nal thrombus is found attached to the wall of the 

aneurysm sac.36) In addition, atherosclerotic lesions 

are frequently found in association with AAAs, how-

ever, unlike in the past, the role of atherosclerosis in 

the pathogenesis of AAAs is highly controversial.

The intense infiltration of inflammatory cells, pre-

dominantly macrophages and lymphocytes, into the 

arterial wall is a striking feature of AAAs.20) This in-

flammation may be a response to changes in the ves-

sel wall in response to low, oscillatory flow and WSS 

environment in the infrarenal aorta.20) Migration of 

leukocytes into the arterial wall is thought to stim-

ulate secretion of chemokines, which may further 

aneurysm formation.20) The content of both elastin 

and collagen is decreased in AAAs, but the collagen 

to elastin ratio is increased, suggesting that as elastin 

is degraded, it is initially replaced by collagen. This 

reduces the elasticity of the aortic wall, leading to 

stiffening and decreased wall motion.18)34)

There is a growing body of evidence to support the 

role of disturbed hemodynamics as a critical compo-

nent in the initiation of AAAs. The low, oscillatory 

WSS and high WSSG have been shown to cause dam-

age to ECs, resulting in disturbance and/or loss of 

their regulatory functions. This may represent a fun-

damental step in initiating the cascade of events that 

leads to dilation.20-22)

Low, oscillatory flow and WSS predispose the arte-

rial wall to inflammation by stimulating inflammatory 

cell adhesion and migration into the arterial wall.106) 

Low WSS increases EC permeability to the circulating 

blood elements and causes upregulated EC expression 

of pro-inflammatory molecules and surface adhesion 

factors. Independent of WSS, low flow increases the 

residence time that circulating blood elements spend 

near any region of the EC surface, which greatly facil-

itates adhesion to the ECs.17)121)
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CAs AAAs

WSS High15)63)111) Low7)70)79-82)84)93)

WSSG High15)63)111) High7)70)79-82)84)93)

EC dysfunction Yes74)75)77)99) Yes69)105)

Destruction of elastin Yes74)75)77)99) Yes19)20)69)

SMC apoptosis Yes74)75)77)99) Yes69)

MMPs & other proteinases Yes13)75)107)109)117) Yes105)

ROS Yes75) Yes73)78)88)96)

Increased cell adhesion No38) Yes17)106)121)

Inflammation No58)72)75)109) Yes19)20)

AAA = abdominal aortic aneurysm; CA = cerebral aneurysm; WSS = wall shear stress; WSSG = wall shear stress gradient; EC = endothelial 
cell; SMC = smooth muscle cell; MMPs = matrix metalloproteinases; ROS = reactive oxygen species

Table 2. Comparison of various hemodynamic and cellular factors that play a role in AAA and CA pathogenesis

Once inflammatory cells enter the wall, they release 

ROS and MMPs, which degrade elastin and other 

components of the ECM. It has been suggested that 

elastin degradation products function as chemokines, 

recruiting more inflammatory cells to the wall. 

Inflammatory cells also release a cascade of cytokines 

that amplify the inflammatory response by activating 

chemokines and other pro-inflammatory factors, 

which recruit more inflammatory cells to the wall. 

Cytokines also promote increased synthesis and acti-

vation of MMPs and higher production of ROS. 

Migration of inflammatory cells may actually lead to 

degenerative changes in the wall that directly result 

in dilation of the vessel; however, the stimulus for 

these inflammatory cells may result from the abnor-

mal hemodynamic forces that cause damage to ECs. 

Common pathways for AAAs and CAs. 

With WSSG as a possible inciting factor, a variety of 

mirroring pathways take place in the pathogenesis of 

AAAs and CAs. As mentioned above, EC's play a 

pivotal role in detecting the disturbed hemodynamics 

and help initiate the cellular events. Interestingly, al-

though inflammation plays a very strong role in early 

stages of AAA pathogenesis, it seems to be a later 

consequence in the CA pathway. See Fig. 4, for a 

schematic of pathogenesis for AAAs and CAs. In ad-

dition, Table 2 summarizes events that are either com-

mon or unique to the vascular pathologies.  

CAs and AAAs have traditionally been studied and 

treated by different groups of specialists. Common 

pathways they share are frequently overlooked or 

understated. This is evident in many aspects of the 

disease process, including treatment. While endolumi-

nal reconstruction through an endovascular route has 

been the mainstay treatment of AAAs for decades, 

this has only recently been attempted in CAs.5)45) As 

further developments are made in both fields, partic-

ularly for cellular and molecular guided therapies, 

cross-disciplinary reviews will help broaden the un-

derstanding of the field. 
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