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Chapter 2: Data-Driven View of Disease Biology
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Abstract: Modern experimental
strategies often generate genome-
scale measurements of human tis-
sues or cell lines in various physi-
ological states. Investigators often
use these datasets individually to
help elucidate molecular mecha-
nisms of human diseases. Here we
discuss approaches that effectively
weight and integrate hundreds of
heterogeneous datasets to gene-
gene networks that focus on a
specific process or disease. Diverse
and systematic genome-scale mea-
surements provide such approach-
es both a great deal of power and a
number of challenges. We discuss
some such challenges as well as
methods to address them. We also
raise important considerations for
the assessment and evaluation of
such approaches. When carefully
applied, these integrative data-driv-
en methods can make novel high-
quality predictions that can trans-
form our understanding of the
molecular-basis of human disease.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Researchers are using genome-scale

experimental methods (i.e. approaches

that assay hundreds or thousands of genes

at a time) to probe the molecular mech-

anisms of normal biological processes and

disease states across systems from cell

culture to human tissue samples. Data of

this scale can provide a great deal of

information about the process or disease of

interest, the tissue of origin, and the

metabolic state of the organism, among

other factors. To understand biological

processes on a systems level one must

combine data from measurements across

different molecular levels (e.g. proteomic,

metabolomic, and genomic measure-

ments) while incorporating data from

diverse experiments within each individual

level. An effective integrative analysis will

take advantage of these data to develop a

systems level understanding of diseases or

tissues.

Human genome-scale experimental data

include microarrays [1,2,3], genome-wide

association studies [4,5], and RNA interfer-

ence screens [6,7] among many other

experimental designs [8]. These experi-

ments range from those targeted towards

tissue specificity [9] to those targeted

towards specific diseases such as cancer

[10]. The NCBI Gene Expression Omnibus

(GEO) [11], a database of microarrays

alone, contains over 700 human datasets

collected under diverse experimental con-

ditions encompassing more than 8000

individual arrays. The human PeptideAtlas

[12], a similar resource for proteomics

experiments, currently contains almost 6.7

million MS/MS spectra representing al-

most 84,000 non-singleton peptides across

220 samples. In addition to these high

throughput experiments, there are databas-

es of biochemical pathways [13], gene

function [14], pharmacogenomics [15],

and protein-protein interactions [16,17,18].

Integrating heterogeneous genome-scale

experiments and databases is a challenging

task. Beyond the straightforward concern of

experimental noise in each individual data-

set, integrative approaches also face partic-

ular challenges inherent to the process of

unifying heterogeneous data types. Specifi-

cally we are concerned with biological and

computational sources of heterogeneity.

Biological heterogeneity among experiments

emerges from the measurement of many

different processes or the unique probing of

biological systems. The source of biological

material (e.g. whether experiments measure

cells in culture or biopsied tissues) can also

lead to systematic biological heterogeneity.

Computational heterogeneity (e.g. some

datasets have discrete value measurements

while others are continuous) comes from the

diversity of experimental platforms used to

assay biological processes. Integrative ap-

proaches that bring together diverse data

types and experiments must address the

challenge of effectively combining these data

for inference.

There are many strategies for combin-

ing these diverse and heterogeneous data.

These include ridge regression [19,20],

Bayesian inference [21,22,23,24,25], ex-

pectation maximization [26], and support

vector machines [27]. This chapter focuses

on the strategy of Bayesian integration,

which is capable of both predicting the

probability of an interaction between gene

pairs and providing information on the

contribution of each experiment to that

prediction. Bayesian integration allows for

datasets to be combined based on the

strength of evidence from individual data-

sets, which can be either learned from the

data [28] or expert annotated [29]. Intui-

tively the Bayesian strategy works by

evaluating the accuracy and coverage of

each individual dataset and the relevance of

each source of data to the disease or tissue of

interest and using this information to weight

each dataset’s impact on resulting predic-

tions. Here we discuss Bayesian methods

that infer genome-scale functional relation-

ship networks from high throughput exper-

imental data by building on exiting gold

standards. We discuss how these methods

work, how to develop high quality gold

standards, and how to evaluate networks of

predicted functional relationships.
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2. Combining Diverse Data
Using Bayesian Inference

Bayesian inference is a powerful tool

that can be used to make predictions based

on experimental evidence. If we want to

calculate the probability that a gene of

unknown function is involved in a disease,

we can begin by developing a list of genes

known to be involved in the disease

(positive examples) and a list of genes not

involved in the disease (negative exam-

ples). These positive and negative exam-

ples are termed a ‘‘gold standard’’ in the

field of machine learning. Figure 1 shows,

under three conditions, how the measure-

ments for positive genes and negative

genes are distributed in datasets measuring

three hypothetical conditions. From this,

we can observe that genes having a higher

(more to the right) score in Condition A

and a lower (more to the left) score in

Condition C appear to be involved in the

disease.

Bayesian inference allows us to use these

distributions to quantify the probability that

a gene is involved in disease given these

data. Table 1 shows experimental results

from Condition A where the median has

been used to divide the continuous values

into discrete bins.

From this contingency table we can

calculate the probability that a gene i is

involved in disease, P Dið Þ, given the

experimental results for gene i, Ei. Math-

ematically this can be written as P Di DEið Þ.
Bayes’ theorem states that

P Di DEið Þ~ P Ei DDið ÞP Dið Þ
P Eið Þ

:

The probability that a gene is involved

in disease ignoring any evidence, P Dið Þ, is

known as the prior probability. We can

conservatively estimate this as, for in-

stance, the proportion of positive examples

to the proportion of total genes. If the

organism of interest has 20,000 genes, this

would be

P Dið Þ~
Positive Examples

Genes in Organism
~

200

20,000
~0:01:

This is likely to be too conservative as it

assumes that there are no unknown genes

that are involved in the disease of interest.

In practice, however, as evidence accu-

mulates the impact of the prior probability

on individual predictions is diminished.

With knowledge of the state of gene i in

Condition A we can calculate P Ei DDið Þ. In

this example, assume that the measurement

for gene i is above the median. This

probability of observing the experimental

result for gene i given that a gene is involved

in disease can be calculated as

P EijDið Þ~
Positive Examples Above Median

Positive Examples
~

150

200
~0:75:

The final component of this formula is

the probability of observing the experi-

mental result that was observed for gene i,

P Eið Þ. This value is the proportion of

genes from the standard measured above

the median to the total number of genes in

the standard,

P Eið Þ~
Above Median

Total in Standard
~

211

422
~0:5:

It is important to note that, if the prior is

adjusted from the proportion observed in

the data, P Eið Þ must also be adjusted to

present the probability of the evidence

under the new prior. With these compo-

nents we can calculate the probability of

disease given the experimental evidence

for gene i as

P Di DEið Þ~ P Ei DDið ÞP Dið Þ
P Eið Þ

~
0:75|0:01

0:5
~0:015:

This probability is still small in large

part due to our conservative prior, but by

assuming that experimental results from

different datasets are independent, we

can perform this same calculation for

gene i in experimental condition B using

this probability as the prior, and the

calculation for condition C using the

probability from condition B as the prior.

This procedure exploits Bayes’ theorem

to bring together diverse evidence sources

through the common framework of

probabilities.

3. Defining a Functional
Relationship Gold Standard

Going beyond gene lists to networks of

genes requires a different type of gold

standard. While the inference approach

described in Section 2 can be used to

implicate genes in a disease or process, the

specific roles of those genes remain

unclear. In the strategy from Section 2,

positive and negative genes make up the

What to Learn in This Chapter

N What a functional relationship network represents.

N The fundamentals of Bayesian inference for genomic data integration.

N How to build a network of functional relationships between genes using
examples of functionally related genes and diverse experimental data.

N How computational scientists study disease using data driven approaches, such
as integrated networks of protein-protein functional relationships.

N Strategies to assess predictions from a functional relationship network

Figure 1. Potential distributions of experimental results obtained for datasets collected under three different conditions. The dotted
line indicates the distribution of negative examples and the solid line indicates the distribution of positive examples. In condition A the positive
examples more often occur to the right of the negative examples, in condition B both sets overlap, and in condition C the positive examples occur
more often to the left of the negative examples.
doi:10.1371/journal.pcbi.1002816.g001
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gold standard. By building a gold standard

of positive and negative relationships, it

becomes possible to predict whether or not

a pair of genes interacts.

As with all machine learning strategies,

the gold standard determines what type of

relationship can be discovered. Here we

will describe the process of building a gold

standard of functional relationships, but a

different standard of only physical or only

metabolic interactions could be used to

develop a network with those types of

connections. Here we define two genes as

having a functional relationship if they

work together to carry out a biological

process (e.g. a KEGG pathway) that can be

assayed by definitive experimental follow-

up. This definition allows us to capture

diverse types of relationships, while discov-

ering relationships suitable for biological

follow-up. The Gene Ontology’s biological

process ontology provides annotations of

genes to process, but includes both very

broad and very narrow processes. Two

examples of broad terms would be ‘‘bio-

logical regulation’’ and ‘‘response to stim-

ulus.’’ Two examples of narrow terms

would be ‘‘positive regulation of cell growth

involved in cardiac muscle cell develop-

ment’’ and ‘‘cell-matrix adhesion involved

in tangential migration using cell-cell

interactions.’’ The broad terms are not

specific enough to provide a meaningful

gold standard, while the narrow terms have

too few annotations to provide sufficient

examples of known relationships.

To address this shortcoming, Myers et al.

[30] used a panel of experts to select terms

from the biological process ontology that

were appropriate for confirmation or refu-

tation through laboratory experiments such

as ‘‘response to DNA damage stimulus’’ and

‘‘aldehyde metabolism.’’ These terms can

be downloaded and used to build a positive

functional relationship standard. Gene pairs

where both pairs share one of these terms

can be considered to have a functional

relationship. Gene pairs which do not share

an annotation are of unknown status. For

Bayesian inference we must also have a

negative standard. One potential way to

develop a negative standard would be to

randomly select pairs of genes. This assumes

that most pairs of genes do not interact.

It is possible to add additional high

quality experimentally annotated relation-

ships to these standards from other

databases. Databases like KEGG [13],

Reactome [31], and HPRD [32] have

previously been used to identify additional

functional relationships [33]. The positive

and negative relationships from the stan-

dard determine the type of relationship

that will be predicted by the Bayesian

integration. Here we use functional rela-

tionships, but a gold standard built strictly

from physical protein-protein interactions

will infer only physical interactions rela-

tionships between genes.

4. Building a Network of
Functionally Related Genes

Given a gold standard of gene-gene

relationships, the probability that two genes

of unknown status have a relationship can

be calculated from diverse data using

Bayesian inference. The process is similar

to the integration process described for

single-gene prediction, but there are differ-

ences. For each dataset, appropriate scores

for each gene pair must be calculated.

Furthermore, these scores should not re-

quire any manual intervention or adjust-

ment that would make an analysis of

hundreds or thousands of datasets time

consuming. For datasets that are naturally

made up of pair-wise scores such as yeast two-

hybrid assays, this task is straightforward.

For datasets made up of individual

gene measurements, such as microarray

experiments, a useful measure must be

found.

One measure that can provide pair-wise

scores across arrays is correlation. Corre-

lation quantifies the amount that two

genes vary together and can be a useful

indicator of functional relationships. Com-

paring correlation across datasets in a

regular manner is difficult however, be-

cause datasets may display more or less

correlation based on both true biology

(e.g. under some conditions more genes

vary together) or experimental error (e.g.

systematic biases due to hybridization

conditions) and the variance of gene-wise

correlations would vary based on these

dataset dependent effects. Fisher’s z-trans-

form provides a means to convert these

correlation coefficients (r) to z-scores by

calculating z as

z~
1

2
ln

1zr

1{r
:

These z-scores provide a familiar frame-

work to work with correlation and allow

correlation measures between genes to be

compared across datasets. It is then

possible to categorize genes pairs as

negatively correlated, uncorrelated, or

positively correlated based on whether

their z-score is less than, approximately

equal to, or greater than zero.

These pairs can then be used as

evidence in an integration. In the single

Table 1. A contingency table for the experimental results for Condition A.

Below Median Above Median Total

Positive Examples 50 150 200

Negative Examples 161 61 222

Total 211 211 422

Genes are discretized into values above or below the median. The numbers of positive and negative examples come from the gold standard. These values can be used
to predict the probability that a gene with unknown status is involved in the disease.
doi:10.1371/journal.pcbi.1002816.t001

Figure 2. An example of querying HEFalMp for the role of APOE across all biological
processes (http://hefalmp.princeton.edu/).
doi:10.1371/journal.pcbi.1002816.g002
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gene situation, we were interested in

P Di DEið Þ, or the probability of gene i
causing disease given its evidence. Here we

are interested in the probability of a

functional relationship between genes i

and j, P FRi,j

� �
, given some pair-wise

evidence (e.g. correlation), Ei,j . As in the

single gene situation, this can be calculated

with

P FRi,j DEi,j

� �
~

P Ei,j DFRi,j

� �
P FRi,j

� �

P Ei,j

� � :

Like before, a contingency table is used.

The difference in this situation is that the

table is based on pair-wise gene measures

instead of measurements for individual

genes. This process, when used to calcu-

late pair-wise probabilities of functional

relationships for all of the genes in the

genome of interest, results in a functional

relationship network for the organism of

interest.

Huttenhower et al. [33] performed

Bayesian integration and prediction using

human gold standards and datasets. This

tool allows users to query the network and

also displays what datasets contribute to the

relationships predicted from the integrated

approach. As an example we can query

HEFalMp to find out how the APOE

protein relates to all genes across all

biological processes as shown in Figure 2.

The result is shown in Figure 3. The red

links indicate that there is a high probability

of a functional relationship between the two

genes and green links indicate a low

probability. Black links indicate a probabil-

ity of approximately 0.5.

The probability of a functional relation-

ship between any pair of genes is calculat-

ed as described previously. As such, this

probability is dependent on evidence from

each individual dataset. By clicking on a

link, the contributions for each dataset

towards that gene pair are provided as

shown in Figure 4 for APOE and PLTP.

This figure indicates the value of including

high quality databases such as BioGRID

as input data. While the microarray

datasets are informative, in this case the

three highest weighted datasets were non-

microarray data sources.

These functional relationships can then

be used to connect genes to diseases

through guilt by association approaches.

Guilt by association approaches work by

finding genes or diseases that are highly

connected to query genes. How exactly

this is done depends on the underlying

network, the size and type of the query

sets, whether or not the task must be done

in real time. An example approach would

be to consider as positives only relation-

ships with a probability from the inference

stage of greater than 0.9. A Fisher’s exact

test p-value [34] can then be calculated

using the counts of genes connected to the

query, the number of genes connected to

the query and annotated to the disease of

interest, as well as the total number of

genes in the network and the number of

those genes annotated to the disease [34].

The approach used by the HEFalMp

online tool is more complicated because

the network-specific calculations must be

done in real time for the web interface.

Figure 5 shows diseases significantly asso-

ciated with the APOE protein through the

HEFalMp online tool, while the procedure

used to generate the results for Figure 6

flips the analysis and shows genes signifi-

cantly associated with Alzheimer disease

based on their connectedness to genes

annotated to this disease in OMIM [35].

5. Evaluating Functional
Relationship Networks

After performing a Bayesian integra-

tion it is appropriate to assess the quality

of the inference approach. One straight-

forward way to evaluate the network

would be measure the concordance of

the gold standard and predictions from

the network. This is easily done by

ordering gene pairs by their probabilities

in the network from highest to lowest. For

each gene pair in the gold standard, the

true positive rate (TPR) to that point can

be calculated as

TPR~
Positive Pairs Thus Far

Total Positives in Standard
:

The false positive rate (FPR) can be

calculated with the same values for negative

pairs. These values can then be plotted with

FPR on the horizontal axis and TPR on the

vertical access. This provides one type of

receiver-operator characteristic (ROC)

curve which can be used to assess the quality

of predictions from the network. The area

under this curve (AUC) summarizes to a

single number the quality of predictions.

Unfortunately this approach to evalua-

tion uses the same evaluation standard as

the gold standard used for learning and

therefore it tests the ability of the inference

approach to match the gold standard, and

not its ability to make new predictions.

One way to avoid this circularity is to hold

a group of genes out of the gold standard

during the integration process. Connec-

tions between these held out genes can

then be used after the networks are

generated to assess the quality of predic-

tions from the network (in this case the

concordance between the predictions and

Figure 3. The result of querying HEFalMp for the role of APOE across all biological
processes. Red links indicate that there is a high probability of a functional relationship between
the two genes.
doi:10.1371/journal.pcbi.1002816.g003
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the known relationship status of the held

out genes are used). While the holdout

approach is effective for large gold stan-

dards, when gold standards are small this

can result in too few known relationships

for assessment of the network. This

assessment problem can be alleviated at

the cost of computation time by using a

cross-validation approach. With cross-val-

idation, the gene sets are divided up into

groups. Like the hold-out approach, all

but one group is used to train the network

Figure 4. The highest and lowest contributing datasets for the pair of APOE and PLTP are shown (http://hefalmp.princeton.edu/
gene/one_specific_gene/18543?argument = 21697&context = 0). These contributions are based on how well the bin containing the queried
gene pair separated known positive functional relationships from known negative functional relationships.
doi:10.1371/journal.pcbi.1002816.g004

Figure 5. The diseases that are significantly connected to APOE through the guilt by association strategy used in HEFalMp.
Alzheimer disease and Macular degeneration are both annotated to the disease in OMIM as noted by the gold bars to the left of the disease (http://
hefalmp.princeton.edu/gene/diseases?context = 0&name = APOE). The other diseases are implicated by APOE’s functional relationships to genes
annotated to that disease in OMIM.
doi:10.1371/journal.pcbi.1002816.g005
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while the evaluation is performed on the

left out group. In contrast to the hold-out

approach, the process of training and

evaluation is performed iteratively with

each group of genes being evaluated, but

like the hold-out approach, only the

predictions generated on held out genes

are used for evaluation.

When standards are incomplete, exist-

ing literature can also be used for

evaluation. This can be incorporated in a

number of ways. One way is to use a blind

literature evaluation. Pairs predicted with

high probability or genes highly connected

to members of the standard can be

selected for follow-up. These are com-

bined with randomly selected genes to

create a gene list for evaluation. Literature

evidence for genes on this list can be

assessed, and a comparison can be per-

formed for genes selected from the net-

work and genes selected randomly. If the

proportion of literature based positives of

genes or pairs selected from the network is

substantially higher than those selected

randomly, this provides evidence that the

network recapitulates true biology.

Fundamentally the goal of this data

driven functional genomics strategy is to

create a network of predictions useful for

designing biological experiments [36]. If

these predictions lead to a higher success

rate in molecular biology experiments, an

integrative analysis can dramatically lower

the cost per discovery. Hibbs et al. [37]

used a data driven approach to direct

experimental biology and found that

computational predictions could be exper-

imentally validated at a substantially

higher rate than randomly selected genes.

Furthermore, those genes that were found

by computational methods were more

likely to exhibit a subtle phenotype than

the genes already known to be involved.

This study provides evidence that compu-

tational predictions combined with exper-

imental science can lower the cost of

experimental discoveries while finding

subtle phenotypes that high throughput

experimental designs may miss.

6. Summary

Data driven functional genomics strate-

gies combine methods from statistics and

computer science to integrate diverse

experimental data for the purpose of

making novel biological predictions. By

bringing diverse data together, these meth-

ods are capable of discovering patterns of

biological relevance not well characterized

in individual studies [38]. Furthermore,

because these methods rely on existing

data, they can be used to efficiently direct

definitive low throughput experimental

studies in a cost effective manner [37,39].

Integrative data driven approaches are

often compared to publicly available

databases of knowledge or experiments

or to the statistical analysis of results from

Figure 6. The genes that are most significantly connected to Alzheimer disease genes using the HEFalMp network and OMIM
disease gene annotations (http://hefalmp.princeton.edu/disease/all_genes/55?context = 0). The gold bars to the left of APP and APOE
indicate that both genes were annotated Alzheimer disease according to OMIM.
doi:10.1371/journal.pcbi.1002816.g006

Figure 7. The functional relationship network discovered by a data driven integration
for the YFG gene in YFO.
doi:10.1371/journal.pcbi.1002816.g007

PLOS Computational Biology | www.ploscompbiol.org 6 December 2012 | Volume 8 | Issue 12 | e1002816



individual high throughput experiments, but

they are distinct from both of these. Data-

bases generated by literature curation are by

their nature not well suited to the discovery of

new knowledge and databases of experimen-

tal results require researchers to know a priori

which datasets are relevant to the biological

question of interest. Integrative data driven

approaches combine high throughput exper-

iments and databases of diverse types and in

so doing can make predictions beyond those

discovered using single data sources.

The flexibility of the data driven approach

also gives rise to its greatest challenge. This

strategy relies upon gold standards that are a

representation of high quality current knowl-

edge. When these standards are of high

quality and appropriate to the biological

question of interest, the resulting answers are

likely to be useful. If the standards are of

lower quality, the utility of the predictions

will be lessened. In many cases the gold

standard quality is the critical determinant of

success for these algorithms. With careful

use, these methods can generate predictions

capable of efficiently directing experimental

biology [37,40].

7. Exercises

1. All proteins connected to the protein

Your Favorite Gene (YFG) in the

functional relationship network of Your

Favorite Organism (YFO) are shown in

Figure 7. Three of them are known to

be associated with Your Favorite

Disease (YFD). These genes are

YFDG1, YFDG2, and YFDG3. YFD

has six genes annotated to it among the

100 genes present in YFO. Using a

Fisher’s exact test to evaluate guilt by

association, is YFG significantly associ-

ated with YFD (av0:05)?

2. Does the gene expression dataset

described by the contingency table in

Table 2 provide any information about

whether or not the genes YFG and

MFG are likely to have a functional

relationship if they are uncorrelated in

this dataset? What if they are negative-

ly correlated?

3. Using the contingency tables from

Tables 2 and 3 and the knowledge that

20% of gene-pairs in the organism of

interest have a functional relationship,

what is the probability that genes YFG

and MFG have a functional relationship

if they are positively correlated in the

experiment that Table 2 is derived from

and physically interacting in the data-

base from which Table 3 is derived?

4. What is the major difference between

databases and integrative data driven

approaches?

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)

Glossary

N Functional Relationship: The type of interaction that two genes have if they
participate in the same biological process.

N Gold Standard: A set of genes or gene-pairs with a known status (positive or
negative) in the tissue, process, disease, or phenotype of interest.

N Hypergeometric/Fisher’s Exact Test: A test of independence appropriate for
categorical count data when the number of items in each cell is small.

Further Reading

N Kanehisa M, Bork P (2003) Bioinformatics in the post-sequence era. Nat Genet
33 Suppl: 305–310.

Table 2. A contingency table for gene-pairs based on correlation in a gene expression dataset.

Negatively Correlated Uncorrelated Positively Correlated

Known Positive Relationships 20 30 50

Known Negative Relationships 400 300 200

doi:10.1371/journal.pcbi.1002816.t002

Table 3. A contingency table for gene-pairs based on a database of physical interactions.

Not Physically Interacting Physically Interacting

Known Positive Relationships 10 90

Known Negative Relationships 900 100

doi:10.1371/journal.pcbi.1002816.t003

PLOS Computational Biology | www.ploscompbiol.org 7 December 2012 | Volume 8 | Issue 12 | e1002816



References

1. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI,

Ball CA, et al. (2002) Identification of genes periodically
expressed in the human cell cycle and their expression

in tumors. Mol Biol Cell 13: 1977–2000.
2. Hegde P, Qi R, Gaspard R, Abernathy K,

Dharap S, et al. (2001) Identification of tumor

markers in models of human colorectal cancer
using a 19,200-element complementary DNA

microarray. Cancer Res 61: 7792–7797.
3. Lock C, Hermans G, Pedotti R, Brendolan A,

Schadt E, et al. (2002) Gene-microarray analysis

of multiple sclerosis lesions yields new targets
validated in autoimmune encephalomyelitis. Nat

Med 8: 500–508.
4. Wellcome Trust Case Control Consortium (2007)

Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared con-

trols. Nature 447: 661–678.

5. Schymick JC, Scholz SW, Fung HC, Britton A,
Arepalli S, et al. (2007) Genome-wide genotyping

in amyotrophic lateral sclerosis and neurologically
normal controls: first stage analysis and public

release of data. Lancet Neurol 6: 322–328.

6. Kittler R, Pelletier L, Heninger AK, Slabicki M,
Theis M, et al. (2007) Genome-scale RNAi

profiling of cell division in human tissue culture
cells. Nat Cell Biol 9: 1401–1412.

7. Krishnan MN, Ng A, Sukumaran B, Gilfoy FD,
Uchil PD, et al. (2008) RNA interference screen

for human genes associated with West Nile virus

infection. Nature 455: 242–245.
8. Ozsolak F, Song JS, Liu XS, Fisher DE (2007)

High-throughput mapping of the chromatin
structure of human promoters. Nat Biotechnol

25: 244–248.

9. Su AI, Wiltshire T, Batalov S, Lapp H, Ching
KA, et al. (2004) A gene atlas of the mouse and

human protein-encoding transcriptomes. Proc
Natl Acad Sci U S A 101: 6062–6067.

10. Perou CM, Sorlie T, Eisen MB, van de Rijn M,
Jeffrey SS, et al. (2000) Molecular portraits of

human breast tumours. Nature 406: 747–752.

11. Edgar R, Domrachev M, Lash AE (2002) Gene
Expression Omnibus: NCBI gene expression and

hybridization array data repository. Nucleic Acids
Res 30: 207–210.

12. Desiere F, Deutsch EW, King NL, Nesvizhskii AI,

Mallick P, et al. (2006) The PeptideAtlas project.
Nucleic Acids Res 34: D655–D658.

13. Kanehisa M, Goto S (2000) KEGG: kyoto
encyclopedia of genes and genomes. Nucleic

Acids Res 28: 27–30.
14. Ashburner M, Ball CA, Blake JA, Botstein D,

Butler H, et al. (2000) Gene ontology: tool for the

unification of biology. The Gene Ontology
Consortium Nat Genet 25: 25–29.

15. Klein TE, Chang JT, Cho MK, Easton KL,

Fergerson R, et al. (2001) Integrating genotype

and phenotype information: an overview of the

PharmGKB project. Pharmacogenetics Re-

search Network and Knowledge Base

Pharmacogenomics J 1: 167–170.

16. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim

SM, et al. (2002) DIP, the Database of Interacting

Proteins: a research tool for studying cellular

networks of protein interactions. Nucleic Acids

Res 30: 303–305.

17. Bader G, Betel D, Hogue C (2003) BIND: the

Biomolecular Interaction Network Database.

Nucleic Acids Res 31: 248–250.

18. Snel B, Lehmann G, Bork P, Huynen MA (2000)

STRING: a web-server to retrieve and display the

repeatedly occurring neighbourhood of a gene.

Nucleic Acids Res 28: 3442–3444.

19. Mostafavi S, Ray D, Warde-Farley D, Grouios C,

Morris Q (2008) GeneMANIA: a real-time

multiple association network integration algo-

rithm for predicting gene function. Genome Biol

9 Suppl 1: S4.

20. Warde-Farley D, Donaldson SL, Comes O, Zuberi

K, Badrawi R, et al. (2010) The GeneMANIA

prediction server: biological network integration

for gene prioritization and predicting gene func-

tion. Nucleic Acids Res 38: W214–W220.

21. Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee

SY (2010) Rational association of genes with traits

using a genome-scale gene network for Arabidopsis

thaliana. Nat Biotechnol 28: 149–156.

22. Lee I, Date SV, Adai AT, Marcotte EM (2004) A

probabilistic functional network of yeast genes.

Science 306: 1555–1558.

23. Lee I, Blom UM, Wang PI, Shim JE, Marcotte

EM (2011) Prioritizing candidate disease genes by

network-based boosting of genome-wide associa-

tion data. Genome Res 21: 1109–1121.

24. Kim WK, Krumpelman C, Marcotte EM (2008)

Inferring mouse gene functions from genomic-

scale data using a combined functional network/

classification strategy. Genome Biol 9 Suppl

1: S5.

25. Rhodes DR, Tomlins SA, Varambally S, Maha-

visno V, Barrette T, et al. (2005) Probabilistic

model of the human protein-protein interaction

network. Nat Biotechnol 23: 951–959.

26. Segal E, Wang H, Koller D (2003) Discovering

molecular pathways from protein interaction and

gene expression data. Bioinformatics 19: i264–

i272.

27. Chen X, Lin MZ, Shen XL (2011) PAIR: the

predicted Arabidopsis interactome resource. Nu-

cleic Acids Res 39: D1134–D1140.

28. Myers C, Robson D, Wible A, Hibbs M, Chiriac

C, et al. (2005) Discovery of biological networks

from diverse functional genomic data. Genome

Biol 6: R114–R114.

29. Troyanskaya OG, Dolinski K, Owen AB, Altman

RB, Botstein D (2003) A Bayesian framework for

combining heterogeneous data sources for gene

function prediction (in Saccharomyces cerevisiae).

Proc Natl Acad Sci U S A100: 8348–8353.

30. Myers CL, Barrett DR, Hibbs MA, Huttenhower

C, Troyanskaya OG (2006) Finding function:

evaluation methods for functional genomic data.

BMC Genomics 7: 187.

31. Vastrik I, D’Eustachio P, Schmidt E, Gopinath

G, Croft D, et al. (2007) Reactome: a knowledge

base of biologic pathways and processes. Genome

Biol 8: R39.

32. Peri S, Navarro JD, Amanchy R, Kristiansen TZ,

Jonnalagadda CK, et al. (2003) Development of

human protein reference database as an initial

platform for approaching systems biology in

humans. Genome Res 13: 2363–2371.

33. Huttenhower C, Haley EM, Hibbs MA, Du-

meaux V, Barrett DR, et al. (2009) Exploring the

human genome with functional maps. Genome

Res 19: 1093–1106.

34. Sokal RR, Rohlf FJ (1995) Biometry : the

principles and practice of statistics in biological

research. New York: W.H. Freeman. xix, 887 p.

35. Hamosh A, Scott AF, Amberger J, Valle D,

McKusick VA (2000) Online Mendelian Inheri-

tance in Man (OMIM). Human Mutation 15: 57–

61.

36. Greene CS, Troyanskaya OG (2012) Accurate

evaluation and analysis of functional genomics data

and methods. Ann N Y Acad Sci 1260: 95–100.

37. Hibbs MA, Myers CL, Huttenhower C, Hess DC,

Li K, et al. (2009) Directing experimental biology:

a case study in mitochondrial biogenesis. PLoS

Comput Biol 5: e1000322. doi:10.1371/journal.

pcbi.1000322.

38. Huttenhower C, Hibbs M, Myers C, Troyans-

kaya OG (2006) A scalable method for integration

and functional analysis of multiple microarray

datasets. Bioinformatics 22: 2890–2897.

39. Hess DC, Myers CL, Huttenhower C, Hibbs MA,

Hayes AP, et al. (2009) Computationally driven,

quantitative experiments discover genes required

for mitochondrial biogenesis. PLoS Genet 5:

e1000407. doi:10.1371/journal.pgen.1000407.

40. Guan Y, Dunham M, Caudy A, Troyanskaya O

(2010) Systematic planning of genome-scale

experiments in poorly studied species. PLoS

Comput Biol 6: e1000698. doi:10.1371/journal.

pcbi.1000698.

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002816


