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Abstract

How does the brain anticipate information in language? When people perceive speech, low-frequency
(,10Hz) activity in the brain synchronizes with bursts of sound and visual motion. This phenomenon, called
cortical stimulus-tracking, is thought to be one way that the brain predicts the timing of upcoming words,
phrases, and syllables. In this study, we test whether stimulus-tracking depends on domain-general expertise
or on language-specific prediction mechanisms. We go on to examine how the effects of expertise differ be-
tween frontal and sensory cortex. We recorded electroencephalography (EEG) from human participants who
were experts in either sign language or ballet, and we compared stimulus-tracking between groups while par-
ticipants watched videos of sign language or ballet. We measured stimulus-tracking by computing coherence
between EEG recordings and visual motion in the videos. Results showed that stimulus-tracking depends on
domain-general expertise, and not on language-specific prediction mechanisms. At frontal channels, fluent
signers showed stronger coherence to sign language than to dance, whereas expert dancers showed stronger
coherence to dance than to sign language. At occipital channels, however, the two groups of participants did
not show different patterns of coherence. These results are difficult to explain by entrainment of endogenous
oscillations, because neither sign language nor dance show any periodicity at the frequencies of significant ex-
pertise-dependent stimulus-tracking. These results suggest that the brain may rely on domain-general predic-
tive mechanisms to optimize perception of temporally-predictable stimuli such as speech, sign language, and
dance.
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Significance Statement

Information in speech appears in bursts. To optimize speech perception, the brain tracks these bursts of in-
formation with slow rhythms in neural excitability (,10Hz). Here, we tested whether neural stimulus-track-
ing depends on participants’ non-linguistic expertise. We recorded electroencephalography (EEG) in
participants who were experts in either dance or sign language, while they watched videos of dance or sign
language. Our results show that participants’ brain activity more closely tracks the stimulus matching their
expertise. These results are difficult to explain by entrainment of endogenous oscillations, because sign and
dance are not periodic at the frequencies of expertise-dependent stimulus-tracking. The brain may rely on
domain-general predictive mechanisms to optimize perception of temporally-predictable information.
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Introduction
During language comprehension, the brain predicts

upcoming phonemes, words, phrases, and semantics
(Kuperberg and Jaeger, 2016; Pickering and Gambi,
2018), as well as the timing of upcoming events (Nobre
and Van Ede, 2018). How does the brain anticipate when
linguistic information will appear? Here we show that do-
main-general expertise modulates the strength of neural
stimulus-tracking in frontal cortex but not in sensory
cortex.
When people listen to speech, low-frequency (,10Hz)

neural activity synchronizes to bursts of volume in the
sound (Ahissar et al., 2001; Luo and Poeppel, 2007;
Peelle and Davis, 2012). This phenomenon, called cortical
stimulus-tracking (or entrainment in the broad sense;
Obleser and Kayser, 2019), occurs during visual as well
as auditory perception. When people watch someone
speaking, neural activity in visual cortex synchronizes
with motion in the video (Power et al., 2012; Park et al.,
2016; Bourguignon et al., 2020). Cortical stimulus-track-
ing is not limited to speech but also arises when people
perceive other structured sequences. For example, brain
activity synchronizes with rhythms in music (Doelling and
Poeppel, 2015), rhythmically-varying sounds (Henry and
Obleser, 2012; Henry et al., 2014), and bursts of visual
motion in sign language (Brookshire et al., 2017).
Cortical stimulus-tracking may reflect neural predic-

tions of the timing of upcoming bursts of information.
Consistent with this proposal, low-frequency neural activ-
ity anticipates events in the stimulus, and is not simply a
series of superimposed evoked responses (Park et al.,
2018; Doelling et al., 2019; Arabkheradmand et al., 2020).
Low-frequency oscillatory phase influences both percep-
tual sensitivity (Busch et al., 2009; Mathewson et al.,
2009, 2012; Henry and Obleser, 2012; Neuling et
al., 2012; Ng et al., 2012; Cravo et al., 2013; Spaak et al.,
2014; Strauß et al., 2015; Riecke et al., 2018) and neural
excitability (Lakatos et al., 2005, 2008; Jacobs et al.,
2007; Mathewson et al., 2009; Romei et al., 2012; Zoefel
et al., 2018), suggesting that stimulus-tracking may serve
to boost perception during informative periods of the
stimulus. By synchronizing neural oscillations to a stimu-
lus, the brain may tune attention to relevant moments in
time (Schroeder and Lakatos, 2009; Giraud and Poeppel,
2012; Peelle and Davis, 2012; Kayser et al., 2015).

How do different areas of the brain contribute to cortical
stimulus-tracking? Tracking in sensory cortex depends
largely on low-level characteristics of the stimulus. For
example, stimulus-tracking in auditory cortex is driven
by acoustic edges (Doelling et al., 2014; compare Zoefel
and VanRullen, 2016). Furthermore, tracking of a mean-
ingless visual flicker is strongest over occipital cortex
(Mathewson et al., 2009; Spaak et al., 2014; Keitel et al.,
2017). By contrast, stimulus tracking in frontal cortex may
reflect higher-level processes in addition to low-level
stimulus characteristics. Tracking of linguistic chunks like
phrases and sentences, for instance, is strongest outside
of sensory cortex, with one cluster of activity in the inferior
frontal gyrus (Ding et al., 2016). Through these higher-
order processes, frontal cortex may provide top-down
input to sensory cortex (Park et al., 2015, 2018). Here, we
test the hypothesis that frontal involvement in stimulus-
tracking depends on expertise with the stimulus being
perceived.
In this study, we use electroencephalography (EEG) to

contrast the involvement of frontal and occipital regions in
cortical stimulus-tracking. Although activity in both re-
gions tracks low-level temporal structure, we hypothesize
that stimulus-tracking in frontal cortex depends on exper-
tise with the stimulus, whereas tracking in occipital cortex
does not depend on expertise. This hypothesis is moti-
vated by prior findings: at frontal EEG channels, coher-
ence to sign language is stronger in fluent signers than in
non-signers; at occipital channels, however, coherence
does not depend on whether participants know sign lan-
guage (Brookshire et al., 2017). Here, we tested this hy-
pothesis by examining the effects of expertise on
stimulus-tracking. Frontal cortex could predict the timing
of upcoming events using either (1) a language-specific
mechanism (Ryskin et al., 2020); or (2) a domain-general
mechanism (Pickering and Gambi, 2018). This study dis-
tinguishes between these possibilities by comparing par-
ticipants whose expertise is linguistic (American Sign
Language; ASL) with participants whose expertise is non-
linguistic (ballet).

Materials and Methods
Overview
Participants were experts in either ballet or sign lan-

guage, and were instructed to remain still and relaxed
while they watched videos depicting either ballet or sign
language. There was no other task. We recorded EEG and
computed coherence between brain activity and the in-
stantaneous visual change (IVC; Brookshire et al., 2017)
of the movies. All procedures were approved by the
Institutional Review Board of the University of Chicago. In
total, the experimental session lasted 60–90min.

Experimental design
We designed this study to test for an interaction be-

tween participant group (signers, dancers) and stimulus
type (videos of sign, videos of dance). Specifically, we
predicted that signers would show relatively greater co-
herence to sign language than to dance, compared with
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dancers. A difference in the overall levels of expertise be-
tween groups (within their chosen domain) could not lead
to this interaction. Crucially, none of our hypotheses rely
on a main effect of participant group or stimulus type.
Differences in experience are therefore a source of Type II
error, not a source of Type I error. Any significant interac-
tions that arise would do so despite any differences in ex-
perience between the groups.
This design also protects against order effects in stimu-

lus presentation. Stimulus-order effects would appear as
a main effect of stimulus, whereas the predicted two-by-
two interaction can only appear if each group shows a
specific response to the stimulus within their expertise.

Participants
We recruited two groups of adult participants: (1) ex-

perts in ASL who were not familiar with ballet; and (2) ex-
perts in ballet who were not familiar with sign language.
Participants were recruited through online postings, fliers
at dance studios, and emails to ballet schools and Deaf
community mailing lists in the Chicago area. All partici-
pants had corrected-to-normal vision and no known his-
tory of epilepsy, brain surgery, or traumatic brain injuries.
We obtained informed consent before beginning the ex-
periment, and paid participants $20 per hour for their
participation.
We recorded data from fluent signers (N=12) and ex-

perts in ballet (N=19). All fluent signers reported learning
ASL before age 5, were either Deaf or hard of hearing, and
had no experience practicing ballet. In a prescreening
questionnaire, all ballet experts reported having practiced
ballet for at least 10 years, and no proficiency with ASL or
any other sign language. Demographic data about partici-
pants’ age and sex is not available, after the anonymized
paperwork containing this information was stolen from a
car.

Stimuli
Participants watched two types of silent videos: (1)

storytelling in ASL, and (2) ballet vignettes. All videos had
native sampling rates of 29.97Hz.
ASL videos comprised two stories, 8:41 and 9:48 (min:

s) long (total 18.5min). These videos showed a native
speaker of ASL telling a story against a static background
(Timm and Timm, 2008).
We recorded videos of short ballet vignettes performed

by a classically-trained ballet dancer (12 vignettes; total du-
ration 15.05min). The camera and background remained
still during the videos. These videos were appended and

separated by a black screen for 5 s. The ballet vignettes
were performed along with music, but sound was removed
for stimulus presentation.
To ensure that the timing of the videos was accurately

linked to the EEG recordings, a small white square flashed
in the corner of the display once every 30 frames of video
(out of view of the participant). This flash was registered
by a photodiode connected to the EEG amplifier. The area
of the flash was covered up by the photodiode, so the
flash was not visible to the participants.
All participants watched the videos in the same order:

two sign videos followed by the dance videos. After each
sign video, there was a brief break during which recording
quality was checked and electrodes were re-moistened.

IVC
To derive a time-series of visual information, we calcu-

lated the aggregated visual change between successive
video frames. This measure, called the IVC, is computed
as the sum of squared differences in each pixel across se-
quential frames:

IVCðtÞ ¼
X

i

xiðtÞ � xiðt� 1Þ½ �2;

where x is the gray-scale value of pixel i at time t. A
Python module to compute the IVC is available at https://
github.com/gbrookshire/ivc. This measure yields motion
peaks that show high agreement with methods using
deep neural networks or wired motion tracking (Pouw et
al., 2018).

Analysis of stimulus spectra
Before computing the spectra, the IVC traces for each

video were normalized by dividing all values by the stand-
ard deviation for that video. Power spectra were com-
puted using Welch’s method. The data were split into
overlapping segments (segment length 2.13 s, 26 sam-
ples; overlap 1.07 s, 25 samples). A Hanning window was
applied to each segment, and the linear trend was re-
moved. Fast Fourier transforms (FFTs) were then com-
puted for each segment. The spectrum for each signal
was obtained by averaging across segments within each
video.

Fitting periodic and aperiodic components of stimulus
spectra
We tested for oscillatory dynamics in the stimuli using

the FOOOF algorithm (Donoghue et al., 2020) in Python

Table 1: Additional statistical tests of the interactions

Comparison ANOVA h2
G LMER LMER b BEST

Region by stim. cond. by subj. group p=0.009 0.04 [0.00, 0.24] p=0.016 �0.92 [�1.68, �0.15] �0.58 [�1.0, �0.14]
Frontal: stim. cond. by subj. group p=0.003 0.13 [0.00, 0.37] p=0.002 1.02 [0.40, 1.64] �0.98 [�1.6, �0.37]
Occipital: stim. cond. by subj. group p=0.7 0.0023 [0.00, 0.13] p=0.7 0.10 [�0.44, 0.64] �0.13 [�0.71, 0.41]

Columns show the comparison being tested; p value computed in an ANOVA; h2
G with 95% CI from the ANOVA; p value computed from model comparisons in

linear mixed-effects models (LMER) after dropping the interaction of interest; median and 95% posterior distribution of the interaction b parameter estimate of
the LMER model; interaction estimates and 95% CI using Bayesian estimation; stim. cond.: stimulus condition (videos of sign vs dance); subj. group: subject
group (dancers vs signers).
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(v. 1.0.0; https://fooof-tools.github.io). This analysis was
computed for frequencies up to 15Hz, with a minimum
peak height of 2 SDs, peak widths limited to 1–8Hz, no
maximum number of peaks, and a knee term for the
aperiodic component. We ran the FOOOF algorithm
separately on the average spectra for sign and dance
stimuli, with averages weighted by the duration of each
stimulus video.

EEG acquisition and preprocessing
We recorded EEG at 250 Hz using a 128-channel

net (Electrical Geodesics). Impedances were reduced
to,50 kV before participants watched each sign
video, and before the dance video. EEG analyses were
performed in MATLAB using custom software and the
open-source FieldTrip package (Oostenveld et al.,
2011). Before any analyses, we excluded electrodes
that are likely to be contaminated with strong muscle
artifacts (along the face, beneath the ears, and at the
base of the neck), leaving 103 channels. Electrode
movement artifacts were manually identified and re-
jected by replacing the tagged region with zeros and
applying a 4000-ms half-Hanning taper to each side of
the artifact. This procedure was also applied to remove
regions of time between dance vignettes. Artifacts from
blinks and eye-movements were identified and re-
moved using independent component analysis (ICA).
We aligned the IVC to the EEG recordings using the
photodiode triggers that appeared once every 30
frames of video. We then used cubic spline interpola-
tion to warp the IVC for each 30 frames of video to the
corresponding period of EEG data, simultaneously re-
sampling the IVC from 30 to 250Hz. EEG signals were
re-referenced to the average mastoids before comput-
ing coherence.

Coherence analysis
Brain-stimulus coherence was computed independ-

ently for each EEG channel, following our previous work
(Brookshire et al., 2017). The IVC and EEG data were fil-
tered into overlapping log-spaced frequency bins using
phase-preserving forward-reverse Butterworth bandpass
filters. Bins were centered on values from 0.5 to 16Hz,
and included frequencies in the range (0.8 f, 1.25 f), where
f is the center frequency f=2n for n ¼ f�1;�0:5;0; :::; 4g.
The Hilbert transform was used to calculate instantane-
ous phase and power of each signal. Power was com-
puted as the absolute value of the analytic signal, and
phase as the angle of the analytic signal. These instanta-
neous power and phase estimates were then used to cal-
culate coherence:

Coh ¼
j
X
t

ðeiu ðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PCðtÞ � PVðtÞ

p
Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðPCðtÞ � PVðtÞÞ
r ;

where t is the time point, u is the phase difference be-
tween the IVC and EEG, PV is power in the IVC, and PC is
power in the EEG recording (Doelling et al., 2014).

Statistical analyses
We used a randomization procedure to determine sta-

tistical significance of coherence between the IVC and
EEG recordings. To obtain a null distribution of coherence,
the onset of the IVC was circularly shifted to a randomly se-
lected starting point. This procedure preserves the spectro-
temporal characteristics of both signals, but eliminates any
relationship between them. For each subject, we computed
100 randomly shifted baselines. Coherence was then com-
puted between the EEG signals and the shifted IVC.

Cluster-based permutation tests
We used non-parametric cluster-based permutation

tests (Maris and Oostenveld, 2007) to control for multiple
comparisons while testing statistical significance across
all frequencies and EEG channels. These analyses were
performed in MATLAB using functions from the open-
source FieldTrip package (Oostenveld et al., 2011). Within
each combination of stimulus type and subject group, we
tested for above-chance coherence by comparing empiri-
cal cortico-stimulus coherence to coherence computed
after randomly shifting the IVC of the stimulus. Separately
in each subject, the true difference between empirical and
randomly-shifted coherence was compared with a surro-
gate distribution (k=10,000) in which the “empirical” data
were randomly selected from the group of empirical and
randomly-shifted traces. In each permutation, t statistics
were computed on the difference between empirical and
randomly shifted data using dependent-samples linear re-
gressions. These t statistics were computed independ-
ently for each frequency and channel. The cluster statistic
was computed as the maximum cluster size in each per-
mutation. Samples were identified as a member of a clus-
ter if their individual t statistic exceeded the threshold
(cluster threshold: a = 0.05, two-tailed; minimum number
of channels in a cluster = 2). The p value was calculated
using the standard FieldTrip functions as the proportion
of permuted cluster statistics that were more extreme
than the empirical value. To compare across stimulus
conditions and subject groups, we computed z-scores of
empirical coherence against the randomly shifted base-
line distribution. This procedure takes into account both
the central tendency and the spread of the randomly-
shifted data. Z-scores were computed separately for each
stimulus condition within each subject. To test whether
each subject group showed different patterns of coher-
ence to videos of sign versus dance, we performed clus-
ter-based permutation tests on the z-scored coherence in
each stimulus condition, with cluster membership defined
using dependent samples t tests. To test whether pat-
terns of coherence to a given stimulus type differed be-
tween signers and dancers, we performed the same
procedure, but cluster membership was defined using in-
dependent samples t tests. To test for an effect of exper-
tise (the two-by-two interaction between stimulus type
and participant group,) we computed subject-wise differ-
ences in z-scored coherence to sign versus dance stimuli,
and then submitted these differences to a cluster permu-
tation test using independent t tests to define cluster
membership.
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Regions of interest (ROIs) and frequencies of interest
We examined coherence at two a priori ROIs (region of

interest) defined in a previous study on cortical coherence
to videos of sign language (Brookshire et al., 2017): one
frontal ROI and one occipital ROI. We defined frequencies
of interest based on the peak of coherence in the same
previous study, and averaged coherence from frequency
bins centered on 0.5–2Hz. These regions and frequencies
of interest were defined before any data analysis or
visualization.
Inferential statistics were computed on z-scored coher-

ence (against the randomly-shifted null distribution) using
R (R Core Team, 2018).
To test whether the two subject groups showed differ-

ent patterns to sign and dance, and to test for an interac-
tion of expertise by region (frontal/occipital channels), we
used within-subjects ANOVAs with type 2 sum of squares,
with region and stimulus condition as within-subjects fac-
tors, and subject group as a between-subjects factor.
Effect sizes for these interactions were computed as h2

G
(Bakeman, 2005) using the ezANOVA function in the ez
package, and 95% confidence intervals (CIs) of h2

G were
computed using the h_squared function from the effect-
size package.
We repeated these analyses using linear mixed-effects

regressions with maximal random-effects structure, using
the lmer function in the lme4 package; p values were
computed by dropping the interaction from the model,
and performing a likelihood ratio test on the two models.
We computed the 95% posterior distribution (10,000 sim-
ulations) of the parameter estimates (a second measure of
effect size) using the sim function from the arm package.
Finally, for a third measure of effect size and variability,

we tested these interactions with Bayesian estimation
using the BEST procedure implemented in the bayes.t.
test function from the BayesianFirstAid package. The out-
put of these tests provides a natural effect size: the
strength of the interaction in standardized units. For the
two-by-two interactions of stimulus condition by subject
group (run separately in each ROI), we computed the dif-
ference in coherence to videos of sign minus videos of
dance (separately for each subject), and then performed
Bayesian estimation on these difference scores between
signers and dancers. This differencing procedure ac-
counts for the within-subjects variance in our design. For
the two-by-two-by-two interaction of region, stimulus
condition, and subject group, we performed a similar pro-
cedure. Within each region, we obtained the difference
between coherence to videos of sign minus videos of
dance (separately for each subject). We then computed
the difference of those differences across regions (frontal
minus occipital), and used bayes.t.test to test for an effect
of subject group on this difference of differences.
For pairwise comparisons between coherence to dance

and sign stimuli, we used within-subjects Welch’s t tests.
For pairwise comparisons between signers and dancers,
we used two-sample Welch’s t tests. We tested whether
individual conditions (e.g., signers watching videos of
sign) showed above-chance coherence using one-sample
Welch’s t tests. We supplemented these t tests with non-

parametric one-sample and two-sample Wilcoxon tests
using the wilcox.test function. For t tests, effect sizes and
95% CIs were computed as Cohen’s d using the co-
hens_d function in the rstatix package. We also computed
effect sizes and 95% CIs as Hedges’s g, using the cohen.
d function from the effsize package. Finally, we computed
Bayesian estimates and credible intervals using the BEST
procedure implemented in the bayes.t.test function from
the BayesianFirstAid package.

Code accessibility
All data and code used in the experiment will be made

available on request. Analyses were run using MATLAB,
Python, and R (specific analyses detailed above). The
main EEG analyses were run on a Linux computing cluster
(“Acropolis” at the University of Chicago), and artifact re-
jection and the region-specific and frequency-specific
statistics were run on a desktop running Ubuntu 18.04.5
LTS.

Results
We used EEG to measure stimulus-tracking in human

participants who were experts in either ballet dancing or
sign language. Participants watched silent videos of ballet
and sign language, and we quantified stimulus-tracking
using cortico-stimulus coherence. If stimulus-tracking
depends on domain-general predictive processes in
frontal cortex, then coherence at frontal channels (but
not occipital channels) should depend on expertise,
with signers showing stronger coherence to sign lan-
guage and dancers showing stronger coherence to
dance.

Temporal structure in sign and dance
We quantified visual information in the sign and dance

stimuli using the IVC, a measure of aggregated pixel-wise
change (Brookshire et al., 2017; Pouw et al., 2018).
Although neither dance nor sign language was strongly
rhythmic, the IVC of dance displayed brief periods of re-
peated segments (Fig. 1A,C). The IVC of sign language, in
contrast, did not show clear oscillatory activity at any
timescale (Fig. 1B,C). We examined periodic and aperi-
odic structure in these stimuli using the FOOOF algorithm
(Donoghue et al., 2020). This analysis confirmed that the
dance stimuli show weak periodicity in the u -band (peak
4.4Hz; peak height 0.29; bandwidth 1.6Hz; R2 = 0.992).
Sign language, by contrast, did not display any periodic
components (R2 = 0.996).

Coherence at frontal but not occipital channels
depends on expertise
To test whether neural stimulus-tracking depends on

expertise, we computed cortico-stimulus coherence to
these videos of ballet and sign language. We examined
coherence in two groups of participants: (1) fluent signers
of ASL who had no experience with dance (signers), and
(2) expert ballet dancers who had no experience with any
sign language (dancers).
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As an initial test for effects of expertise, we used clus-
ter-based permutation tests to determine whether co-
herence varies between subject groups and stimulus
conditions. These analyses considered activity at all
frequencies and across all EEG channels.
We directly tested for effects of expertise by computing

the difference in coherence to videos of sign versus
dance, separately within each participant, and then com-
paring these differences between signers and dancers.
This analysis revealed a significant effect of expertise on
coherence (p=0.001). Signers showed stronger coher-
ence to sign than to dance (p=0.0004), with above-
chance coherence to sign (p=0.0001) but not to dance
(no clusters found; Fig. 2A,C). In contrast, dancers
showed stronger coherence to dance than to sign

(p=0.03), with above-chance coherence both to sign
(p=0.0001) and to dance (p=0.0001; Fig. 2B,D). These
tests reveal that cortico-stimulus coherence depends on
expertise, with each group showing stronger stimulus-
tracking to the stimulus matching their expertise. These
results cannot be accounted for by other known differen-
ces between signers and dancers (such as cortical reor-
ganization in deaf participants; Finney et al., 2001); other
differences between groups would predict a main effect
of subject group, but not an interaction between subject
group and stimulus type.
Examining the scalp topography of coherence across

conditions, fluent signers showed robust coherence to
videos of sign language, peaking around 1Hz over a
broad area of central, frontal, and occipital channels (Fig.

Figure 1. Temporal structure in dance and sign language. A, Example time course of 20 s of the IVC (instantaneous visual change)
of a dance video. IVC has been standardized by dividing out its standard deviation. B, Example time course of 20 s of the IVC of a
sign language video. C, Spectra of dance and sign stimuli. Each trace shows a separate stimulus video. Dance videos: 12 seg-
ments, 15.05min in total. Sign videos: 2 segments, 18.50min in total.

Figure 2. Expertise modulates cortico-stimulus coherence. Coherence spectra averaged over all EEG channels. A, Raw coherence
in fluent signers, shown separately for videos of dance and sign. Because cortico-stimulus coherence values depend on the number
of pixels in the video, coherence is displayed in arbitrary units (a.u.). B, Raw coherence spectra in expert dancers. Details as in A.
C, Z-scored coherence (empirical vs randomly shifted) in fluent signers. D, Z-scored coherence in expert dancers. In all panels, the
line shows the average coherence spectrum across subjects and EEG channels, and the shaded area shows the 95% CI across
each subject’s average.
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3, bottom row). Signers did not show clear topographies
of coherence to dance at any frequencies. In contrast,
dancers showed strong coherence to videos of ballet,
peaking between 0.5 and 1Hz at central channels (Fig. 3,
top row). Dancers showed only moderate coherence to
videos of sign language, centered over occipital channels
around 1Hz.
To further investigate how expertise influences cortico-

stimulus coherence, we explicitly contrasted coherence
from 0.5 to 2Hz at frontal and occipital ROIs. These fre-
quencies and regions were selected a priori (Materials
and Methods). This frequency band captures modulations
at the rate of short phrases and slow signs in ASL (Bellugi
and Fischer, 1972; Hwang, 2011). We performed these
analyses on z-scores of empirical coherence against the
randomly shifted baseline.
At frontal channels, signers and dancers showed differ-

ent patterns of coherence to sign and dance (F(1,29) = 10.9;
p=0.003; Fig. 4A; Table 1). Signers showed stronger co-
herence to sign than to dance (t(11) = – 3.6; p=0.004; Table
2), with above-chance coherence to sign (t(11) = 3.9;
p=0.003) but not to dance (t(11) =0.45; p=0.66). Dancers, in
contrast, did not show a significant difference in coherence
to sign and dance (t(18) =1.9; p=0.07), although the numeri-
cal difference trended in the predicted direction of stronger
coherence to dance than to sign. Dancers showed above-
chance coherence to both dance (t(18) =4.0; p=0.0008) and
to sign (t(18) =2.7; p=0.01). Coherence to dance was stron-
ger in dancers than in signers (t(23.4) =3.6; p=0.002). This
analysis did not reveal a statistically significant difference in
coherence to sign between signers and dancers (t(25.5) = –

1.1; p=0.28), although the difference trended in the pre-
dicted direction, with signers showing numerically stronger
coherence to sign than dancers.
The effect of expertise on coherence differed between

frontal and occipital channels (F(1,29) = 7.8; p=0.009;

Table 1). At occipital channels, signers and dancers did
not show different patterns of coherence to sign and
dance (F(1,29) = 0.13; p=0.72; Fig. 4B; Table 2). Dancers
showed above-chance coherence to both dance
(t(18) = 4.2; p=0.0006) and sign (t(18) = 4.5; p=0.0003), and
signers showed above-chance coherence to sign (t(11) =
2.5; p=0.03) but not to dance (t(11) = 1.6; p=0.13). There
was no statistically significant difference in occipital co-
herence between videos of sign and dance (F(1,29) = 1.9;
p=0.18; h2

G ¼ 0:032), or between signers and dancers
(F(1,29) = 4.0; p=0.054; h2

G ¼ 0:063).
These findings suggest that temporal predictions are

generated in frontal cortex based on expertise with the
stimulus. Because of the poor spatial resolution of EEG,
these data do not allow for precise localization of these
different patterns of activity. However, these results are
consistent with prior studies in demonstrating that fron-
tal cortex generates predictions of upcoming events
(Dürschmid et al., 2019).
We find that the critical interactions are significant (or

the confidence intervals on the parameter estimate do not
include zero) when measured using ANOVAs, mixed-ef-
fects regressions, and Bayesian estimation (Table 1).
However, the confidence intervals on h2

G for these inter-
actions do include zero. We suggest that this may occur
because the h2

G confidence intervals do not fully account
for the within-subjects structure of the data.

Discussion
In this study, we found that stimulus-tracking at frontal

channels depends on expertise, whereas stimulus-track-
ing at occipital channels does not. Frontal activity from
0.5 to 2Hz more closely synchronizes with the stimulus
when people are experts in what they are perceiving.
Fluent signers showed stronger frontal coherence to vid-
eos of sign than to videos of ballet, whereas expert ballet

Figure 3. Scalp topographies of cortico-stimulus coherence by subject group, stimulus type, and frequency. All topographies are
plotted on the same color scale, and depict raw coherence. Because cortico-stimulus coherence values depend on the number of
pixels in the video, coherence is displayed in arbitrary units (a.u.).
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dancers showed stronger coherence to videos of ballet
than to videos of sign language. Occipital activity, how-
ever, robustly tracked the videos regardless of whether
they matched participants’ expertise. These results sug-
gest that frontal cortex is preferentially involved in gener-
ating sensory predictions during stimulus-tracking.

Entrainment versus flexible stimulus-tracking
Our results are unlikely to be driven by entrainment in

the narrow sense (Lakatos et al., 2019; Obleser and
Kayser, 2019), in which ongoing, endogenous cortical os-
cillations align with oscillations in the stimulus. We show
that dance is only weakly periodic, and sign language
may not be periodic at all. Instead, both sign and dance
are quasi-periodic, similar to speech (Rimmele et al.,
2018). This lack of strong periodicity makes it unlikely that
the brain tracks motion in sign and dance by entraining
endogenous neural oscillations. Furthermore, if stimulus-
tracking is driven by neural entrainment to external
rhythms, then we would expect to see the strongest en-
trainment in sensory areas, in which the stimulus is most

faithfully represented. Instead, we find that expertise only
modulates stimulus tracking outside of sensory cortex.
Together, these considerations suggest that temporal
predictions in frontal cortex may flexibly adjust to tempo-
ral structure in the stimuli.

Expertise and attention
We suggest that expertise boosts stimulus-tracking by

enabling participants to more accurately predict upcom-
ing changes in the stimulus. Could these results instead
derive from differences in how participants attend to stim-
uli they are familiar with? When people attend to a stimu-
lus, it elicits stronger responses in the brain (Treue, 2001).
In fact, attending to a stimulus also boosts cortical stimu-
lus-tracking (Kerlin et al., 2010; Zion Golumbic et al.,
2013; O’Sullivan et al., 2015). If participants preferentially
attended to the stimulus they were more familiar with, we
would expect stronger coherence for the stimuli matching
their expertise. Could differences in attention explain our
results? In prior studies, the effects of attention on stimu-
lus-tracking are strongest in sensory cortex (Kerlin et al.,
2010; Zion Golumbic et al., 2013; O’Sullivan et al., 2015).
In contrast, we find an effect of expertise only at frontal
channels, with no difference at occipital channels.
Although we cannot definitively rule out expertise-related
differences in attention, it is not clear why an attention-
based effect would arise in frontal but not sensory cortex.

The role of frontal cortex in stimulus-tracking
Our results build on the conclusions of prior studies,

which suggest that frontal and motor cortex may coordi-
nate temporal predictions by providing top-down modula-
tory input to sensory cortex. Although cortical stimulus-
tracking is often strongest over sensory cortex, it also
occurs in frontal cortex (Molinaro et al., 2016; Park et al.,
2016; Brookshire et al., 2017). During stimulus-tracking,
frontal areas modulate phase in auditory cortex in both
the d (1–3Hz) and u (4–7Hz) bands (Park et al., 2015,
2018). When people perceive someone speaking, u -band
activity in motor cortex synchronizes to auditory cortex
(Assaneo and Poeppel, 2018), and drives activity in visual
cortex (Hauswald et al., 2018). Stimulus-tracking in sen-
sory cortex also depends on the power of a and b oscilla-
tions in frontal cortex (Kayser et al., 2015; Keitel et al.,
2017; Morillon and Baillet, 2017), and frontal neurodegen-
eration disrupts prediction-related beta activity during
speech perception (Cope et al., 2017). Our findings ex-
tend this literature by showing that stimulus-tracking in
frontal cortex depends on expertise with the stimuli at
hand.
Some researchers posit that frontal stimulus-tracking

reflects top-down influence on visual and auditory cortex
(Park et al., 2015; Brookshire et al., 2017; Hauswald et al.,
2018). However, we do not find any expertise-linked mod-
ulation of visual cortex, despite the observed differences
in frontal cortex (see also Brookshire et al., 2017).
Perhaps low-frequency frontal activity modulates higher-
frequency visual activity; future studies using methods
with improved spatial resolution could test how stimulus-

Figure 4. Coherence at 0.5–2Hz depends on expertise. A, Z-
scored coherence (empirical vs randomly shifted) at the frontal
ROI (region of interest). Channels included in the a priori ROI
are highlighted in the layout on the right. B, As in A but aver-
aged over the occipital ROI. Bar heights show the average co-
herence, and error bars show within-subjects standard errors
(Morey, 2008). Points show coherence in individual participants,
and lines connect observations from the same participant;
*p,0.005, .p, 0.1; n.s. (not significant) p. 0.1.
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specific temporal predictions in frontal cortex modulate
activity in sensory cortex.

Language-specific or domain-general mechanisms?
What information does frontal cortex use to guide temporal

predictions during stimulus-tracking? Some researchers hy-
pothesize that neural synchronization involves processes that
are specific to oral speech (Molinaro and Lizarazu, 2018), and
that linguistic predictions may rely on language-specific pre-
dictive mechanisms (Ryskin et al., 2020; Shain et al., 2020). In
contrast, we show here that stimulus-tracking depends on
domain-general mechanisms: whatever mechanism supports
expertise-dependent synchronization, it operates over both
sign language and dance. This conclusion is consistent with
prior studies on cortical stimulus-tracking. Cortical activity
synchronizes with rhythms in music, and this synchronization
is stronger in experts with more musical training (Doelling and
Poeppel, 2015; Harding et al., 2019). Furthermore, when peo-
ple listen to complex syncopated rhythms, neural activity syn-
chronizes with the imagined pulse underlying the rhythm; this
synchronized activity is stronger in expert participants who
can more accurately tap along to a beat (Tal et al., 2017).
Although results such as these are often assumed to reflect
entrainment with endogenous oscillations, tracking of rhyth-
mic stimuli may partly rely on a non-oscillatory mechanism;
stimulus-tracking also occurs when there are no consistent
oscillations in either the stimulus (Daume et al., 2021) or in
brain activity (Breska and Deouell, 2017).
Similar results appear in studies using fMRI; in regions

associated with speech perception, listening to music
evokes stronger BOLD responses in expert violinists than
in non-musicians (Dick et al., 2011). These convergent
findings indicate that cortical stimulus-tracking depends
at least in part on domain-general expertise.

Coherence to subvocalized descriptions of dance?
Could our results be accounted for by a language-spe-

cific mechanism coupled with subvocalized narration of
the dance videos? Individual dance movements often

have conventionalized names. In theory, dancers could
show greater coherence to dance because they subvo-
cally rehearse the names of each movement. However, this
account is not consistent with prior findings about the cogni-
tive and neural basis of dance perception. Movements in
dance are complex, and can differ in their movement quality
(floating, slashing, etc.), weight (light, strong), time (sus-
tained, sudden), and degree of spatial focus (direct, indirect;
Groff, 1995; Warburton et al., 2013). To result in significant
cortico-stimulus coherence, subvocalized speech would
need to precisely align with the time course of movement in
the dance videos. Furthermore, neuroimaging experiments
suggest that instead of subvocalizing the name of each
movement, dancers covertly perform motor imagery when
they watch dance, leading to activation in motor networks
that depends on dancers’ experience performing the specif-
ic movements being perceived (Calvo-Merino et al., 2005,
2006; Cross et al., 2006, 2009; Orgs et al., 2008; Bläsing et
al., 2012). In summary, our findings and prior results are not
consistent with a language-specific mechanism operating
over verbal labels of the dance movements. Instead, our re-
sults are consistent with the proposal that perception of
dance movements involves covert motor simulations.

What aspects of the stimuli drive synchronization?
What features of the stimuli does brain activity lock

onto? We find that cortical coherence to sign and dance
is strongest around 1Hz, despite the fact that the IVC of
dance is periodic around 4.4Hz, and individual signs ap-
pear at ;2–2.5Hz (Bellugi and Fischer, 1972; Hwang,
2011). We propose that brain activity synchronizes to
higher-level chunks of movement in sign and dance, be-
cause of the higher temporal predictability of these larger
chunks. This proposal is consistent with findings in neural
tracking of auditory speech. Although syllables and fluctu-
ations in the volume of speech occur at ;2–10Hz
(Greenberg et al., 2003; Chandrasekaran et al., 2009;
Ding et al., 2017), cortex often synchronizes to speech
most strongly at lower frequencies (0.5–4Hz; Luo et al.,

Table 2: Additional statistical tests of the pairwise and within-sample effects

ROI Comparison Wilcoxon BEST 95% CI Hedges’s g Cohen’s d
Frontal Dancers: stim. cond. V =135, p=0.11 0.36 [�0.12, 0.83] 0.52 [�0.07, 1.11] 0.473 [0.005, 0.83]

Signers: stim. cond. V =7, p=0.009 �0.61 [�0.99, �0.23] �1.21 [�2.14, �0.28] �1.03 [�2.35, �0.39]
Dance: subj. group W=185, p=0.003 0.75 [0.29, 1.2] 1.06 [0.28, 1.84] 1.19 [0.65, 1.99]
Sign: subj. group W=89, p=0.3 �0.26 [�0.75, 0.24] �0.39 [�1.13 0.35] �0.40 [�1.39, 0.31]
Dancers watching dance V=178, p=0.0003 0.79 [0.37, 1.2] 0.89 [�0.08, 1.85] 0.93 [0.56, 1.45]
Dancers watching sign V=152, p=0.02 0.38 [0.074, 0.70] 0.59 [�0.35, 1.53] 0.62 [0.21, 1.14]
Signers watching dance V=44, p=0.7 0.046 [�0.15, 0.24] 0.12 [�1.05, 1.29] 0.13 [�0.48, 0.94]
Signers watching sign V=74, p=0.003 0.65 [0.24, 1.0] 1.03 [�0.22, 2.28] 1.12 [0.54, 2.64]

Occipital Dancers: stim. cond. V =84, p=0.7 �0.094 [�0.49, 0.29] �0.25 [�0.94, 0.43] �0.17 [�0.59, 0.4]
Signers: stim. cond. V =24, p=0.3 �0.24 [�0.63, 0.15] �0.48 [�1.18, 0.23] �0.43 [�1.1, 0.15]
Dance: subj. group W=154, p=0.1 0.31 [�0.03, 0.64] 0.70 [�0.05, 1.46] 0.75 [0.14, 1.47]
Sign: subj. group W=145, p=0.2 0.23 [�0.22, 0.69] 0.36 [�0.38, 1.10] 0.37 [�0.4, 1.3]
Dancers watching dance V=174, p=0.0006 0.47 [0.23, 0.73] 0.91 [�0.05, 1.88] 0.95 [0.58, 1.49]
Dancers watching sign V=184, p=0.00005 0.59 [0.30, 0.89] 0.99 [0.02, 1.97] 1.04 [0.75, 1.53]
Signers watching dance V=56, p=0.2 0.16 [�0.066, 0.39] 0.43 [�0.76, 1.62] 0.47 [�0.1, 1.39]
Signers watching sign V=71, p=0.009 0.34 [�0.001, 0.72] 0.65 [�0.55, 1.86] 0.71 [0.44, 1.22]

Columns show the ROI; the comparison being tested (e.g., dancers: stim. cond. is the effect of stimulus condition within dancers); non-parametric Wilcoxon
tests; Bayesian estimates with 95% credible interval; Hedges’s g with 95% CI; Cohen’s d with 95% CI.
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2010; Bourguignon et al., 2013; Gross et al., 2013; Park et
al., 2015; Mai et al., 2016; Molinaro et al., 2016; Keitel et
al., 2017; Molinaro and Lizarazu, 2018). Instead of synchro-
nizing to individual syllables, cortical activity may synchronize
to prosodic fluctuations in speech (Bourguignon et al., 2013;
Keitel et al., 2017) or to short units such as phrases. The brain
may lock onto predictable chunks in dance and sign lan-
guage that are analogous to short phrases in speech.

Why don’t signers show above-chance coherence to
dance?
At frontal channels, we found that dancers show above-

chance coherence to both sign and dance, whereas sign-
ers show above-chance coherence only to sign (but not to
dance). What causes the lack of significant coherence to
dance in signers?
First, this could reflect a difference between the partici-

pant groups. Perhaps dancers have learned to treat all
sorts of body movements as potential dances, allowing
their brains to track the unfamiliar movements of sign lan-
guage. Alternatively, signers may have learned to specifi-
cally process movements with linguistic content, causing
their brains to be more “selective” about the movements
they follow.
Second, signers’ lack of coherence to dance may re-

flect a difference between the sign and dance stimuli.
Perhaps sign language has some characteristics that fa-
cilitate stimulus-tracking even in non-signers (e.g., more
predictable kinematics), whereas experience is required
to enable stimulus-tracking of dance. Further research is
necessary to determine the factors that give rise to this
pattern of results.

Conclusion
In conclusion, we find that cortical stimulus-tracking at

frontal channels is modulated by expertise, whereas stim-
ulus-tracking at occipital channels is not. By flexibly ad-
justing low-frequency neural activity, networks in frontal
cortex may align periods of increased excitability with
bursts of information in the stimulus.
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