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Abstract

Motivation: The effectiveness of drugs tends to vary between patients. One of the well-known rea-

sons for this phenomenon is genetic polymorphisms in drug target genes among patients. Here,

we propose that differences in expression levels of drug target genes across individuals can also

contribute to this phenomenon.

Results: To explore this hypothesis, we analyzed the expression variability of protein-coding

genes, and particularly drug target genes, across individuals. For this, we developed a novel vari-

ability measure, termed local coefficient of variation (LCV), which ranks the expression variability

of each gene relative to genes with similar expression levels. Unlike commonly used methods, LCV

neutralizes expression levels biases without imposing any distribution over the variation and is ro-

bust to data incompleteness. Application of LCV to RNA-sequencing profiles of 19 human tissues

and to target genes of 1076 approved drugs revealed that drug target genes were significantly

more variable than protein-coding genes. Analysis of 113 drugs with available effectiveness scores

showed that drugs targeting highly variable genes tended to be less effective in the population.

Furthermore, comparison of approved drugs to drugs that were withdrawn from the market

showed that withdrawn drugs targeted significantly more variable genes than approved drugs.

Last, upon analyzing gender differences we found that the variability of drug target genes was simi-

lar between men and women. Altogether, our results suggest that expression variability of drug

target genes could contribute to the variable responsiveness and effectiveness of drugs, and is

worth considering during drug treatment and development.

Availability and implementation: LCV is available as a python script in GitHub (https://github.com/

eyalsim/LCV).

Contact: estiyl@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recognition that patients are a heterogeneous population is one

of the pillars of the rising paradigm of precision medicine (Ashley,

2016). Due to this heterogeneity, patients that show a similar pheno-

type might respond differently to the same treatment regimen

(Evans and Relling, 2004; Relling and Evans, 2015). Consequently,

certain treatments might not be beneficial, or might even be harm-

ful, to some patients (Schork, 2015) (Fig. 1A). The variability in the

response to drugs may result from several factors including genetic

polymorphisms or mutations, differences in the physiological state

of patients, disease severity, and other external factors (Eichler

et al., 2011; Evans and McLeod, 2003).
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A key factor known to determine the heterogeneous responsive-

ness among patients is genetic polymorphisms in pharmacogenes;

genes that are targeted by the drug, or involved in drug absorption,

distribution, metabolism and exertion (ADME) (Relling and Evans,

2015; Scharfe et al., 2017). Significant efforts are invested in identi-

fying variants of these genes (Bush et al., 2016) and constructing

guidelines for their sequencing in patients, in order to optimize ther-

apy (Caudle et al., 2014). The importance of these efforts is demon-

strated by the variable responsiveness of patients to codeine, a

commonly prescribed opiate indicated for the relief of pain and

cough. Upon ingestion, codeine is converted by the hepatic enzyme

Cytochrome P450 2D6 (CYP2D6) to several metabolites, including

morphine. Genetic polymorphisms in CYP2D6 that are particularly

frequent among Arabs and northeast Africans (10–30%) were asso-

ciated with ultra-rapid metabolism of codeine (McLellan et al.,

1997). This ultra-rapid metabolism leads to increased levels of mor-

phine, which may cause severe adverse effects up to respiratory re-

pression (Crews et al., 2014).

Heterogeneous responses to a drug might also arise due to vari-

able expression of its pharmacogenes (Fig. 1B). For example, mRNA

levels of the human anion transporter gene HOAT3 were reported

to correlate with renal excretion of the anionic drug cefazolin

(Sakurai et al., 2004). The variable expression of genes, which stems

from the stochasticity of the expression process, was associated with

genetic attributes, such as histones modifications, and with function-

al attributes, such as their related cellular processes (Alemu et al.,

2014; Newman et al., 2006). House-keeping genes, for example,

were shown to be less variable than stress response genes, demon-

strating the beneficial aspects of both low and high expression vari-

ability (Newman et al., 2006 and reviewed by Raj and van

Oudenaarden, 2008). Here, we hypothesize that drugs with variably

expressed targets are more likely to elicit variable responses among

patients than drugs with uniformly expressed targets. The variable

expression of drug target genes could stem not only from polymor-

phisms within these genes, but also from differences in lifestyle

(Ornish et al., 2008), environmental exposures (Jung and Sang,

2007), or sequence variation in remote genomic regions as in eQTLs

(Consortium et al., 2017). Importantly, the availability of hundreds

of RNA-sequencing profiles of human tissues, enabled by the GTEX

project, allows one to measure gene expression variability at unpre-

cedentedly broad scale (Consortium et al., 2017).

The study of gene expression variability was carried mostly in

model organisms at the cellular level (reviewed in (Chalancon et al.,

2012; Raj and van Oudenaarden, 2008). The classic variability meas-

ure, SD, was shown to be biased towards genes with high expression

levels, and was replaced by the coefficient of variation (CV). CV,

which is computed as SD divided by the mean, normalized SD and

produced a unit-less measure. Later on, CV was shown to be biased

toward genes with low expression levels (Alemu et al., 2014; Silander

et al., 2012). Ensuing measures estimated the variability of a gene in

the context of other genes (Newman et al., 2006; Silander et al.,

2012), e.g. as a distance between a gene’s variability and the variabil-

ity of genes with similar expression levels (denoted Distance from the

Median CV, DM for short, Newman et al., 2006). A relatively recent

measure, termed expression variation (EV), assumed that expression

variability is gamma-distributed across expression levels, and com-

puted the variability of a gene as the ratio between its observed and

expected gamma-distributed variability (Alemu et al., 2014).

Several studies analyzed the expression variability of human

genes. Alemu et al. (2014), who developed the EV measure, col-

lected microarray-based gene expression profiles from the gene ex-

pression omnibus. They showed that EV scores were associated with

several genetic and functional characteristics, e.g. variable genes

were shown to function in extra-cellular pathways and to be

involved in human diseases. Another study used median absolute de-

viation (MAD) to estimate the variation of single-cell and bulk

RNA-sequencing measurement of gene expression (Wu et al., 2014).

A different study used linear models to analyze gene expression vari-

ability across organs and species to investigate whether organ-

specific transcriptional patterns dominate over species-specific pat-

terns, or vice versa (Breschi et al., 2016). This study found a con-

tinuum in the spectrum of gene expression variability, ranging from

genes with tissue-dominated variability, which was more likely asso-

ciated with diseases, to genes with species-dominated variation,

which reflected evolutionary distance. A drug-related study analyzed

the expression variability of ADME genes in human liver by using

SD and CV (Yang et al., 2013). It showed that ADME genes tend to

be more variable than other protein-coding genes, and suggested

that this could lead to variable responsiveness. A subsequent study

used RNA-sequenced expression profiles of four tissues to analyze

the expression levels and alternative splicing of 389 genes with key

roles in drug disposition (Chhibber et al., 2017). It identified sub-

stantial variability in gene expression particularly among drug trans-

porters and drug metabolizing enzymes. RNA-sequencing data of

around 30 human tissues was used recently to analyze the tissue-

Fig. 1. Drug effectiveness and causal factors. (A) Individuals showing similar

symptoms may respond differently to the same drug treatment. A good re-

sponse (orange) denotes an efficacious treatment with little adverse effects;

No response (blue) denotes low treatment efficacy and little adverse effects;

and bad response (red) denotes low treatment efficacy and severe adverse

effects. (B) The effectiveness of drugs in the general population may be

affected by genetic differences, such as genetic variation in pharmacogenes,

and by external factors, such as patients’ physiological state, disease severity

and environmental exposure. Here, we explore whether expression variabil-

ity in drug targets might affect drug effectiveness as well (Color version of

this figure is available at Bioinformatics online.)
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specificity of drug targets (Uhlen et al., 2015). Drug target genes

were shown to be enriched for tissue-elevated proteins, and 30% of

all drug targets were found to be expressed in all tissues. However,

less is known about the expression variability of drug target genes

across tissues.

Here, we harness RNA-sequenced expression profiles of 19

human tissues that were collected in a uniform way by the GTEx

consortium (Consortium et al., 2017) to test whether expression

variability could be linked with drug effectiveness. We introduce a

novel, general measure for expression variability, termed local coef-

ficient of variation (LCV), which is highly correlated with DM and

EV yet is more robust and does not assume a predefined variability

distribution. We found that drug target genes were significantly

more variable than other protein-coding genes. Upon analyzing 113

approved drugs for which feedbacks from patients and physicians

were available, we found that drugs that target highly variable genes

tend to be less effective. Furthermore, upon analyzing 1033

approved drugs and 86 drugs that were withdrawn from the market;

we found that withdrawn drugs tend to target more variable genes

than approved drugs. Similar results were obtained upon analyzing

separately data from men and women. These results suggest that ex-

pression variability of drug target genes is a contributing factor to

the variability in drug responses among patients.

2 Materials and methods

2.1 Development of the LCV algorithm
We aimed to develop an unbiased and general method for estimating

the expression variability of a gene. Our proposed method, LCV,

converts CV, the consensus measure for variability, to a ranking ap-

proach that compares between genes with similar expression levels.

By that, it avoids the expression bias observed for CV (Silander

et al., 2012), and can be easily compared across different genes and

datasets (Fig. 2A). To implement LCV, we first sort all genes per tis-

sue according to their median expression level across all samples in

the dataset, and compute their CV. To obtain a local CV measure,

we use a sliding window that is centered at gene gi, and rank the CV

of gi relative to the CV of other genes located in that window. We

then set the local CV of gi, denoted LCV(gi), to the percentile that

fits the ranking of its CV. Henceforth, genes with LCV close to zero

were considered invariable, while genes with LCV close to 100 were

most variable. By sliding the window across all genes we compute

LCV for all genes one by one. Several other methods compute a local

variability measure that assesses the variability of a gene relative to

the variability of genes with similar expression levels, by using dis-

tance (Newman et al., 2006; Silander et al., 2012) or ratio-based

functions (Alemu et al., 2014). The advantage of a ranking-based

approach is demonstrated by the toy example in Figure 2B. Any dis-

tance or ratio-based function will score genes g1 and g2 similarly.

However, within the context of similarly expressed genes (windows

w1 and w2), it is clear that g2 is more variable than g1. By using

ranking, LCV will score g2 as most variable (LCV of 100) and g1 as

less variable. This refinement is meaningful especially when compar-

ing between genes with highly distinct expression levels (Fig. 2B).

We applied LCV to the rich dataset of human tissue expression pro-

files measured via RNA-sequencing by the GTEx consortium

(Consortium et al., 2017). We focused on the 19 tissues with at least

10 available profiles each (Supplementary Fig. S1), and computed

LCV for window sizes ranging between 10 and 10 000 genes.

Windows were generally centered at each gene except for the two

ends of the scale, where they were shifted to include m adjacent

genes. LCV values computed for window sizes between 100 and

1000 genes were similar to each other as shown by their Spearman

correlations (r > 0.99, Supplementary Fig. S2), and remained quite

similar even when extremely small (10 genes) or large (10 000 genes)

window sizes were used (r > 0.90, Supplementary Fig. S2), support-

ing the robustness of the LCV method. The distributions of the vari-

ability calculated for cerebellum profiles using different window

sizes appear in Supplementary Figure S3.

2.2 Evaluating the expression bias and robustness of

LCV and other expression variability measures
We tested LCV and other expression variability measures, including

SD, MAD, CV, DM and EV, for expression level biases by applying

them to the human tissue expression profiles described above, and

computing the Spearman correlation between variability and expres-

sion. As demonstrated with cerebellum profiles, CV values were

negatively correlated with gene expression levels and were signifi-

cantly biased toward lowly expressed genes (r ¼ �0.74, P <

1*10�15, Fig. 2C). Other local variability assessment measures, DM

and EV, showed none or moderate bias toward lowly expressed

genes (500-gene window, r ¼ 0.040, P ¼ 6*10�10 and r ¼ �0.24,

P ¼ 1*10�15, respectively, Fig. 2D and E). LCV was the least biased

measure (500-gene window, r ¼ �0.0013, P ¼ 0.8, Fig. 2F). Similar

results were obtained upon applying the measures to all 19 tissues in

our dataset (Fig. 2G): SD, MAD and CV were consistently corre-

lated with, and thus biased by, expression levels (median r of 0.95,

0.97 and �0.66, respectively). EV was mildly correlated with ex-

pression levels (median r ¼ �0.24), while DM and LCV were un-

biased (median r of 0.04 and 3.5*10�4, respectively). Even when

computed for window sizes ranging between 10 and 1000 genes,

LCV values did not correlate with expression levels (jrj < 3.5*10�4,

Supplementary Figs S3 and S4). Only upon applying extremely large

window size (10 000 genes), LCV values correlated mildly with ex-

pression levels (median r ¼ �0.19, Supplementary Fig. S4), similarly

to the correlation obtained for EV.

Next, we tested the robustness of the different measures to data

incompleteness (Fig. 2H). We created five subsets of randomly

selected samples, containing 50% of the available samples per tissue.

For each measure, we calculated gene expression variability in each

subset, resulting in five variability scores per gene per tissue. Then,

we estimated the variation in the variability scores across the five

subsets per gene and tissue. We estimated the variation by using CV

(SD divided by the mean) since it is a straightforward unit-less meas-

ure, which allowed us to compare between the variations observed

per measure. Thus, low CV values imply that the variability esti-

mates are relatively uniform, while high CV values imply high sensi-

tivity (low robustness) to data incompleteness. We then grouped

together the CV scores of all genes across all tissues. This was

repeated for each measure by using the same subsets of samples. The

variation per measure appears in Figure 2H. Notably, CV and LCV

had the lowest variations (median CV of 0.54 and 0.57, respective-

ly), while SD, MAD, EV and DM were more variable (median CV

of 1.22, 1.23, 1.36 and 2.42, respectively). Similar results were

obtained upon repeating the analysis separately per tissue. Thus,

LCV is more robust to data incompleteness than other measures that

use local assessment of variability.

To further validate LCV, we computed the Spearman correla-

tions between LCV and each of the other expression variability

measures (Fig. 2I). As might be expected, LCV had relatively low

correlations with SD and MAD (median r ¼ 0.26 and 0.18), was

better correlated with CV (median r ¼ 0.69), and was highly
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correlated with the DM and EV (median r ¼ 0.98 and 0.93, respect-

ively). The high correlation between EV and LCV supports the valid-

ity of LCV, and shows that a variability measure can remain

unbiased without assuming a predefined variability distribution.

2.3 Implementation details
LCV was implemented in Python, and is available in GitHub

(https://github.com/eyalsim/LCV). When window size was not expli-

citly mentioned, a 500-gene window was used. SD and CV (com-

puted as SD divided by the mean) were computed straightforwardly.

MAD was computed as the median of the absolute deviations from

the median of a gene’s expression level in different samples. DM

was computed as the distance from the median CV in a 500-gene

window. R code for the EV function (Alemu et al., 2014) was down-

loaded as part of the antiProfiles package (Corrada Bravo et al.,

2012). In the locfit function, nearest neighbor component of the

smoothing parameter was set to nn ¼ 0.3. Other parameters were

set to their default values.

2.3.1 Human gene expression data

Tissue expression profiles of normal human samples were obtained

from GTEx portal on February 22, 2017 (version 6p) (The GTEx

Fig. 2. Comparison between LCV and other expression variability measures. (A) The scheme for calculating LCV per gene per tissue. The top row shows genes

ordered by their median expression levels, scanned by using a sliding window centered at gene gi. The middle row shows genes in that window, with color inten-

sity reflecting the percentile of their CV value relative to each other. The LCV of gi is set to the percentile of its CV value amongst these genes. The sliding window

then slides to giþ1 and the processes repeats. (B) Toy example of the intuition behind the LCV measure. g1 and g2, are similarly variable genes. A direct measure

of the distance or the ratio between gene variability and a variability expression-dependent function (red line) will score both genes with similar variable values.

LCV will score g2 as most variable in window w2 (LCV of 100) and g1 as highly variable in window w1, yet less variable than g2. (C) The CV scores of 21 733 genes

expressed in the cerebellum are plotted against their median expression level. The local regression fitting line, depicted in red, shows that CV is increased

amongst lowly expressed genes (r ¼ �0.74, P < 1*10�15, Spearman correlation). (D) The DM scores of 21 733 genes expressed in the cerebellum are plotted

against their median expression level. The local regression fitting line, depicted in red, is unbiased toward lowly expressed genes (r ¼ 0.040, P ¼ 6*10�10,

Spearman correlation). (E) The EV scores of 21 733 genes expressed in the cerebellum are plotted against their median expression level. The local regression fit-

ting line, depicted in red, shows that EV is increased amongst lowly expressed genes (r ¼ �0.24, P < 1*10�15, Spearman correlation). (F) The LCV scores of 21

733 genes expressed in the cerebellum are plotted against their median expression level. The local regression fitting line, depicted in red, is unbiased toward

lowly expressed genes (r ¼ 0.0013, P ¼ 0.8, Spearman correlation). (G) The expression biases observed for different variability measures in 19 tissues. Each dot

represents the Spearman correlation coefficient between gene expression variability and gene expression level in a specific tissue. Red horizontal lines show the

median correlation coefficient. LCV and DM are unbiased by expression levels. Other variability measures range between mild (EV) to moderate (CV) to high (SD

and MAD) absolute correlation with expression levels. (H) The sensitivity to incompleteness of data observed for different variability measures. Gene variability

scores per gene per tissue were computed for the same five data subsets. Results per measure are represented in each boxplot. LCV and CV scores were the

most robust towards data incompleteness (CV of 0.54 and 0.57, respectively). SD, MAD, DM and EV were more sensitive to data incompleteness (CV of 1.22, 1.23,

2.42 and 1.36, respectively). (I) The correlation between LCV scores and scores obtained via other variability measures in 19 tissues. Each dot represents the

Spearman correlation coefficient obtained for a specific tissue. Red horizontal lines show the median correlation coefficient. LCV is highly correlated with DM and

EV in all tissues. LCV is correlated to a lesser extent with CV and is only mildly correlated with MAD and SD
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Consortium, 2015). In general, GTEx did not include diseased sam-

ples, and we used only samples that were denoted with traumatic in-

jury as the cause of death, in order to further increase their reliability

as proxy for healthy tissues. We analyzed tissues for which 10 or

more samples were available, which amounted to a total of 296 sam-

ples across 19 tissues (Supplementary Fig. S1). Raw read counts were

normalized to obtain the same library size for every sample by using

the trimmed mean of M-values (TMM) method by the edgeR package

(Robinson et al., 2010), as described elsewhere (Basha et al., 2017).

Genes with at most 10 raw counts in all samples were removed before

normalization, as these genes were typically regarded as noise. In the

comparison between LCV and other variability measures (Fig. 2), ex-

pression variability was computed for all genes expressed above 0

counts per million (cpm) in at least 80% of the samples of a tissue.

This cutoff was used in order to allow for lowly expressed genes that

were measured in a large enough number of tissue samples that ena-

bles variability estimation. This resulted in a dataset of 29 421 genes

with available variability scores (Supplementary Table S1).

2.3.2 Expression variability of protein-coding and essential genes

Protein-coding genes were downloaded from Ensembl Biomart (Yates

et al., 2016). Expression variability was computed for all genes that

were expressed above 7.0 cpm in at least 80% of the samples of a sin-

gle tissue, and thus reliably measured in a large enough number of tis-

sue samples. This resulted in 14 659 protein-coding genes with

available variability scores (Supplementary Table S2). The heatmap

(Fig. 3A) included genes with available LCV values in all 19 tissues,

and was computed by using R’s ComplexHeatmap package (Gu et al.,

2016). Genes were clustered based on Euclidean distance matrix and

ward.D2 clustering method. Tissues were clustered based on spearman

distance matrix and ward.D2 clustering method. Gene ontology (GO)

term enrichment analysis was performed via Gorilla (Eden et al.,

2009). GO enrichment per tissue was computed for a gene list ranked

by LCV values. GO enrichment per cluster was computed relative to a

background list comprising all genes considered in the heatmap ana-

lysis. Data for gene essentiality were taken from a screen that meas-

ured gene essentiality in four cell lines and assigned negative scores to

essential genes (Wang et al., 2015). To simplify the interpretation, we

negated the essentiality values, so that essential genes would have posi-

tive scores. We compared between gene essentiality and LCV by using,

per gene, its median LCV value across tissues and its median essential-

ity value across cell lines. Essential genes were defined as genes whose

negative median impact on growth was at the top 10%.

2.3.3 Data of drugs and drug-related genes

Drug target and ADME genes associated with approved and with-

drawn drugs were downloaded from DrugBank (Wishart et al.,

2006). Drug-target proteins were defined according to DrugBank, as

a ‘protein, macromolecule, nucleic acid or small molecule, to which

a given drug binds, resulting in an alteration of the normal function

of the bound molecule’ (https://www.drugbank.ca/documentation).

Drug-target gene families were downloaded from PharmGKB

(Whirl-Carrillo et al., 2012).

Relative efficacy (RE) scores of drug-disease pairs were down-

loaded from Guney et al. (2016). There, to compute RE scores, text-

mining techniques were applied to reports that were submitted to

the Adverse Event Reporting System (FAERS) operated by the FDA

(https://open.fda.gov/data/faers/). Based on these reports, Guney et

al. computed the RE score for each drug-disease pair, as the number

of reports stating that the drug was ineffective for treating the dis-

ease (nineffectiveÞ, divided by the number of reports stating the most

common complaint, which could be that the drug was ineffective

(nmost common complaint, Equation 1).

REdrug�disease ¼ 1
nineffective

nmost common complaint
1Þð

Thus, if a drug was mostly ineffective for treating the disease, RE

score was close to 0; if a drug had almost none ineffective reports,

RE was close to 1. Notably, RE was computed only for drug-disease

pairs with at least 10 reports.

The association between drugs and the anatomical systems that

they were intended for was based on the anatomical therapeutic

chemical classification system (ATC codes) of the World Health

Organization. We used the first level of the hierarchical ATC classi-

fication, which specifies a total of 14 anatomical systems. The asso-

ciation between a drug and its ATC code(s) was downloaded from

DrugBank (Wishart et al., 2006).

2.3.4 Gender analysis

Expression variability was computed separately for expression pro-

files of samples from men or women. Analysis did not include genes

located on the X or Y chromosomes, and was carried in the subset

of tissues with at least five profiles of samples from male and female

subjects. A total of 983 drugs had target genes in our dataset for

males, 1001 drugs had targets genes in our dataset for females, with

981 of them common to both.

3 Results

3.1 Expression variability of protein-coding genes

across tissues
We started by analyzing the expression variability of protein-coding

genes in each of the 19 human tissues in our dataset (available as

Fig. 3. Gene expression variability across human tissues is higher among

drug-target genes. (A) Hierarchical clustering of 5078 globally expressed

genes by their LCV values reveals common regulatory patterns between tis-

sues. Three main gene clusters were identified. Physiologically related tis-

sues have similar colors and tend to be co-clustered. Gray bars show the

median LCV of each gene. (B) Histogram of median LCV scores across tissues

for 14 659 protein-coding genes. Protein-coding genes show a slight bi-modal

distribution. (C) Histogram of median LCV scores across tissues for 1176 drug

target protein-coding genes. In contrast to the distribution of protein-coding

genes, drug target genes tend to be highly variable. (D) The expression vari-

ability of drug target genes shown per gene family, relative to the median

LCV score of protein-coding genes (red line). All drug target gene families, ex-

cept enzymes, tend to be more variable than protein-coding genes. Gene fam-

ilies include G protein–coupled receptors (GPCR), nuclear hormone receptors

(NHR), catalytic receptors (CR), voltage-gated ion channels (VGIC), ligand-

gated ion channels (LGIC), other ion channels (other IC), transporters and

other. (E) The expression variability of the 1406 essential genes shows that

they tend to be less variable that protein-coding genes
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Supplementary Table S2). First, we tested whether genes with low or

high variability were enriched for certain GO terms. In agreement

with previous reports (Alemu et al., 2014), genes with low variabil-

ity tended to be nuclear (median enrichment across tissues P ¼
2.47*10�10), while highly variable genes tended to be extracellular

(median enrichment across tissues P ¼ 3.20*10�33), fitting with the

previously observed tendency of signaling-related genes to be vari-

able (Newman et al., 2006). Next, we compared the expression vari-

ability of genes across tissues. For this, we hierarchically clustered

the subset of 5078 globally expressed genes according to their LCV

in the 19 tissues (Fig. 3A). Physiologically related tissues clustered

together, for example brain cortex with cerebellum, left ventricle of

the heart with atrial appendage of the heart, and breast with adi-

pose, revealing common expression variability patterns that appear

to reflect common regulatory programs (Fig. 3A). The largest gene

cluster included 2413 genes that were mostly invariable across tis-

sues. These genes were enriched for nuclear genes (P ¼ 1.07*10�16)

and for nucleic acid metabolic processes (P ¼ 4.69*10�14). A second

cluster of 613 genes included mostly variable genes, and was mainly

enriched for cellular response pathways, such as response to chemi-

cals (P ¼ 2.23*10�8). A third cluster included 2052 genes with

mixed variability across tissues, and was enriched for extracellular

organelle (P ¼ 9.21*10�9), exosome (P ¼ 3.06*10�9) and mem-

brane (P ¼ 3.27*10�9). These features were consistent with known

features of variable and invariable genes (Alemu et al., 2014).

3.2 Drug target genes tend to be more variable than

protein-coding genes
Our next step was to analyze the expression variability of drug tar-

get genes. We gathered data of 1076 FDA-approved drugs and their

1176 targets from DrugBank (Wishart et al., 2006). We first asked

whether protein-coding drug target genes had similar expression

variability as protein-coding genes. For this, we associated each gene

with its median LCV across tissues, and compared the LCV distribu-

tions of protein-coding (Fig. 3B) and drug target genes (Fig. 3C).

Protein-coding genes had a slight bi-modal distribution, including a

small peak around LCV of 45 (5.66% of genes, relative to a plateau

of 5.01% in its adjacent regions), and a more distinguishable peak

at 85 (8.06% of genes, relative to 6.48% in its adjacent regions). To

better understand which genes contribute to each peak, we created a

group of genes with LCV scores around 45 (35–55), and a group of

genes with LCV scores around 85 (75–95), and computed their en-

richment for GO terms relative to all protein-coding genes. The

group of genes with LCV scores around 45 was only slightly

enriched, in agreement with being close to the median LCV and

quite similar to its neighboring regions. One of the few enriched

terms was intracellular genes (P ¼ 2.64*10�24), including mitochon-

drial and nuclear genes (P ¼ 5.20*10�16 and 5.21*10�14, respect-

ively), similarly to genes with low LCV. In contrast, the group of

genes with LCV scores around 85 was highly enriched for multiple

terms, many of them related to extracellular and signaling processes,

functions or cellular components. Highly enriched terms included

cellular adhesion (9.02*10�30), developmental process

(4.75*10�29), signaling process (P ¼ 3.16*10�16), signaling recep-

tor activity (3.97*10�40), intrinsic component of membrane (P ¼
1.27*10�71), extracellular genes (P ¼ 3.37*10�41) and plasma

membrane (P ¼ 3.95*10�71), as well as differentiation processes (P

¼ 3.06*10�17).

Unlike all protein-coding genes, the subset of drug target genes

had a distinct unimodal distribution that peaked at LCV of 95, and

were significantly more variable (P ¼ 1.1*10�50, Mann-Whitney

test). The high variability of drug target genes was not dominated by

a specific gene family, but rather was common to several families

(Fig. 3D). This high variability was also observed upon applying EV

to these data (P ¼ 3.3*10�43, Mann-Whitney test), suggesting that

drug target genes are more prone to elicit variable responses than

other protein-coding genes.

We also analyzed expression variability of essential genes

(Fig. 3E). For this, we used a screen that measured the essentiality of

roughly 18 000 human genes, 14 056 of which were in our dataset

(Wang et al., 2015). In accordance with Wang et al., we referred to

essential genes as the top 10% of the genes whose manipulation

leads to reduced growth (see Section 2). These genes were less vari-

able than protein-coding genes, with a unimodal distribution that

peaked at LCV of 25. Looking at the entire set of genes, there was a

negative correlation between expression variability and essentiality:

Essential genes tended to be less variable, suggesting that they are

under strict regulatory programs, while less essential genes were

more likely variable (r ¼ �0.25, P ¼ 1.5*10�200 Spearman correl-

ation; Supplementary Fig. S5).

3.3 Variability of drug targets is linked to drug

effectiveness
Given the high variability of drug target genes, we went on to test

whether it could be linked with the variable responsiveness to drugs

in the general population. For this, we first used a dataset of the RE

of drugs, computed based on text-mining of feedback reports made

by diseased patients and physicians to FAERS (Guney et al., 2016).

RE scores ranged between zero, for ineffective drugs, and one, for

effective drugs. RE scores were computed for drugs indicated for

well-studied, complex diseases and were available for 113 drugs

with targets in our dataset. To test for a relationship between RE

and expression variability we associated each drug with its most

variable target. For drugs with multiple indications we used their

median RE. We observed a mild but significant negative correlation

between the RE of a drug and the LCV of its target (r ¼ �0.29, P ¼
1.8*10�3, Spearman correlation, Fig. 4A). In particular, drugs with

low RE (below 0.4) tended to target highly variable genes (median

LCV ¼ 96), whereas drugs with higher RE (above 0.4) tended to tar-

get less variable genes (median LCV ¼ 86.3, Fig. 4B). This was also

observed when using EV as the expression variability measure (r ¼
�0.29, P ¼ 2.1*10�3), supporting this observation.

To explore individual disease segments, we turned to the ana-

tomical therapeutic chemical classification system (ATC codes) of

drugs, made available by the World Health Organization. The first

level of the hierarchical ATC classification specifies a total of 14

anatomical systems that drugs are intended for. For example, the

antiarrhythmic drug, dofetilide, was classified to the cardiovascular

system (Group C). We therefore grouped the drugs in our dataset by

their ATC codes, and repeated the tests for each group of drugs. We

first tested the correlation between LCV and RE (Supplementary

Table S1). For this, we computed the correlation for groups consist-

ing of at least 10 observations (i.e. drugs with available LCV and RE

scores), resulting in 6 groups. In 2/6 groups (Group A: Alimentary

tract and metabolism and group M: Musculo-skeletal system), LCV

and RE were negatively and significantly correlated (r ¼ �0.57 and

�0.72, respectively, P < 0.05), consistently with the general trend.

In the remaining groups, the correlation was insignificant, but most-

ly negative (Supplementary Table S1). We also tested the difference

between approved and withdrawn drugs, which showed similar but

weaker trends (Supplementary Table S2). To conclude, the small

size of available data limited our ability to test each disease segment
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reliably. Nevertheless, in all cases where the result was significant, it

was consistent with the general trend.

To further test whether drugs with highly variable targets were more

prone to elicit negative responses in the population, we turned to exam-

ine approved and withdrawn drugs. We extracted from DrugBank 1033

FDA-approved drugs and 86 drugs that were withdrawn from at least

one market, which had targets in our dataset. We then compared the ex-

pression variability of the most variable targets between the two classes

of drugs (Fig. 4C). Targets of the withdrawn drugs were significantly

more variable and differently distributed than targets of approved drugs

(median LCV ¼ 93.15 and 89.30, respectively, P ¼ 0.005, Mann-

Whitney test; P ¼ 0.021, Kolmogorov–Smirnov-test). For example,

64% of the withdrawn drugs had targets with LCV above 90, relative to

49% of the approved drugs (hypergeometric P¼ 0.0097, Fig. 4D).

The negative effect that may be associated with highly variable

targets is demonstrated by the family of glucocorticoids drugs, a

subclass of steroid hormones commonly used for inflammatory

diseases but also indicated for other usages. Although all glucocorti-

coids target the glucocorticoid receptor gene, NR3C1 (LCV ¼ 57.6),

hydrocortisone also targets the gene ANXA1 (LCV ¼ 73.8), and

prednisone also targets the highly variable HSD11B1 gene (LCV ¼
91.4). The population-wide effectiveness of these glucocorticoids

was assessed for the anti-inflammatory conditions arthritis, asthma,

colitis, hypersensitivity and lupus, as well as lymphoma, non-

Hodgkin lymphoma and multiple sclerosis (Guney et al., 2016). For

six out of these eight diseases prednisone, which targets the highly

variable HSD11B1 gene, was less effective than any of the other glu-

cocorticoids (Fig. 4E). The only exceptions were lymphoma and

non-Hodgkin lymphoma cancers, where regulatory patterns might

be altered. Another example is presented by the family of Type III

antiarrhythmic agents that is used for treating cardiac arrhythmias.

RE values were available for four of these drugs, including dofeti-

lide, dronedarone, amiodarone and sotalol (Guney et al., 2016).

Each of the four drugs targets between 3 to 18 genes, yet while the

most variable target of amiodarone and sotalol was the gene

KCNH2 (LCV ¼ 79.5), the most variable target of dofetilide and

dronedarone was the highly variable gene KCNK2 (LCV ¼ 91.0).

Dofetilide and dronedarone were less effective than amiodarone and

sotalol in the general population, in accordance with the higher vari-

ability of their target (Fig. 4E). Table 1 presents the 10 most variable

drug target genes and the respective drugs. LCV of all analyzed drug

target genes and the respective drugs are available as Supplementary

Table S3.

We also analyzed the expression variability of ADME genes

(Supplementary Fig. S6). There were 284 such genes in this analysis,

including 177 enzymes, 92 transporters and 21 carriers. These sets

were not disjoint, since some genes belonged to several ADME

categories, or were additionally the target of a certain drug

(Supplementary Fig. S7). Similarly to drug target genes, the 284

ADME genes were highly variable, as shown previously (Chhibber

et al., 2017; Yang et al., 2013, Supplementary Fig. S6A).

Interestingly, the LCV values of ADME genes were not correlated

with RE of the respective drugs (Supplementary Fig. S6B), and there

was no significant difference between the LCV values of ADME genes

related to approved and withdrawn drugs (Supplementary Fig. S6C).

3.4 Minor gender differences in the variability of drug

target genes
Certain drugs elicit different responses between men and women

(Franconi et al., 2007). Here, we tested whether genes show a gender

bias in terms of their expression variability. For this, we repeated the

analyses described above upon considering only profiles of samples

taken from either male or female subjects (see Section 2). The LCV

values of drug target genes were highly similar between men and

women (r ¼ 0.96, Pearson correlation). In addition, the correlations

we observed between RE and LCV were similar to those observed for

all genes, and between men and women. Likewise, we obtained similar

results upon comparing approved and withdrawn drugs

(Supplementary Fig. S8). Nevertheless, the most variable targets of

some drugs did have different LCVs (Fig. 5). For example, the gene

GABRB2 is highly variable among women and less variable among

men (LCV of 90 and 66.2, respectively). This gene is the target of sev-

eral drugs, including propofol, midazolam and diazepam. Notably, a

previous study showed that women are less sensitive (30–40%) than

men to propofol, potentially due to having varying levels, and other

differences were observed for midazolam and diazepam in women

(Franconi et al., 2007; Hoymork and Raeder, 2005). Another example

involves ADORA1, which is the target of aminophylline. A sub-study

Fig. 4. Expression variability of drug targets is linked to drug effectiveness.

(A) The RE of 113 drugs is plotted against the expression variability (LCV) of

their most variable target gene, showing a mild but significant negative cor-

relation between RE and LCV (r ¼ �0.29, P ¼ 0.0018, Spearman correlation).

(B) Analysis of 113 drugs shows that the LCV of drug target genes for drugs

with similar RE values shows that less effective drugs (RE below 0.4) tend to

have highly variable targets (LCV > 90). (C) The expression variability of drug

target genes is shown for the disjoint sets of 1033 approved drugs and 86

drugs that were withdrawn from the market. Each dot represents the most

variable target of the drug. The targets of withdrawn drugs are significantly

more variable than the targets of approved drugs (P < 0.005, Mann-Whitney

U test). (D) The distribution of 1033 approved drugs (gold) and 86 withdrawn

drugs (red) according to the LCV of their most variable target shows that 64%

of the withdrawn drugs have highly variable genes (LCV > 90) relative to 49%

of the approved drugs. ‘**’ denotes hypergeometric P ¼ 0.0097. (E) The RE of

eight different drugs, including four glucocorticoids indicated for eight dis-

eases, and four Type III antiarrhythmic agents indicated for cardiac arrhyth-

mias. Each symbol represents a different drug and is colored in red if a target

of the drug has a highly variable expression (LCV > 90, appearing in paren-

thesis per drug). In seven of the nine diseases the drugs with the highly vari-

able targets have the lowest efficacy (Color version of this figure is available

at Bioinformatics online.)
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of the ASSUGAE clinical trial reported that aminophylline treatment

for the prevention of regadenoson-induced adverse events was more

effective in men compared with women (Rangel et al., 2013). Our

analysis suggests that the higher variability of aminophylline targets in

women (LCV of 86.2 compared with LCV of 64.2 in men) may con-

tribute to its diminished effect.

4 Discussion

Here we examined the variable expression of human genes among

individuals, particularly focusing on drug target genes. We hypothe-

sized that the variability in the responses of patients to drugs could

be related to differences in expression levels of drug target genes

across individuals.

Our first step was to develop LCV as a robust measure for calcu-

lating variability. As we showed, LCV is completely unbiased by ex-

pression levels and assumes no a priori variability distribution. This

makes LCV applicable to various types of experimental measure-

ments without the need to tailor it to their variability distribution.

Notably, LCV is related to other measures of variability that com-

puted the variability of a gene relative to other genes with similar ex-

pression levels (Alemu et al., 2014; Newman et al., 2006; Silander

et al., 2012). Two of these studies used a running median, similar to

our sliding window approach, and measured variability as the direct

(DM, Newman et al., 2006) or smoothed (Silander et al., 2012) dis-

tance from this median. Another study assumed that variability was

gamma-distributed over expression levels and computed variability

as the ratio between the observed and expected gamma variability

(EV, Alemu et al., 2014). By measuring expression variability as the

ranking of a gene amongst similarly expressed genes, as opposed to

distance or ratio, LCV hides the absolute difference between expres-

sion variability values, and might inflate the variance of highly

expressed genes. Nevertheless, ranking allows LCV to constitute a

normalized measure that can be compared across different expres-

sion levels and across different datasets, and to remain completely

unbiased by actual expression levels. LCV surpassed other measures

when analyzing lowly expressed (usually not protein-coding) genes,

where expression bias was the highest (Fig. 2C–G). When analyzing

protein-coding genes, DM and EV generally showed similar results

to LCV; however were less robust to incompleteness of data

(Fig. 2H). Notably, unlike some of the other measures, LCV is a

straightforward, easily computed measure that does not require ex-

tensive computational resources.

We applied LCV to assess the expression variability of 14 659

protein-coding genes in 19 different tissues, as measured via RNA-

sequencing of tissue samples by GTEx (Consortium et al., 2017).

Previous analysis of these data showed that physiologically related

human tissues have similar patterns of gene expression, implying

that they have related regulatory programs (Mele et al., 2015).

Here, we found that physiologically related tissues also have similar

expression variability patterns (Fig. 3A). This suggests that expres-

sion regulation and expression variability are intertwined. Highly

variable genes and less variable genes were enriched for certain gene

functions that correspond to a loose or tight regulation of expres-

sion, respectively. For example, receptors and environmental re-

sponse pathways were enriched among highly variable genes,

whereas nuclear components and pathways were enriched among

less variable genes. These trends were consistent with previous

Table 1. The 10 most variable drug target genes and their respective drugs.

Target LCV No. of drugs Drugs

SULT1E1 100 1 Cyclizine

HLA-DQB1 100 1 Insulin pork

SLC6A4 100 47 Fluvoxamine, amphetamine, phentermine, tramadol, citalopram, venlafaxine, atomoxetine,

amitriptyline, protriptyline, mirtazapine (10 shown, remaining drugs shown in

Supplementary Table S3)

ITGA2B 100 2 Abciximab, tirofiban

SERPINB2 100 2 Urokinase, tenecteplase

ATF3 100 1 Pseudoephedrine

LHCGR 99.8 7 Goserelin, menotropins, lutropin alfa, cetrorelix, chorionic gonadotropin (recombinant),

buserelin, chorionic gonadotropin (human)

LTF 99.8 2 Nimesulide, parecoxib

MPO 99.8 4 Mesalazine, cefdinir, l-carnitine, melatonin

ELANE 99.8 3 Pegfilgrastim, alpha-1-proteinase inhibitor, filgrastim

Fig. 5. Minor gender differences observed for the most variable drug targets.

(A) For each drug (of total 981 drugs), LCV values of its most variable target

were computed separately for men and women, and the difference between

them is shown (purple, higher LCV in women; green, higher LCV in men). Bar

graphs show the drugs for which the LCV differences were above 10 between

women (B) and men (C) (Color version of this figure is available at

Bioinformatics online.)
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analyses of the variability in protein levels in yeast (Newman et al.,

2006) and RNA levels in human (Alemu et al., 2014), indicating

that expression variability as measured by LCV reflects regulatory

strategies that were conserved from yeast to human.

Upon analyzing the expression variability of 1176 drug target

genes, we found them to be significantly more variable than protein-

coding genes in general (Fig. 3B). Since drug targets tend to be

involved in response to chemicals, and frequently function as recep-

tors or membrane-bound proteins, their higher variability is

expected given the trends that we and others observed among highly

variable genes. We further hypothesized that the targeting of vari-

able genes might lead to variable drug response among individuals.

Indeed, our analysis of 1076 drugs showed that drugs that were

found to be less effective in the general population tended to target

highly variable genes (Fig. 4A and B). In accordance with this obser-

vation, in both glucocorticoids and Type III anti-arrhythmic agents,

the drugs that targeted highly variable genes were less effective in

the general population than other drugs of the same class.

Furthermore, upon comparing withdrawn and approved drugs, we

found that withdrawn drugs tend to target more variable genes than

approved drugs (Fig. 4C and D). Although expression variability

and drug responses were measured on different subjects, the large

numbers of reports and samples and the statistical significance of

our results support their validity.

Notably, there are some limitations to the datasets that were uti-

lized in this study. To carry a cross-tissue analysis we relied on data

from GTEx, which is the largest single resource of human tissue

RNA-seq profiles to date. However, the usage of GTEx data to as-

sess gene expression variability is problematic, since several parame-

ters were shown to affect the expression levels of genes, such as

post-mortem ischemic time, sequencing depth and RNA and

sequencing quality (Consortium et al., 2017), as well as distinct

post-death transcriptional programs per tissue (Ferreira et al.,

2018). Thus, gene expression variability could stem from multiple

sources, and could be distinct across tissues. Nevertheless, physiolo-

gically related tissues clustered together by the variability patterns of

genes (Fig. 3A), and the properties of essential genes and genes with

high or low variability were similar to those identified in studies

based on other data (Alemu et al., 2014) and in other organisms

(Newman et al., 2006), supporting our analyses. Another limitation

relates to the drug effectiveness scores that we used (RE, Guney

et al., 2016). These scores were computed based on text-mining

techniques that were applied to reports made to the FARES system

by various entities, such as healthcare workers, patients and family

members, or product manufacturers. These reports are subjective

and often not medically verified, making FAERS a problematic data-

base for estimating rates of adverse events or drug effectiveness in a

population. However, testing for a relationship between drug effect-

iveness and variability required a large dataset of drug effectiveness

scores computed systematically for a wide array of drugs. Despite

the shortcomings of RE scores, they were less likely to affect, in a

consistent manner, results based on large-scale data of drugs.

Although the identified correlations were weak and potentially ques-

tionable due to multiple hypothesis testing, the trends we observed

were repeated in separate analysis of data from men and women

(Supplementary Fig. S8), partially repeated upon analyzing small

subsets of drugs in disease segments (Supplementary Table S1), and

consistent with the variability difference between approved and

withdrawn drugs, hence strengthening their validity.

Although gender is known to play a role in the variability of

drug response (Fisher and Ronald, 2010; Soldin and Mattison,

2009; Tamargo et al., 2017), it was typically attributed to

physiological differences between males and females that affect

pharmacokinetic and pharmacodynamics factors. Some of these

may be manifested by differences in the expression of ADME genes,

yet here we observed only minor gender differences. Interestingly,

while ADME genes tend to be even more variable than drug target

genes, their variability is not similarly related to drug effectiveness.

It is possible that these genes, responsible for the processing of drugs

in the body, have more ‘responsive’ expression regulation mecha-

nisms than most drug target genes. Therefore, they could be general-

ly more robust to inter-individual baseline differences in expression.

The safety and effectiveness of drugs in the general population

are typically uncovered with the introduction of a drug to wide-

spread use. The mechanisms that govern drug effectiveness are ex-

tremely complex and involve many factors, such as genetic

variations of pharmacogenes (Eichler et al., 2011), and expression

variability of ADME genes (Chhibber et al., 2017; Yang et al.,

2013). Here we show for the first time that expression variability of

drug target genes is related, at least in part, to drug effectiveness in

the general population, and is particularly relevant for drugs that

target highly variable genes. Given the availability of robust expres-

sion variability measures and rich data for their computation, we

propose that expression variability of drug targets is worth consider-

ing upon drug treatment and development.
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