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Abstract: Damage-associated molecular patterns (DAMPs) are endogenous danger molecules re-
leased from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence
indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular
pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental con-
ditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be
protective, but may promote pathological inflammation and angiogenesis in response to the chronic
insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors
for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor
family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the
role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in
retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies,
diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, prolifer-
ative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers,
therapeutic targets, and therapeutic agents for retinal disorders.

Keywords: DAMPs; endophthalmitis; uveitis; glaucoma; ocular cancer; ischemic retinopathies;
diabetic retinopathy; age-related macular degeneration; proliferative vitreoretinopathy; inherited
retinal disorders

1. Introduction

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules
released from the extracellular and intracellular space of the damaged tissue or dead
cells [1]. DAMPs are (i) rapidly released following necrosis; (ii) produced by the activated
immune cells via specialized secretion systems or by the endoplasmic reticulum (ER)—
Golgi apparatus secretion pathway; (iii) known to activate the innate immune system by
interacting with pattern-recognition receptors (PRRs), and thereby directly or indirectly
promote adaptive immunity responses; (iv) inclined to contribute to the host’s defense and
pathological inflammatory responses in non-infectious diseases; and (v) responsible for
restoring homeostasis by promoting the reconstruction of the tissue [1,2]. Accumulating ev-
idence indicates that DAMPs are associated with the sterile inflammation caused by aging,
increased ocular pressure, hyperglycemia, oxidative stress, ischemia, mechanical trauma,
stress, environmental condition, and genetic defects during retinal development [3–6]. Re-
cent studies suggested that DAMPs that include extracellular matrix pro (ECM)-proteins

Int. J. Mol. Sci. 2022, 23, 2591. https://doi.org/10.3390/ijms23052591 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23052591
https://doi.org/10.3390/ijms23052591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9202-6248
https://orcid.org/0000-0002-2216-4263
https://orcid.org/0000-0001-8725-676X
https://doi.org/10.3390/ijms23052591
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23052591?type=check_update&version=4


Int. J. Mol. Sci. 2022, 23, 2591 2 of 38

such as decorin, biglycan, versican, aggrecan, phosphacan, low-molecular-weight (LMW)
hyaluronan, heparan sulfate (HS), fibronectin, laminin, tenascin-C, and tenascin-R; cytoso-
lic proteins such as leukemia inhibitory factor (LIF), S100 proteins, uric acid, heat-shock
proteins (HSP), adenosine triphosphate (ATP), cyclophilin A, F-actin; those of nuclear
origins such as histones, high-mobility group box 1 (HMGB1), high-mobility group nu-
cleosome binding domain 1 (HMGN1), interleukin (IL)-1α, IL-33, surface-interacting 3A
(Sin3A)-associated protein 130 (Sap130), deoxyribonucleic acid (DNA), and ribonucleic
acid (RNA); those of mitochondrial origins such as mtDNA, transcription factor A mito-
chondrial (TFAM), formylated peptides, mitochondrial reactive-oxygen species (mtROS);
those of endoplasmic reticulum (ER) origins such as calreticulin, defensins, cathelicidins
(LL37), endothelin-1 (ET-1) and granulysin; those of plasma membrane origins such as
syndecans, glypicans, perlecan; and plasma proteins such as fibrinogen, Gc-globulin, and
serum amyloid A (SAA), are increased; this suggests a protective or pathogenic role in
different retinal disorders [1,7–9]. DAMPs function through multiple specialized innate
immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like
receptors (TLRs) and the NOD-like receptor (NLRs) family, purine receptor 7 (P2X7), NLR
pyrin domain 3 (NLRP3), in retinal disorders [1,10–12].

The eye is an immune privilege tissue and limits its local immune and inflamma-
tory responses to preserve vision. Though the mechanism of immune privilege is not
entirely understood, the tear-fluid barrier, epithelial barrier, blood–ocular barrier, and the
inner and outer blood–retinal barriers play essential roles in the immune responses of the
eye [13–15]. The retinal cells that play a regulatory role in the posterior segment of the
eye are retinal pigment epithelial (RPE) cells which express Fas ligand and programmed
death-ligand 1 (PDL1), and microglia/macrophages expressing regulatory elements such as
CD200/C200R, PDL1, and Treg cells. The anterior and posterior segment of the eye contains
immunosuppressive fluid containing neuropeptides such as transforming growth factor-β
(TGF-β), vasoactive intestinal peptide (VIP), somatostatin, calcitonin, gene-related peptide,
alpha-melanocyte-stimulating hormone, neuropeptide Y, and pigment epithelial-derived
factor (PEDF) [13,14]. Any perturbations in the retinal microenvironment are recognized
by astrocytes and microglia present at the forefront of the defense system. Perturbations
can arise from two major sources: (i) microbial pathogens and (ii) age- or disease-related
injury. Astrocytes and microglial cells possess signaling mechanisms for host defense
that are activated by recognizing structural characteristics found in pathogens, known as
pathogen-associated molecular patterns (PAMPs) and DAMPs [4].

The innate immune system provides the first line of defense against the DAMPs.
In the early stages of retinal disorders, microglia and the complement system activate
at low levels. This low level of inflammation is essential to maintain homeostasis and
restore functionality in retinal homeostasis. However, prolonged insult and stimulation by
DAMPs in chronic retinal disorders such as glaucoma, age-related macular degeneration
(AMD), diabetic retinopathy (DR), ischemic retinopathies, and uveitis lead to maladaptation
of the innate immune system and dysregulated inflammation. As a result, increased
pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8
contribute to further progression of the disease. Finally, immune privilege is compromised
in retinal disorders, resulting in a vicious cycle of inflammation, leukocyte infiltration, and
retinal neurodegeneration.

2. DAMPs in Retinal Disorders
2.1. DAMPs in Endophthalmitis

Endophthalmitis is a devastating and potentially blinding disorder caused by an in-
fection from exogenous or endogenous microorganisms, typically in the vitreous cavity of
the eye [16]. The inflammatory component in endophthalmitis is strongly associated with
the recognition of microorganism PAMPs and damaged or dying cell DAMPs by TLRs lo-
cated on the cell membrane and within endosomes [17,18]. Staphylococcus aureus (S. aureus)
infection significantly enhances the expression of DAMPs such as S100A7/S100A9 in the
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retina. DAMPs released by the neutrophils provide a host-defense response but activate
an inflammatory feedback loop when released to the extracellular surface [18]. In endoph-
thalmitis patients, increases in vitreous HMGB1 directly correlates with the duration of
infection and reduction in visual acuity [19,20]. HMGB1 function can vary based on its
location. In the nucleus, HMGB1 binds to DNA and controls transcriptional regulation. On
the other hand, HMGB1 can be passively released into the extracellular space by necrotic
cells and activated macrophages, initiating a pro-inflammatory cytokine-like response [20].
The various DAMPs described in endophthalmitis are mentioned in Table 1.

Table 1. DAMPs in endophthalmitis.

Disease DAMPs Type Origin Localization

S100A7, S100A9 [18] Ca2+ binding protein Cytoplasmic Retina

HMGB1 [20] Nuclear binding protein Nuclear Vitreous

αβ-crystallin [21] Molecular chaperones Cytoplasmic Retina

LIF [22] Cytokines Cytoplasmic Retina

IL-1α [23] Cytokines Cytoplasmic Vitreous

β−defensin-1, -2 [24,25] Antimicrobial protein ER RPE/CBE/Müller glia

Cathelicidin LL37 [26] Antimicrobial protein ER Müller glia

Endophthalmitis
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In S. aureus-induced endophthalmitis, there is a significant increase in small HSP and
αβ-crystallin in the retina. This prevents apoptosis of retinal cells and tissue destruction
during immune clearance of the bacteria [21]. Additionally, a significant increase in LIF
has been reported in the retina after Bacillus cereus-induced endophthalmitis. Although
the precise role of this increase in LIF is not known, it was speculated to have a protective
role in the retina [22]. These endophthalmitis patients also showed a significantly higher
level of IL-1α concentration in the vitreous compared to the control subjects. Given that the
IL-1 family plays a vital role in pathogen recognition, it stands to reason that the significant
increase might have a protective role [23].

Defensins are cationic antimicrobial peptides that display antibacterial activity against
Gram-positive and Gram-negative bacteria, fungi, and viruses [24]. In the human eye, two
types of defensins are secreted: α-defensins released by peripheral mononuclear leukocytes
(PMNs) within the ocular mucosa and tears, and β-defensin-1 secreted by the cornea and
conjunctiva. Both are found in the aqueous and vitreous humor in the eye. In contrast, β-
defensin-2 is not constitutively present, but is released in states of inflammation or infection.
β-defensin-2 is secreted by RPE, ciliary body epithelium (CBE), and Müller glial cells. Inter-
estingly, it has a regulatory element, nuclear factor kappa B (NFκB), and may act through
the NFκB signaling pathway [24,25]. Post-microbial infection, the Müller glial cells secrete
cathelicidin LL37, an antimicrobial peptide that plays an essential role in the innate immune
response to endophthalmitis. Cathelicidin LL37 inhibits biofilm formation and is involved
in chemotaxis, angiogenesis, and wound healing [25]. Cathelicidin LL37 greatly enhances
cells response to self-nucleic acids released from damaged and dying cells. Cathelicidin
LL37 peptide disrupts immune tolerance towards nucleic acid, permitting recognition by
intracellular recognition systems such as TLR3, TLR7, TLR8, TLR9, mitochondrial antiviral-
signaling protein (MAVS), and stimulator of interferon genes (STING) [26]. Additionally,
SAA levels are increased significantly in infectious endophthalmitis patients, suggesting
SAA as a potential biomarker for endophthalmitis [27].

2.2. DAMPS in Uveitis

Uveitis is an acute, recurrent, and chronic inflammation of the uvea caused by the
breakdown of the immunosuppressive intraocular microenvironment [28]. Uveitis is charac-
terized by compromised blood–ocular barriers, cellular infiltration, and tissue damage [29].
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As a result, inappropriate intraocular inflammation can be detrimental to the eye and
its visual function. DAMPs play a significant role in non-infectious uveitis by activating
PRRs and TLRs, thus initiating an acute inflammatory response [28]. The different DAMP
molecules increased in uveitis are S100 proteins, HMGB1, HSP70, SAA, fibronectin, and
fibrinogen, as mentioned in Table 2.

Table 2. DAMPs in uveitis.

Disease DAMPs Type Origin Localization

S100A8, S100A9,
S100A12 [30] Ca2+ binding protein Cytoplasmic Serum/aqueous/tears

HMGB1 [31] Nuclear binding protein Nuclear Retina

HSP70 [32] Molecular chaperones Cytoplasmic Serum

SAA [33] Acute-phase protein Plasma Aqueous

Fibronectin [34] Glycoprotein ECM Iris

Uveitis
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S100 proteins play an essential role in uveitis inflammation. Increased levels of
S100A8/A9 and S100A12 were reported in the serum and aqueous humor of patients
with autoimmune uveitis. S100A12 was found to be increased in the tear fluid of uveitis
patients [30] and is actively secreted by the phagocytic cells upon cell activation. Once
secreted, S100A8/A9 and S100A12 act as pro-inflammatory ligands and bind to TLR4
or RAGE, triggering inflammatory pathways [36]. Retinal cells also release HMGB1 in
uveitis [31]. Usually, HMGB1 is secreted by macrophages during cellular stress or necrosis
and mediates its actions as a DAMP through RAGE, TLR2, and TLR4 receptor signaling.
HMGB1 recruits inflammatory cells and amplifies the local inflammatory response by
inducing pro-inflammatory cytokines such as TNF-α, IL-1, and IL6 [37].

Serum uric acid levels are increased in many inflammatory conditions in the eye,
including uveitis. Uric acid triggers endothelial dysfunction, oxidative stress, inflammation,
and microvascular disease. However, the study did not find any significant increase in
serum uric acid in uveitis patients [6]. The serum concentration of HSP70 has been reported
to be enhanced in patients with concurrent Behcet’s disease and uveitis relative to those
without uveitis [32]. When released to the extracellular space from the necrotic cells or
cells under stress, HSPs act as DAMPs on multiple receptors such as TLR2 and TLR4.
Additionally, they activate the NFκB signaling pathway in macrophages and dendritic
cells to stimulate the production of cytokines and chemokines, thereby mediating the
uptake and presentation of peptides via the major histocompatibility complex (MHC) to
facilitate cell migration [28,37,38]. Furthermore, HSP-derived peptides 336 – 351 induce
clinical and histological characteristics of uveitis in 80% of rats [39]. HSP90 inhibitors
showed promising results in ameliorating experimental uveitis through the inhibition of
NFκB, hypoxia induced factor (HIF)-1α, p38, and phosphatidylinositol 3-Kinase (PI3K)
activity, and a reduction in vascular endothelial growth factor (VEGF), TNF-α, and IL-1β
levels [38–40].

SAA is an acute-phase protein found in increased levels in the systemic circulation
during chronic inflammatory disorders. Patients with uveitis or juvenile idiopathic arthritis
with chronic anterior uveitis had higher SAA levels than their respective controls in the
aqueous humor [33,41]. SAA acts on TLRs, NFκB, and P2X7-dependent NLRP3 inflam-
masome in macrophage and antigen-presenting cells (APCs), thus playing an essential
role in inflammatory cytokine production, neutrophil transmigration, monocyte migra-
tion, and peripheral blood mononuclear cell (PBMC) adhesion and differentiation [42–44].
Though IL-33 acts as a DAMP, it has an anti-inflammatory effect for its role in activating
M2 macrophage polarization and attenuating the development of experimental autoim-
mune uveitis [45]. Additionally, the intraocular cellular fibronectin levels were significantly
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higher in patients with active uveitis [34]. In another study, the concentrations of fibronectin,
fibrinogen, and immunoglobulins were significantly higher in the iris of the uveitis sub-
jects compared to the controls. The irises of patients with uveitis also showed higher
T-lymphocytic infiltration. These findings suggest that the presence of fibronectin, fib-
rinogen, and immunoglobulins significantly contribute to T-lymphocyte infiltration and
inflammation in uveitis [35].

2.3. DAMPs in Glaucoma

Glaucoma is a neurodegenerative disorder that causes damage to the optic nerve axons,
resulting in the loss of retinal ganglion cells (RGC). The major risk factors for glaucoma
include aging, family history and genetics, and intraocular pressure (IOP) elevation. Strong
evidence suggests that an early insult to RGC axons at the optic nerve head may involve
astrocytes, microglia, and other blood-derived immune cells [4]. DAMPs are also involved
in glaucoma. The DAMPs produced and identified in glaucoma are mentioned in Table 3.

Table 3. DAMPs in glaucoma.

Disease DAMPs Type Origin Localization

S100B [46] Ca2+ binding protein Cytoplasmic Astrocyte/Müller glia

LIF [47] Cytokine Cytoplasmic Retina

Uric acid [48] Metabolic product Cytoplasmic Serum

HSP60, HSP70 [49] Molecular chaperones Cytoplasmic Retina

ATP [50] Nucleotide Cytoplasmic Aqueous/vitreous

Aβ [51] Peptide Cytoplasmic Aqueous/optic nerve

Histone-H4 [52] Nuclear binding protein Nuclear Serum

HMGB1 [53] Nuclear binding protein Nuclear Aqueous

IL-1α [54] Cytokine Cytoplasmic Aqueous

mtDNA [55] Nucleic acid Mitchondria Ganglion cell

Calreticulin [56] Multifunction soluble protein ER Nerve fiber layer

ET-1 [57] Ribonuclease A ER Astrocyte

Decorin [58] Proteoglycan ECM Aqueous

Biglycan [59] Proteoglycan ECM Optic nerve

Versican [60] Proteoglycan ECM Trabecular meshwork

Aggrecan [61] Proteoglycan ECM Optic nerve

Phosphocan [62] Proteoglycan ECM Retina/optic nerve

HS [63] Glycosaminoglycan ECM Retina/trabecular meshwork

Fibronectin [62,64] Glycoprotein ECM Retina/optic nerve

Laminin [62] Glycoprotein ECM Retina/optic nerve/astrocytes

Tenascin-C [62] Glycoprotein ECM Trabecular meshwork

Glaucoma
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S100B was co-localized with astrocytes and Müller glia in the autoimmune glaucoma
rat model [46]. S100B activates pro-inflammatory cytokines, such as IL-1β and TNF-α, and
stress-induced enzymes, such as nitric oxide synthetase, potentially resulting in ganglion
cell death [66]. Similarly, immunization with S100B leads to ganglion cell death, indicating
its involvement in neuroinflammation [66]. In acute ocular hypertension, LIF and LIFR
were significantly increased in the retina. The study suggested that LIF may be critical
for the process of degeneration/protection following retinal ischemia via activation of the
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Janus kinase (JAK)/STAT and Akt signaling pathways [47]. In fact, a neuroprotective role
is postulated based on observations following intravitreal injection of LIF [67]. Serum uric
acid levels were also increased in primary open-angle glaucoma patients compared to the
control group [48]. The increase in uric acid concentration was also reported in aqueous
humor of subjects with glaucoma [68]. On the contrary, lower serum uric acid concentration
was observed in primary angle-closure glaucoma in another study. Further, its negative
association with disease severity suggests uric acid as an important candidate in response
to glaucoma-associated oxidative stress [69].

In previous studies, HSPs were increased in response to elevated IOP, as also seen in
human glaucomatous retinas [4,49]. Immunization with HSP27 and HSP60 led to pressure-
independent RGC degeneration and axon loss, mimicking glaucoma-like damage [70].
These findings indicate that HSPs in glaucoma may be directly involved in disease onset
and glaucoma progression. Notably, there was a significant increase in ATP in the aqueous
and vitreous humor of patients with primary open-angle glaucoma. The activation of
P2X7 by ATP elevates intracellular calcium, resulting in rat RGC death [50]. In addition,
significantly high levels of amyloid beta (Aβ) have been reported in the optic nerve head
and aqueous humor of glaucoma patients [51]. Aβ co-localizes with apoptotic RGC in the
experimental glaucoma rat model and induces significant RGC apoptosis in vivo in a dose-
and time-dependent manner [71]. Additionally, intraocular injection of Aβ1–40 appeared
to have a time- and dose-dependent effect on neurodegeneration with increased axonal
swelling and RGC cell death, leading to ganglion cell layer (GCL) thinning and optic nerve
injury [72]. The activation of Aβ may lead to activation of neuroinflammatory pathways,
and hence, glaucoma progression with or without IOP-elevation-related triggers [73].
There was also a significant increase in autoantibodies against Histone H4 in the serum of
glaucoma patients [52]. However, the precise role of Histone H4 in glaucoma is not known.

HMGB1 concentrations were significantly higher in the aqueous humor of primary
open-angle glaucoma patients, whereas in rodents, HMGB1 was linked to glaucoma in-
duced by elevated IOP. HMGB1 significantly upregulates canonical NLRP3 inflammasome
via caspase-1 and non-canonical caspase-8-driven inflammasome, which results in IL-1β re-
lease, thereby causing ganglion cell death [53,74]. Additionally, IL-1α concentrations were
noted to be significantly increased in the aqueous humor of primary open-angle glaucoma
with and without diabetes [54]. Furthermore, there was a significant increase in nuclear
and mitochondrial DNA damage during ganglion cell death [55,75]. However, the exact
role of extracellular DNA released from dead cells in glaucoma has not been described.

The progressive retinal atrophy (PRA)1 family protein 3, calnexin, calreticulin, clus-
terin, 78 kDa glucose-regulated protein, heterogeneous nuclear ribonucleoprotein R, malectin,
peptidyl-prolyl cis–trans isomerase B, protein disulfide isomerase, reticulocalbin 3, and
heterogeneous nuclear ribonucleoprotein Q, were reported to be significantly high in a
non-human primate model of early experimental glaucoma [56]. However, the role of ER
stress in glaucoma has not been studied yet. Optic nerve astrocytes proliferate after treat-
ment with ET-1 (also known as EDN1), and reactive astrocytes increase endothelin receptor
B (ETB) expression in both human and experimental neuronal injury models. Increased
expression of ET-1 causes vasoconstriction, which prevents the optic nerve vasculature
from responding to the need for increased blood flow. Hence, ET-1 could be central to
autoregulatory disturbances in glaucoma [57]. Additionally, ET-1 causes neuronal cell
death in glaucoma by activating pro-apoptotic transcription factor JUN (the canonical
target of JNK signaling) [76].

The small, leucine-rich proteoglycan (SLRP) family of DAMP proteins has been sug-
gested to play a critical role in glaucoma. Decorin concentrations decreased significantly in
the aqueous humor of primary open-angle glaucoma patients [58]. Intracameral injection
of recombinant human (rh) decorin decreased TGF-β -induced fibrosis, lowered IOP, and
prevented ganglion cell loss [77]. Another SLRP, biglycan, was significantly increased in the
optic nerve head of non-human primates in early experimental glaucoma, indicating its role
in disease progression [59]. Versican, a large proteoglycan, may organize glycosaminogly-
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cans (GAGs) and other ECM components to facilitate and control open flow channels in the
trabecular meshwork, which appear to be a central component of the outflow resistance [60].
Interestingly, a significant decrease in aggrecan was found in the optic nerve head of glau-
comatous eyes compared to control eyes of non-human primates [61]. However, such
findings were absent in rodent models [62]. A significant increase in phosphacan levels
was also observed in an autoimmune glaucoma rat model, with studies indicating its role
in disease progression [62,78]. There was a significant increase in chondroitin sulfate and
HS in serum and optic nerve heads of glaucoma patients [63]. In a mouse glaucoma model,
increased fibronectin, laminin, and tenascin-C levels were also found in the glaucomatous
heterozygous retina and optic nerve compared to the wild-type group [62]. Fibronectin was
explicitly found at higher levels in the trabecular meshwork of glaucomatous compared to
non-glaucomatous eyes. This is significant, as elevated IOP results from increased ECM
rigidity regulated by collagen IV and fibrillin deposition [64]. Tenascin-C is up-regulated
in glaucomatous eyes, especially in astrocytes. As an endogenous activator of the TLR4,
tenascin-C’s inflammatory role is being studied in glaucoma research [4,62]. SAA is also
associated with glaucoma-related increased IOP and inflammation [65].

2.4. DAMPs in Ocular Cancer

Ocular cancers include retinoblastoma, uveal melanoma, and conjunctival
melanoma [79,80]. Retinoblastoma is caused by sporadic somatic mutations in the RB1
gene, but about one-third of cases arise in infants with germline mutations [79]. Uveal
melanoma is the second most common type of melanoma and arises from the melanocytes
in the uveal tract. Conjunctival melanomas arise from melanocytes located in the basal
layer of the epithelium in the conjunctival membrane [80]. The dysregulation of S100
proteins plays a vital role in growth, metastasis, angiogenesis, and immune evasion in
cancer. The extracellular S100 proteins exert regulatory activities on microglia, neutrophils,
lymphocytes, endothelial cells, neurons, and astrocytes [81]. Thus, they participate in innate
and adaptive immune responses, cell migration, chemotaxis, and leukocyte and tumor cell
invasion [82]. Retinoblastoma causes a significant increase in S100 protein in astrocytes,
ganglion cells, and Müller glial cells [83]. More interestingly, the S100-positive cells have
both neuronal and glial properties [84]. There is also a significant increase in S100 proteins
in uveal melanoma [85]. A previous study compared S100A1 in paraffin-embedded sec-
tions of conjunctival naevi, conjunctival melanomas, and uveal melanomas. It was found
that S100A1 was more frequently expressed in conjunctival and uveal melanoma than in
conjunctival naevi [86]. S100B serum concentration was also significantly higher in uveal
melanoma patients with metastases compared to uveal melanoma patients without, and
may potentially be a future biomarker for metastatic uveal melanoma [87]. The distribution
of various DAMPs found in ocular cancer have been summarized in Table 4.

Table 4. DAMPs in ocular cancer.

Disease DAMPs Type Origin Localization

S100 [83] Ca2+ binding protein Cytoplasmic Astrocytes/ganglion cell/
Müller glia

S100A1 [86] Ca2+ binding protein Cytoplasmic Uveal melanoma

S100B [87] Ca2+ binding protein Cytoplasmic Serum

Uric acid [88] Metabolic product Cytoplasmic Aqueous

HSP70, HSP90 [89,90] Molecular chaperones Cytoplasmic Retina/extracellular vesicles

HMGB1 [91] Nuclear binding protein Nuclear Retinoblastoma

cfcDNA [92] Nucleic acid Nuclear Plasma

Ocular cancer
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Uric acid was elevated in the aqueous humor of eyes with melanoma, and in both
the aqueous humor and tears of eyes with retinoblastoma [88]. The overexpression of
HSPs provides a selective advantage to malignant cells by inhibiting apoptosis, promoting
tumor metastasis, and regulating immune responses [94]. In control subjects, the human
adult retina did not show HSP70/HSP90 immunoreactivity, whereas higher-to-moderate
expressions of these proteins were observed in subjects with retinoblastoma tumors [89].
There was no significant difference in HSP27, HSP70, and HSP90 in uveal melanoma [95].
However, another study showed a higher degree of HSP90-positive staining in uveal
melanoma cases, with 68% of cases staining positive and an average of 50% of tumor cells
stained. The expression level was directly correlated with tumor diameter [96]. Addition-
ally, extracellular vesicles derived from uveal metastatic melanoma have higher HSP70
and HSP90 than normal choroidal melanocytes, and more interestingly, these extracellular
vesicles play an essential role in progression and metastasis [90].

Intracellular and extracellular HMGB1 has been implicated in tumor formation, pro-
gression, and metastasis. There is a significant increase in HMGB1 expression in retinoblas-
toma (RB) cells. HMGB1 levels have also been found to be significantly higher in human
patient samples and associated with tumor differentiation and optic nerve invasion [97,98].
In the uvea, there is upregulation of HMGB1 with a binding affinity for the retinoblastoma
tumor suppressor protein [91,99]. In patients with cancer, the circulating cell-free (cfc) DNA
has the same genetic and epigenetic alterations compared to the related primary tumor. The
majority of cfcDNA is derived from tissue tumor cells rather than from circulating tumor
cells [92]. The aqueous humor of retinoblastoma patients contains tumor-derived cfcDNA,
which can be used to diagnose the disorder [100]. The plasma cfcDNA can also detect
somatic RB1 mutations in patients with unilateral retinoblastoma [101]. The blood plasma
and aqueous humor of uveal melanoma patients also contain tumor-derived cfDNA which
can be used for diagnosis [92,102]. The versican has been implicated in tumor progression,
with abnormal mRNA expression observed in uveal melanoma. However, versican protein
levels have not been reported [93].

2.5. DAMPs in Ischemic Retinopathies

Retinal ischemia occurs due to inadequate blood supply to the retina, required for
oxygen diffusion and high metabolic activity. Circulatory failure can result from choroidal
or retinal vessel obstruction. This lack of blood supply alters metabolic functions in the
highly demanding retina and can ultimately result in irreversible neuronal cell death, vision
loss, and blindness. Ischemic retinopathy causes include central retinal artery occlusion
(CRAO), branch retinal artery occlusion (BRAO), central retinal vein occlusion (CRVO),
branch retinal vein occlusion (BRVO), and DR. The location and level of obstruction to
the blood supply determines the severity of ischemia, the area of retina affected, and its
deleterious effects on the retina. DAMPs involved in ischemic retinopathies include S100
proteins, uric acid, HSPs, αβ-Crystallin, cyclophilin A, LIF, HMGB1, IL-1α, ECM proteins,
and TFAM, which are summarized in Table 5.

Table 5. DAMPs in ischemic retinopathies.

Disease DAMPs Type Origin Localization

S100 [103], S100A4 [104] Ca2+ binding proteins Cytoplasmic Ganglion cell

Uric acid [105] Metabolic product Cytoplasmic Retina

HSP27, HSP60, HSP70,
αβ-crystallin [106–108] Molecular chaperones Cytoplasmic Retina (RGC, RPE, INL)

Cyclophilin A [109] Ubiquitous protein Cytoplasmic Neuron

LIF [47] Peptide Cytoplasmic Retina

Ischemic retinopathy
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roprotection in ischemic mice by activating the Akt pathway, thus suppressing apoptosis 
in RGCs [104]. Damage signals from S100A4 may influence diverse signaling pathways in 
different retinal cell types to elicit unique responses for protection against ischemia. The 
animal models that have been subjected to ischemia exhibit increased uric acid concentra-
tions in the retina. Uric acid expression is transiently decreased following reperfusion, and 
subsequently increased in the later stages after 60 min [105,119]. Additionally, the oxida-
tion of hypoxanthine and xanthine results in the production of uric acid during is-
chemic/reperfusion (I/R) injury [120].  
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chemic retina. HSP27 is a neuroprotective component that can be induced after acute pres-
sure-induced ischemia [121]. During ischemic injury, its expression is upregulated in the 
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mon carotid artery occlusion (BCCAO) displayed a significant increase in HSP27 and 
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HSP27 might play a protective role in the retina. The delivery of HSP27 to RGCs via elec-
troporation increased RGC survival rate after I/R injury [123]. In ARPE-19 cells induced 
with myeloperoxidase-mediated oxidative injury, HSP27 expression was increased, sug-
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Table 5. Cont.

Disease DAMPs Type Origin Localization

IL-1α [111,112] Cytokine Cytoplasmic Retina/plasma

TFAM [113,114] Transcription factor Mitchondria Retina (OPL, INL, IPL, GCL)

Decorin [115] Proteoglycan ECM Retina (INL)

Fibronectin [115] Glycoprotein ECM Retina

Laminin [115] Glycoprotein ECM Optic nerve

Tenascin-C [115] Glycoprotein ECM Optic nerve

HS [116] Glycosaminoglycan ECM Optic nerve

Chondritin sulfate [115] Glycosaminoglycan ECM Optic nerve

Aggrecan [115] Proteoglycan ECM Optic nerve

A significant increase in the S100 protein in ganglion cells was reported in border
zones damaged by retinal vein occlusion (RVO). However, this immunoreactivity was
absent inside areas of completely non-perfused capillaries, indicating inflammatory re-
cruitment of S100 proteins in RVO [103]. In addition, the expression of S100A4 was also
found to be positively correlated with the progression of retinal neovascularization ob-
served in oxygen-induced retinopathy (OIR) models [117]. Silencing S100A4 reduces
brain-derived neurotrophic factor (BDNF) activation and VEGF expression, suggesting
its role in regulating retinal neovascularization [117]. In addition, suppression of S100A4
can also reduce the expression of cAMP response element-binding protein (CREB) and
B-cell lymphoma-2 (Bcl-2), and increase the expression of caspase-3, to promote apoptosis
and prevent abnormal neovascularization [118]. Interestingly, overexpression of S100A4
provides neuroprotection in ischemic mice by activating the Akt pathway, thus suppressing
apoptosis in RGCs [104]. Damage signals from S100A4 may influence diverse signaling
pathways in different retinal cell types to elicit unique responses for protection against
ischemia. The animal models that have been subjected to ischemia exhibit increased uric
acid concentrations in the retina. Uric acid expression is transiently decreased following
reperfusion, and subsequently increased in the later stages after 60 min [105,119]. Addi-
tionally, the oxidation of hypoxanthine and xanthine results in the production of uric acid
during ischemic/reperfusion (I/R) injury [120].

Several HSPs, including HSP27, HSP70, and HSP72 play a role as DAMPs in the
ischemic retina. HSP27 is a neuroprotective component that can be induced after acute
pressure-induced ischemia [121]. During ischemic injury, its expression is upregulated in
the neuronal and non-neuronal inner retinal layers [106,122]. Rats subjected to bilateral
common carotid artery occlusion (BCCAO) displayed a significant increase in HSP27
and HSP70 immunoreactivity in the GCL after ischemic injury [107]. It was suggested
that HSP27 might play a protective role in the retina. The delivery of HSP27 to RGCs
via electroporation increased RGC survival rate after I/R injury [123]. In ARPE-19 cells
induced with myeloperoxidase-mediated oxidative injury, HSP27 expression was increased,
suggesting its role in the RPE injury response [108]. Similarly, HSP70 was also increased in
rat retinas following I/R injury [124]. HSP-70 prevents apoptosis by upregulating Bcl-2 and
interfering with apoptotic peptidase activating factor-1 (Apaf-1) to prevent apoptosome
formation [125]. HSP72 expression has also been studied in ischemic retinopathy. The loss of
retinal neurons in ischemic retinopathy is associated with glutamate-induced excitotoxicity.
Intravitreal injection of a glutamate receptor agonist, N-methyl-D-aspartate (NMDA), can
induce inner retina cell death. Post-NMDA injection, HSP72 expression was elevated in the
retinal GCL [126]. The number of HSP72 stained RGCs was also significantly higher after
acute pressure-induced retinal ischemia [121]. This study suggests that HSP72 can exhibit
DAMP properties involved in the ischemic stress response.
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Cytoplasmic cyclophilin A plays a fundamental role in cell metabolism, and its ex-
pression levels can be altered in the presence of retinal lesions [109]. Rats exposed to more
extended periods of ischemia exhibited a loss of circulating anti-cyclophilin A antibodies.
These antibodies have been speculated to bind to damaged retinal tissues in response to
ischemic injury. However, more analysis is required to determine the roles of cyclophilin
A in ischemic retinopathy [127]. Aβ is another DAMP associated with neurodegenerative
retinal disorders [128]. Production of Aβ is associated with neuronal apoptosis and cell
loss. In primary retinal neuron cells treated with CoCl2 to induce hypoxia, Aβ expression
was significantly increased, suggesting that Aβ may be altered during ischemic retinal
damage [129]. LIF expression may also be altered in neuronal injuries and retinal disorders.
LIF regulates gliosis and is a neuroprotective factor. Following retinal ischemia and retinal
cell apoptosis induced by acute ocular hypertension, LIF and LIF receptor (LIF-R) expres-
sion were found to be increased, along with elevated levels of phosphorylated Akt [47].
LIF may modulate retinal injury and repair via the PI3K-Akt pathway. LIF can also in-
hibit retinal vascular development independent of VEGF, suggesting its role in vascular
remodeling [130].

HMGB1 is a prototypic DAMP molecule localized to the GCL, inner nuclear layer
(INL), and photoreceptor layer in the retina. It promotes inflammation, ganglion cell death,
and photoreceptor degeneration in I/R-induced retinal damage [131]. Intravitreal injec-
tion of recombinant HMGB1 has been known to result in a loss of RGCs [110]. In vitro
addition of HMGB1 to retinal glial cells also induced the production of pro-inflammatory
factors [132]. However, the treatment of retinal ischemia with neutralizing anti-HMGB1
monoclonal antibodies has been controversial. One study found that intraperitoneal injec-
tion of a neutralizing anti-HMGB1 monoclonal antibody increased reactive oxygen species
(ROS) production, resulting in retinal thinning and poor retinal function [133]. On the
contrary, another reported that the neutralization of HMGB1 can prevent retinal thinning
and loss of ganglion cells, and reduce the number of irregular retinal capillaries [134]. The
differences in the neutralizing antibody concentrations could be a possible reason for these
differing effects. IL-1α has also been shown to increase significantly in I/R-induced retinal
injury [111]. Blood plasma cytokine analysis of rats with I/R injury presented elevated
concentrations of IL-1α, TNF-α, and MCP-1 [112]. IL-1α gene expression has also been
reported to rise rapidly, peaking at 3 to 12 h after rat retinal ischemia [135].

TFAM is a mitochondrial-DNA-binding protein crucial for mitochondrial gene expres-
sion and essential for oxidative phosphorylation-mediated ATP synthesis. TFAM protein
expression significantly increases in the ischemic retina [113] and is localized to the outer
plexiform layer (OPL), INL, inner plexiform layer (IPL), and GCL [114]. An increase
in TFAM expression can prevent the alteration of mitochondrial DNA in the ischemic
retina [113]. Preservation of TFAM may also promote an endogenous repair mechanism to
protect RGCs against mitochondrial dysfunction during oxidative stress. In neonatal rat
ischemic brain injury, TFAM protein expression was rapidly elevated and mitochondrial
dysfunction and ROS generation were reduced [136]. TFAM expression during retinal
ischemia may exhibit similar protective mechanisms. SAA, IL-6, and TGF-β are major pro-
teins involved in the acute and chronic stages of inflammation. SAA is significantly higher
in the aqueous humor of RVO patients with macular edema compared to controls [137].

The expression of extracellular glycoproteins decorin, fibronectin, laminin, tenascin-C,
tenascin-R, and the chondroitin sulfate proteoglycans aggrecan, brevican, and phosphacan
were studied in an ischemia-reperfusion injury model. Interestingly, decorin expression
was reduced in the inner retinal layers in the early stages but increased substantially in the
later stages of I/R, with strong immunoreactivity to damaged retinal layers. Fibronectin
was significantly elevated in the retina following ischemia, while laminin, tenascin-C and
aggrecan showed enhanced immunoreactivity in the optic nerve after ischemia, indicating
their regulatory role during neurodegeneration [115]. Another proteoglycan, HS, can
suppress aberrant neovascularization by inhibiting VEGF-A from binding to VEGF-R2 [116].
Fibronectin and tenascin-C expression were also increased, which localized to retinal
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blood vessels in the inner layers of the ischemic retina [3]. Since ECM proteins play
an important role in vascular development and neovascularization, the upregulation of
fibronectin in the ischemic retina could reflect its role in the remodeling of the retinal
microvasculature. Elevation of tenascin-C concentrations can also contribute to retinal
degeneration observed in ischemic retinopathy. In tenascin-C-deficient ischemic mice, ERG
a- and b-wave amplitudes were higher than in wild-type ischemic mice [138]. Less rod
photoreceptor degeneration was also observed in tenascin-C-deficient mice, suggesting that
tenascin-C may be involved in ischemic retinal degeneration. Aggrecan and phosphacan
are other extracellular DAMPs that have been studied in ischemic retinopathy. Protein
expression of aggrecan and phophacan have been reported to be significantly reduced in
the ischemic rat retina [115]. Downregulation of these DAMPs could be associated with
retinal gliosis, reorganization, or the retinal degenerative process.

2.6. DAMPs in Diabetic Retinopathy

Diabetic retinopathy (DR) is a neurovascular retinal disorder in which inflammation
and oxidative stress play a major role in disease progression [139]. DAMPs can sense high
glucose as a stressor and directly corelate with the advancement of DR [5,140]. The different
intracellular DAMP molecules increased in diabetic retinopathy are S100, HMGB1, uric
acid, HSPs, ATP, cyclophilin A, Aβ, IL-1α, IL-33, nuclear DNA, mtDNA, mtROS, formyl
peptide and lipid from mitochondrial membrane [5,140–145]. The list of DAMPs involved
in the DR are mentioned in Table 6.

S100 proteins were found to increase in microglia and macrophage infiltration in the
Akimba mouse model of proliferative DR [146]. Our study also reported an increase in
plasma levels of S100A8 and S100A9 proteins in diabetic patients, which correlated with
the severity of DR [5]. S100 proteins (S100A7, S100A12, S100A8/A9, and S100B) interact
with RAGE and activate NFκB, inducing the production of pro-inflammatory cytokines and
leading to the migration of neutrophils, monocytes, and macrophages [147]. In addition,
HMGB1 is significantly increased in the vitreous humor of diabetic patients [148]. Similar
to S100 proteins, HMGB1 can bind to TLR4 and RAGE, leading to increased inflammation
via the NFκB pathway [140]. Uric acid, another DAMP, was also found to be elevated in
the vitreous humor and serum of diabetic patients with macular edema [149].

Table 6. DAMPs in diabetic retinopathy.

Disease DAMPs Type Origin Localization

S100A8, S100A9 [5,146] Ca2+ binding protein Cytoplasmic Macroglia/plasma

HMGB1 [148] Nuclear binding protein Nuclear Vitreous

Uric acid [149] Metabolic product Cytoplasmic Vitreous/perum

HSP27, HSP60, HSP70 [150] Molecular chaperones Cytoplasmic Retinal pndothelial cells

ATP [144] Nucleotide Cytoplasmic Microglia

Cyclophilin A [151] Ubiquitous protein Cytoplasmic Plasma

Aβ [152] Peptide Cytoplasmic RGC

Calreticulin [153] Multifunction
soluble protein ER Plasma

Cathelicidin [154] Antimicrobial peptide ER Plasma

α-defensin-1, -2, -3 [155] Antimicrobial peptide ER Plasma

Syndecan [156] Proteoglycan PM Plasma

Decorin [157,158] Proteoglycan ECM Plasma/aqueous

Versican [159] Proteoglycan ECM Plasma

Diabetic Retinopathy
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Retinal pndothelial 

cells 
ATP [144] Nucleotide Cytoplasmic Microglia 

Cyclophilin A [151] Ubiquitous protein Cytoplasmic Plasma 
Aβ [152] Peptide Cytoplasmic RGC  

LMW hyaluronan [160] Glycosaminoglycan ECM Vitreous



Int. J. Mol. Sci. 2022, 23, 2591 12 of 38

Table 6. Cont.

Disease DAMPs Type Origin Localization

HS [161] Glycosaminoglycan ECM Vitreous

Fibronectin [34,162] Glycoprotein ECM Plasma/vitreous/
aqueous/retina

Laminin [163] Glycoprotein ECM Basement
membrane/retina

Fibrinogen [164] Glycoprotein ECM Plasma

Tenascin-C [165] Glycoprotein ECM Vitreous

High glucose levels with elevated uric acid causes an increase in TGF-β, which plays
an important role in retinal fibrosis in proliferative DR [166]. Uric acid increases the
expression of Notch 1 receptors and ligands Dll1, Dll4, Jagged 1, and Jagged 2 in retinal
endothelial cells, which promotes DR by increasing the activity of the Notch signaling
pathway [141]. The overexpression and phosphorylation of HSPs affect vascular injury
and neovascularization in DR [150]. Extracellular HSP70 binds with CD40 and TLR3,
resulting in endothelial proliferation and migration, which plays an important role in
retinal neovascularization [167]. Moreover, ATP released from damaged neurons and
activated microglia acts as a pro-inflammatory molecule, initiating immunomodulatory,
neurodegenerative, and hyperemic processes in the eye, which are mediated via activation
of P2X7, P2Y1, and other ligand-gated P2X and G-protein-coupled receptor subtypes
co-expressed in the retina [144]. Cyclophilin A is an important secreted oxidative-stress-
induced factor, which is increased in the plasma levels of diabetic patients. It is secreted
from endothelial cells and monocytes, and stimulates endothelial cell adhesion molecule
expression to enhance the recruitment of circulating blood cells during the inflammatory
response [151]. The secreted Cyclophilin A may also interact with the CD147 receptor
of macrophage and induce the production of matrix metallopeptidase (MMP)-9 and pro-
inflammatory cytokines to promote cell migration [168]. It plays an important role in
blood–brain barrier repair, though the role of Cyclophilin A in DR is not yet known [151].

The diabetic retina indicates increased deposition of Aβ in the ganglion cells [152]. Aβ

conciliates the RAGE-induced pro-inflammatory response via the TLR4 signaling pathway
in the retinal ganglion cell line RGC-5 [169]. Moreover, hyperglycemia increases the produc-
tion of Aβ and damages the endothelial tight junction by inhibition of zonula occludens-1
(ZO-1), claudin-5, occludin, and the junctional adhesion molecule (JAM)-C in endothelial
cells [170]. In DR, there was no change in IL-1α expression, but there was upregulation
of its receptor IL-1R in the diabetic retina. The nuclear translocation of IL-1α in the inner
nuclear layer was higher in the diabetic retina compared to the non-diabetic control [171].
IL-1α is retained in the nucleus, tightly linked to chromatin, and released to the extracellular
space after necrosis, but not by apoptosis. It interacts with IL-1R and activates MAPKs
and NFκB, leading to the expression of pro-inflammatory cytokines, chemokines, and sec-
ondary mediators of the inflammatory response [172]. There was no observable significant
difference in the levels of IL-33 in the serum, vitreous, or aqueous humor of proliferative
DR patients. However, IL-33 is known to enhance M2 macrophage polarization in diabetic
mice [173–175]. The nuclear and mtDNA released by the dead cells activate TLRs, NLRP3
and other cytosolic immune response platforms, which activates caspase-1 and the secre-
tion of IL-1β [145]. Endosomal and lysosomal membrane-associated TLR9 can also bind
to mtDNA to activate absent melanoma (AIM)2 inflammasome and caspase-1 [1,145]. In
DR, damaged mitochondria release various DAMP molecules including mtROS, mtDNA,
formyl peptides, and lipid components. The endoplasmic reticulum-based DAMPs, such
as calreticulin, defensins and cathelicidin, are increased in plasma concentrations during
diabetes [153–155], though only cathelicidin has been studied in DR. Under hyperglycemic
conditions, calreticulin was observed to have higher expression in endothelial cells [176].
The plasma membrane-based DAMPs such as syndecans are significantly increased in the
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plasma of diabetic patients [156]. Syndecan-1 is known to inhibit leukostasis and angio-
genesis by controlling leukocyte and endothelial cell interactions. Its increase in diabetes
might play a protective role [177].

The ECM molecules, such as biglycan, decorin, versican, aggrecan, phosphacan, LMW
hyaluronan, HS, fibronectin, fibrinogen, laminin, tenascin-C, and tenascin-R, are cleaved
from the ECM and turned into a host-derived non-microbial DAMP [1,178]. Though the ex-
act role of biglycan is not defined in DR, preliminary data suggest its angiogenic and inflam-
matory properties in DR [179,180]. Decorin concentrations have also been reported to be
increased in the plasma of diabetic patients and the aqueous humor of DR patients [157,158].
Interestingly, decorin can be a multifunctional DAMP, acting on TLR2/TLR4 and TGF-β sig-
naling pathways, deploying both pro- and anti-inflammatory effects [181]. In RPE, decorin
prevents high glucose and hypoxia-induced epithelial barrier breakdown by suppressing
p38 MAPK activation [182]. Plasma versican concentrations are also increased in diabetic
patients [159], though its role in DR is not known. The increase in versican is associated
with the invasion of leukocytes early in the inflammatory process. In addition, versican
interacts with inflammatory cells either via hyaluronan or via CD44; P-selectin glycoprotein
ligand-1 (PSGL-1); or TLRs present on the surface of immune and non-immune cells. These
interactions are important for the activation of signaling pathways that promote NFκB,
resulting in the synthesis and secretion of inflammatory cytokines such as TNF-α and
IL-6 [183]. Aggrecan is produced by proteolytic degradation of the aggrecan core protein,
and activates macrophages in a TLR2/myeloid-differentiation primary-response protein 88
(MyD88)-/NFκB-dependent manner, stimulating the expression of inducible nitric oxide
synthases (iNOS), CCL2, IL-1α, and IL-6 [178]. The role of aggrecan in DR is not known,
though its presence is increased in other ischemic conditions, as mentioned earlier. LMW
hyaluronan is generated by the effect of free radicals, AGE products, and hyaluronidase
enzyme activity, which leads to vitreous body liquefaction in DR [160,184]. These DAMPs
stimulate endothelial cell proliferation, migration, and differentiation and may play a role
in angiogenesis in proliferative vitreoretinopathy (PVR); they might also be the reason for
proliferative retinopathy in diabetes [184]. Furthermore, LMW hyaluronan acts on CD44,
TLR2, and TLR4 receptors and plays an important role in inflammatory pathways [185].

Interestingly, the soluble HS in the aqueous humor acts as a DAMP and shows an
anti-angiogenic property by inhibiting the binding of VEGF to vascular endothelial cells.
It inhibits pathological retinal angiogenesis in mice by inhibition of VEGF-VEGFR2 bind-
ing [116]. In younger individuals with diabetes, HS levels are low compared to older
diabetic individuals, which provides a correlation between the higher susceptibility of
younger subjects with diabetes mellitus and developing proliferative DR [161]. The intraoc-
ular and plasma concentration of cellular fibronectin increases in diabetes patients with
macular edema [34,186]. In the early stages of DR, the deposition of fibronectin, collagen
IV, and laminin, occurs in the endothelial basement membrane. The intravitreal injection
of diabetic rats with antisense oligonucleotides to fibronectin, collagen IV, and laminin
decreases hyperglycemia-induced vascular leakage [163]. The overexpression of fibronectin
and laminin γ1 in the diabetic retina could also be correlated with enhanced TLR4 and
P2X7 receptor levels in diabetic rats. This is in line with the activation of transcription
factor NFκB, and histone H3 lysine 9 acetylation in diabetic retinas, which are implicated
in proinflammatory gene induction [162]. Microglia can recognize the integrins α5β1 and
α5β5 of fibronectin and become activated [187]. Fibrinogen results in microglia activation
and CX3CR1-mediated inflammation in DR pathogenesis [188]. Plasma fibrinogen con-
centrations have also been reported to be directly corelated with the severity of DR [164].
Additionally, fibrinogen activates macrophages through TLR4 signaling and stimulates
chemokine secretion [189]. The vitreous concentration of tenascin-C is highly correlated
with proliferative DR [165]. Tenascin-C enhanced the sprouting, migratory, and survival
effects of angiogenic growth factors, and had distinct proliferative, migratory, and pro-
tective capacities in vitro, and angiogenesis in vivo [190]. Tenascin-C activates TLR4 and
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induces soluble proinflammatory mediators, such as IL-6, IL-8, and TNF-α in microglia,
macrophage, and dendritic cells [191,192].

2.7. DAMPs in Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a neurodegenerative disorder character-
ized by the accumulation of drusen (extracellular deposits) with the progressive destruction
of photoreceptors and neural retina. AMD pathogenesis involves the metabolic abnormali-
ties such as hypoxia, oxidative stress, and innate immunity responsible for the disease’s
progression, ultimately leading to the loss of vision. AMD occurs predominantly in two
forms, the atrophic or “dry” form and the neovascular or “wet” form. The various DAMPs
involved in AMD pathogenesis are described in Table 7.

The activation of the innate immune system results in the release of DAMPs such as
S100 proteins, uric acid, HSPs, ATP, Aβ, HMGB1, IL-1α, mtDNA, ET-1, and SLRPs. The
vitreous samples of AMD patients showed higher extracellular ATP levels. In wet AMD
with sub-retinal hemorrhage, the release of extracellular ATP induced severe photoreceptor
cell death [193,194]. The extracellular ATP triggers an inflammatory cascade via TLRs
and NLRs. Both TLRs and NLRs can trigger nuclear translocation of NFκB and subse-
quent transcription of IL-1β and IL-18 proinflammatory components and activation of the
NLRP3 inflammasome, leading to the proteolytic cleavage of precursors and the release of
inflammatory cytokines [195].

Table 7. DAMPs in age-related macular degeneration.

Disease DAMPs Type Origin Localization

S100A7, S100A8, S100A9 [196] Ca2+ binding protein Cytoplasmic Drusen/Retina

Uric acid [197] Metabolic product Cytoplasmic Serum

HSP40, HSP60, HSP70,
HSP90 & small HSPs [198]

Molecular chaperones Cytoplasmic Retina

ATP [193] Nucleotide Cytoplasmic Vitreous

Aβ [199] Peptide Cytoplasmic RPE/photoreceptors

HMGB1 [7]
HMGB2 [200] Nuclear binding protein Nuclear RPE

Photoreceptor

IL-1α [201] Cytokine Cytoplasmic RPE

dsRNA [202] Nucleic acid Nuclear Drusen, RPE

mtDNA [203] Nucleic acid Mitchondria RPE

ET-1 [204] Ribonuclease A ER Plasma

Perlecan [205] Proteoglycan Plasma membrane Retina

Syndecan-4 [205] Proteoglycan Plasma membrane Retina

Versican [206] Proteoglycan ECM RPE

Heparan sulfate [207] Glycosaminoglycan ECM Bruch’s membrane

Fibronectin [208] Glycoprotein ECM Basal deposits

Laminin [208] Glycoprotein ECM Basal deposits

AMD

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 38 
 

 

and CX3CR1-mediated inflammation in DR pathogenesis [188]. Plasma fibrinogen con-
centrations have also been reported to be directly corelated with the severity of DR [164]. 
Additionally, fibrinogen activates macrophages through TLR4 signaling and stimulates 
chemokine secretion [189]. The vitreous concentration of tenascin-C is highly correlated 
with proliferative DR [165]. Tenascin-C enhanced the sprouting, migratory, and survival 
effects of angiogenic growth factors, and had distinct proliferative, migratory, and protec-
tive capacities in vitro, and angiogenesis in vivo [190]. Tenascin-C activates TLR4 and in-
duces soluble proinflammatory mediators, such as IL-6, IL-8, and TNF-α in microglia, 
macrophage, and dendritic cells [191,192].  

2.7. DAMPs in Age-Related Macular Degeneration 
Age-related macular degeneration (AMD) is a neurodegenerative disorder character-

ized by the accumulation of drusen (extracellular deposits) with the progressive destruc-
tion of photoreceptors and neural retina. AMD pathogenesis involves the metabolic ab-
normalities such as hypoxia, oxidative stress, and innate immunity responsible for the 
disease’s progression, ultimately leading to the loss of vision. AMD occurs predominantly 
in two forms, the atrophic or “dry” form and the neovascular or “wet” form. The various 
DAMPs involved in AMD pathogenesis are described in Table 7. 

The activation of the innate immune system results in the release of DAMPs such as 
S100 proteins, uric acid, HSPs, ATP, Aβ, HMGB1, IL-1α, mtDNA, ET-1, and SLRPs. The 
vitreous samples of AMD patients showed higher extracellular ATP levels. In wet AMD 
with sub-retinal hemorrhage, the release of extracellular ATP induced severe photorecep-
tor cell death [193,194]. The extracellular ATP triggers an inflammatory cascade via TLRs 
and NLRs. Both TLRs and NLRs can trigger nuclear translocation of NFκB and subsequent 
transcription of IL-1β and IL-18 proinflammatory components and activation of the 
NLRP3 inflammasome, leading to the proteolytic cleavage of precursors and the release 
of inflammatory cytokines [195]. 

Table 7. DAMPs in age-related macular degeneration. 

Disease DAMPs Type Origin Localization 
S100A7, S100A8, S100A9 

[196] 
Ca2+ binding protein Cytoplasmic Drusen/Retina 

Uric acid [197] Metabolic product Cytoplasmic Serum 
HSP40, HSP60, HSP70, 
HSP90 & small HSPs 

[198] 
Molecular chaperones Cytoplasmic Retina 

ATP [193] Nucleotide Cytoplasmic Vitreous 
Aβ [199] Peptide Cytoplasmic RPE/photoreceptors 

HMGB1 [7] 
HMGB2[200] 

Nuclear binding protein Nuclear 
RPE 

Photoreceptor 
IL-1α [201] Cytokine Cytoplasmic RPE 

dsRNA [202] Nucleic acid Nuclear  Drusen, RPE  
mtDNA [203] Nucleic acid Mitchondria RPE 

ET-1 [204] Ribonuclease A ER Plasma 

Perlecan [205]  Proteoglycan 
Plasma mem-

brane 
Retina 

Syndecan-4 [205]  Proteoglycan  
Plasma mem-

brane 
Retina 

Versican [206] Proteoglycan ECM RPE 
Heparan sulfate [207] Glycosaminoglycan ECM Bruch’s membrane 

Fibronectin [208] Glycoprotein ECM Basal deposits Tenascin-C [209] Glycoprotein ECM CNV membrane

LIF is reported to have a protective role in RPE. It has been characterized as a growth
inhibitor and anti-angiogenic molecule, which acts by activating the STAT3 pathway to pro-
tect choriocapillaris and possibly prevent atrophy associated with AMD [210]. The presence
of S100A7, S100A8, and S100A9 proteins in drusen of AMD patient retinas was confirmed by
LC-MS/MS and immunohistochemistry; however, the role of S100 proteins in AMD has not
been elucidated [196]. There is a strong relationship between hyperuricemia and AMD, and
an increase in serum uric acid was significant in neovascular AMD [197,211]. Increased HSP
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levels are also observed in the retina of AMD patients, as HSPs regulate protein turnover
in the RPE, and thus, provide protection in AMD [198]. However, HSP90 expressed from
necrotic RPE cells may function to trigger inflammatory responses in adjacent healthy
RPE cells in the retina [212]. HSP70 was proposed as an immunomodulatory protein, as
the overexpression of HSP70 significantly suppressed the production of proinflammatory
cytokines associated with AMD, along with the elevation of anti-inflammatory cytokines
IL-10 and TGF-β1. The extracellular HSP70 exhibits an anti-inflammatory effect by acting
on TLR2/TLR4-dependent inhibition of NFκB-driven nuclear translocation [213]. More-
over, intravitreal injection of HSP70 inhibits choroidal neovascularization (CNV)-associated
subretinal fibrosis by activation of IL-10 via TLR2/TLR4 receptors [214].

With aging, Aβ accumulates at the interface of the RPE and the photoreceptor outer
segment in the retina. Subretinal injection of Aβ peptide (1–42) induces retinal inflamma-
tion, followed by photoreceptor cell death via endoplasmic reticulum stress [199]. Aβ is
one of the key constituents of drusen and causes RPE dysfunction leading to retinal de-
generation. It is associated with the activation of microglia, astrocytes, and dendritic cell
activation; complement cascade; NFκB pathways; and cytokine production in retinal pig-
ment epithelial cells [215,216]. In the in vitro model of AMD, the RPE cells treated with
NaIO3, or H2O2, release HMGB1 from necrotic cells, which can enhance the generation of
IL-6 and TNF-α in macrophages and release inflammatory cytokines from RPE cells [7]. Fur-
ther, HMGB1 activates calveolin-1 and plays an important role in cellular senescence [217].
In the light-induced retinal degeneration animal model, HMGB2 causes photoreceptor
cell death by down-regulating nuclear factor erythroid 2-related factor/heme oxygenase-1
(Nrf2/HO-1) and up-regulating NFκB/NLRP3 signaling inflammatory pathways [200].
IL-1α serum concentrations are significantly increased in AMD patients [218,219]. IL-1α
released from stressed or dying RPE cells results in the secretion of other pro-inflammatory
cytokines. IL-1α is also known to prime the assembly of the NLRP3 inflammasomes in
the retina and stimulates the alteration of the cell death profile of damaged RPE cells from
apoptosis to pyroptosis, an inflammatory cell death pathway [201]. There was a significant
increase in double-stranded (ds)RNA in drusen and RPE in the human eye with geography
atrophy [202]. dsRNA enhanced inflammation and neurodegeneration in the retina by
receptor-interacting protein (RIP) kinase-dependent necrosis [220].

mtDNA damage has been suggested to increase with aging and lesions in RPE cells,
mainly from the macular region compared to the periphery. mtDNA damage was positively
correlated with the severity of AMD, contrary to the repair capacity. However, the role of
released mtDNA from damaged cells in AMD has not been described yet [203]. Although
mitochondrial damage was reported in AMD, TFAM changes have not been reported.
However, when human monocytic cell lines (THP-1) and human microglia were exposed to
rhTFAM, it induced the expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-8 [221].
The adeno-associated virus (AAV)-mediated delivery of calreticulin anti-angiogenic domain
(CAD180), along with a functional 112-residue fragment CAD-like peptide 112 (CAD112),
to a laser-induced CNV rodent model significantly attenuated neovascularization in mouse
eyes. However, the role of calreticulin in AMD needs to be further evaluated [222]. ET-1
significantly increased in the plasma of exudative and neovascular AMD [204].

A previous study suggested that the higher expression of HS proteoglycans (HSPGs)
in CNV lesions may be linked to endothelial dysfunction and increased capillary per-
meability [207]. Rat retinas with laser-induced CNV showed significant upregulation of
both perlecan and syndecan-4 compared to the control retinas. The expression profiles of
these proteoglycans were found not only to depend on the presence or absence of CNV,
but also on the size of the CNV-lesion [205]. Intravitreal injection of decorin significantly
inhibits laser induced CNV in a rodent model [223]. Decorin might exhibit anti-angiogenic
responses by acting as an inhibitor for multiple receptor tyrosine kinases, such as the
epidermal growth factor receptor (EGFR), the insulin-like growth factor receptor (IGFR),
and the Met hepatocyte growth factor receptor [224]. It has also been shown to decrease
hypoxia-induced VEGF expression by blocking the Met expression pathway and down-
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regulating the Ras-related C3 botulinum toxin substrate and HIF1-α [224]. Additionally,
the RPE cells with a high-risk genotype at 10q26 for AMD showed significantly enhanced
versican expression in the ECM [206]. The localization of HS in Bruch’s membrane (BM)
in AMD describes its regulatory role of CNV mainly via its interaction with various an-
giogenic growth factors, including fibroblast growth factor (FGF), VEGF, TNF-α, TGF-β,
and interferon (IFN)-γ [207]. In fact, collagen IV, laminins, and fibronectin are consistently
found in the basal deposits of AMD. Since the inhibition of fibronectin matrix assembly
in vitro also prevents collagen IV accumulation, it suggests that collagen IV deposition
relies on a pre-existing fibronectin matrix [208]. Fibronectin fragments stimulate the release
of proinflammatory cytokines, MMPs, and monocyte chemoattractant protein (MCP) from
murine RPE cells [225]. There is a strong association between plasma fibrinogen levels and
AMD [226]. Tenascin-C is expressed in CNV membranes in eyes with AMD. However, its
role in the pathogenesis of CNV remains to be elucidated [227]. Conversely, the intravitreal
administration of exogenous sulfated GAGs devoid of core protein was shown to be effec-
tive in reducing abnormal retinal or choroidal angiogenesis, implying that the type of core
protein bound to GAGs may not be important for their anti-angiogenic effects in vitro [116].

2.8. DAMPS in Proliferative Vitreoretinopathy and Rhegmatogenous Retinal Detachment

Proliferative vitreoretinopathy (PVR) is a significant rhegmatogenous retinal detach-
ment (RRD) complication. PVR is characterized by the growth and contraction of cellular
membranes within the vitreous cavity resulting in tractional retinal detachment. PVR is
primarily driven by fibrotic and inflammatory events involving several DAMPs, which are
described in Table 8.

Table 8. DAMPs in proliferative vitreoretinopathy and rhegmatogenous retinal detachment.

Disease DAMPs Type Origin Localization

LIF [130] Peptide Cytoplasmic Pre-retinal membrane

S100 [228,229] Ca2+ binding protein Cytoplasmic Epiretinal membrane/
subretinal fluid

HMGB1 [230] Nuclear binding protein Nuclear Vitreous

HSP47, HSP70 [231,232] Molecular chaperones Cytoplasmic RPE/inner segments

ATP [233] Nucleotide Cytoplasmic Vitreous/subretinal fluid

Histone-H3 [234] Nuclear binding protein Nuclear Vitreous/ detached retina

IL-1α [235] Cytokine Cytoplasmic Subretinal fluid

IL-33 [236] Cytokine Cytoplasmic Müller glia

Syndecan-1 [237] Proteoglycan Plasma
membrane Vitreous/subretinal fluid

Biglycan [238] Proteoglycan ECM Retina

Decorin [239,240] Proteoglycan ECM Vitreous/epiretinal membrane

Tenascin-C [240,241] Glycoprotein ECM Vitreous/epiretinal membrane

PVR/RRD
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The DAMPs such as S100, HMGB1, and histones were found to be upregulated in the
vitreous of the retinal detachment patients [229,230,234]. Additionally, high levels of S100
protein were observed in the vitreous and epiretinal membranes of PVR and proliferative
DR patients, describing its role for the inflammatory axis in the pathogenesis of proliferative
retinal disorders [228]. In another study, the PVR subretinal band in patients with chronic
recurrent retinal detachment demonstrated pigmented fibrocellular tissue with the foci of
cells staining positive for S100 and keratin peripherally, suggesting RPE differentiation [243].
The overexpression of LIF in transgenic mice resulted in pre-retinal membrane formation,
contraction, and retinal detachment [130].
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HMGB1 plays an essential role in fibrosis in both proliferative DR and PVR. There
is a significant increase in HMGB1 in the epiretinal membrane in proliferative DR and
PVR [244]. There is also an increase in HMGB1 in the vitreous humor of patients with
proliferative DR and retinal detachment compared to patients with retinal detachment
alone [245]. Under hypoxia, RPE cells secrete HMGB1. Additionally, HMGB1 can up-
regulate the expression of angiogenic and fibrogenic factors in ARPE-19 cells, including
VEGF, basic FGF, TGF-β2, and connective tissue growth factor (CTGF), via TLR4 and the
RAGE-dependent NFκB pathway [246]. HMGB1 released from the dying cells activates ERK
phosphorylation and potentially promotes RPE proliferation and migration, contributing
to retinal detachment [230]. HSP47 is linked to increased fibrosis in ARPE-19 cells [231] and
significantly inhibits photoreceptor cell death in animal models of retinal detachment [232].
There is significant increased HSP70 expression in the subretinal fibrosis model. HSP90
was found in samples of idiopathic epiretinal membranes, and its expression appears to
be correlated with the presence of TGF-β receptor II and αSMA. HSP90 is involved in
retinal fibrosis via the TGF-β1-induced transduction pathway in Müller glia [247]. There
is a significant increase in extracellular ATP in the vitreous and subretinal space of RRD
patients compared to patients with macular holes and epiretinal membranes [233]. In the
ATP-induced retinal degeneration feline model, fibrotic tissue ultimately displaced the
neural retina in the worst affected area [248]. However, the role of released ATP in fibrosis
is not studied yet. Another DAMP member, histone H3, was found on the outer side of
the detached retina and was associated with photoreceptor death in the rat model [234].
Additionally, there is a significant increase in IL-1α concentrations in primary RRD subjects
due to PVR. Since IL-1 induces RPE cell migration and its intravitreal injection leads to
the breakdown of the blood–ocular barrier, IL-1 has been suggested to be an important
candidate in the activation processes that lead to PVR development [235]. Müller glia is
a primary source of IL-33 in the retina. IL-33 is known for its profibrotic function and
increases retinal fibrosis after laser injury [236,249]. IL-33 deficiency enhanced retinal cell
death and gliosis after retinal detachment with sustained subretinal inflammation from
infiltrating macrophages [250,251].

Among proteoglycans, soluble syndecan-1 was significantly high in the vitreous and
subretinal fluid collected from RRD eyes. The increase in syndecan-1 concentrations in
the subretinal fluid was positively correlated with a longer duration of retinal detachment
and negatively correlated with younger age [237]. After retinal detachment, there was a
significant increase in biglycan gene expression after seven days of retinal detachment [238].
However, the release of biglycan in the retina or vitreous has not been studied in RD
patients or animal models. Further, the hyaluronic acid concentration in the retinal detach-
ment patient was significantly lower than in the control group. Hyaluronidase activity was
significantly higher in the vitreous humor of patients with RRD. Contrarily, the vitreous
humor contained hyaluronic acid of high molecular mass in the control group [251]. There
is also a significant increase in decorin in the epiretinal membrane of PVR and prolifera-
tive DR patients [240]. The vitreal decorin concentrations significantly increased in RRD
patients who did develop PVR; however, they did not reliably predict the outcome [239].
There is a significant increase in tenascin-C in the epiretinal membrane and vitreous of
both proliferative DR and PVR patients [240,241,252]. Tenascin-C is expressed at lower
levels in most adult tissues but is transiently upregulated during acute inflammation and is
continuously expressed during chronic inflammation and tissue repair [227]. It was pre-
dicted to play a role in fibrovascular membrane formation and angiogenesis in proliferative
DR [227]. Fibronectin also plays a vital role in retinal detachment. Intravitreal adminis-
tration of fibronectin and platelet-derived growth factor (PDGF) was sufficient to induce
the resultant retinal detachment in the rabbit model [253]. There was a strong correlation
between fibrinogen plasma levels and the clinical features of RRD, which supported the
role of fibrinogen in retinal detachment [242].
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2.9. DAMPs in Inherited Retinal Disorders

Inherited retinal disorders (IRDs) are a group of rare retinal degenerative disorders
that cause severe vision loss due to gene mutations in more than 300 genes, and lead to reti-
nal photoreceptor cell death. IRDs include syndromic forms such as Usher syndrome and
non-syndromic forms such as Retinitis Pigmentosa (RP), Leber’s congenital amaurosis, Star-
gardt’s macular dystrophy, choroideremia, and congenital stationary night blindness [254].
RP is the most common group of IRDs characterized by the slow degeneration of rod and
photoreceptors, ultimately leading to the loss of central vision [255]. The DAMPs active
during IRDs are described in Table 9.

Table 9. DAMPs in inherited retinal diseases.

Disease DAMPs Type Origin Localization

S100A1, S100A16 [256] Ca2+ binding protein Cytoplasmic Müller glia

LIF [67] Peptide Cytoplasmic Müller glia

Uric acid [257] Metabolic product Cytoplasmic Serum

HSP70 [258] Molecular chaperones Cytoplasmic Photoreceptors

Aβ [259] Peptide Cytoplasmic GCL/sub-RPE deposits

HMGB1 [260] Nuclear binding protein Nuclear Vitreous

HS [261,262] Glycosaminoglycan ECM Photoreceptors

IRD
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S100A1 and S100A16 gene expression were significantly high in the Müller glia of
retinal-degeneration rd1 mice. S100 proteins are cell-cycle-progression, differentiation, and
microtubule-assembly inhibitors, indicating their role in neurodegeneration [256]. In the
animal models of retinal degeneration, photoreceptor cell death strongly induces the expres-
sion of LIF in a subset of Müller glial cells in the INL of the retina. On the other hand, in the
absence of LIF, Müller glial cells remain quiescent and retinal degeneration is enormously
accelerated. Further, supplementation of external LIF significantly delays photoreceptor
degeneration in the RP model, suggesting their protective role in the retina [67]. Serum
uric acid concentrations were significantly high in RP patients and rats with IRD. However,
the uric acid content in the retina, brain, and liver was approximately the same as in the
controls [257]. Though uric acid has antioxidant properties and plays a neuroprotective
role in the brain, its role in RP has yet to be determined.

In IRDs, HSP70 can serve as chaperones against photoreceptor death. The protective
role of HSP expression in retinal degenerative disorders has also been confirmed by some
laboratory studies, especially concerning oxidative stress [258]. There was a significant
increase in the immunoreactivity of Aβ in RGC of eyes with RP, as well as patchy staining
of Aβ within sub-RPE deposits, indicating its role in retinal degeneration [259]. In the
vitreous humor of RP patients, the HMGB1 level was significantly elevated and associated
with necrotic cone-cell death [260]. Additionally, there was a significant increase in HS
and chondroitin sulfate in photoreceptor degeneration, irrespective of the IRD model used,
similar to their degenerative role in the brain [261,262].

3. DAMP-Driven Signal Transduction in Retinal Disorders
3.1. RAGE Pathway

DAMPs such as S100 proteins, HMGB1, Aβ, and TFAM act on the RAGE receptor
located on the plasma membrane through the adaptor molecule MyD88 (Figure 1) [1].
The interactions of DAMPs and the RAGE signaling pathway have been implicated
in an array of retinal disorders such as uveitis, ischemic retinopathies, DR, AMD, and
PVR [10,110,228,263]. The interaction of DAMPs with RAGE receptors activates NFκB
via AKT, ERK, and p38 signaling pathways, actuating the transcription of cytokines,
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chemokines and other inflammatory mediators (CCL2, CCL5, CXCL10, CXCL12 TNF-
α, IL-1β, IL6, ICAM-1, VCAM-1, NOS-2) [110,263] involved in retinal disorders (Figure 1).
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Figure 1. Overview of the DAMPs activating the RAGE pathway. The receptor for advanced glycation
end-products (RAGE) is a multi-ligand protein that integrates the immunoglobulin superfamily of
receptors. RAGE recognizes a variety of DAMPs including S100, high mobility group box 1 protein
(HMGB1), Amyloid beta (Aβ), and transcription factor A mitochondrial (TFAM). RAGE activation
leads to downstream NFκB signaling and transcription of inflammatory factors.

3.2. TLR Pathway

The innate immune system is the first line of defense against injury in the retina.
DAMPs and PAMPs released by injured retinal cells are recognized by PRRs such as
TLRs. The interaction of DAMPS with TLRs has been highly explored in retinal disorders
(Figure 2), including endophthalmitis, uveitis, glaucoma, ischemia-reperfusion injury, DR,
and AMD [4,11,264–267]. It is interesting to note that TLR2 function in light-induced
retinal degeneration showed sex dependency. In this study, male mice showed significant
dependency on TLR2 receptor. The loss of TLR2 in female mice did not impact photorecep-
tor survival but compromised stress responses, microglial phenotype and photoreceptor
survival in male mice [268]. In another study, the treatment of the DNA alkylating agent
methyl methanesulfonate induces photoreceptor degeneration in wild-type male mice
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regulated by poly(ADP-ribose) polymerase 1 (PARP1) activation and cytoplasmic translo-
cation of HMGB1, whereas wild-type female mice are partially protected. Additionally,
PARylation was significantly higher in methyl-methanesulfonate-treated male mice and
muted in female mice, resulting in enhanced HMGB1 cytoplasmic translocation in male
mice. Further, methyl methanesulfonate showed enhanced gliosis and cytokine expression
as compared to the retina of female mice [269].
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Figure 2. Overview of DAMPs activating the toll-like receptor (TLR) pathways. TLRs recognize a
variety of DAMPs. Defensin activates TLR1; biglycan, decorin, versican, LMW hyaluronan, S100, HSP,
Aβ, histones, HMGB1, and ET-1 activate TLR2; biglycan, decorin, LMW hyaluronan, HS, fibronectin,
tenascin-C, S100, HSP, uric acid, Aβ, histones, HMGB1, HMGN1, ET-1, defensins, granulysin, synde-
can, and glypican are reported to activate TLR4; versican activates TLR6; RNA activates TLR3, 7 and
8; and DNA activates TLR9. When TLRs are stimulated by DAMPs they dimerize and recruit down-
stream adaptor molecules, such as myeloid differentiation primary-response protein 88 (MyD88),
and TRIF-related adaptor molecule (TRAM), which directs downstream molecules, leading to the
activation of signaling cascades that converge at the NFκB, activator protein 1 (AP1), and interferon
response factors (IRFs).

3.3. NLRP3 Inflammasome

The nucleotide-binding and oligomerization domain NLRs are multi-domain, cytosolic
receptors involved in the activation of signaling cascades in ocular disorders. The activation
of NLRP3 by DAMPs has been reported in various retinal disorders such as endophthalmi-
tis, uveitis, glaucoma, ischemic retinopathies, DR, AMD, and IRDs [12,74,254,270–273].
We recently reported the role of NLRP3 inflammasome in proliferative DR [12]. Various
DAMPs such as biglycan, LMW hyaluronan, uric acid, and Aβ, after cellular internalization,
are processed by the lysozyme. The cathepsin released by this process activates NLRP3
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signaling, whereas biglycan, ATP, Aβ, and cathelicidin can directly activate NLRP3 via the
P2X7 receptor, a purinergic receptor (Figure 3). DAMPs stimulate inflammasome forma-
tions, which are large intracellular multiprotein complexes (MRC) consisting of NLR family
sensory proteins (NLRPs), apoptosis speck-like adaptor protein (ASC), and caspase-1 for
the production and secretion of IL-1β, leading to further enhancement in photoreceptor
cell death by pyroptosis [274]. Additionally, LMW hyaluronan interacts with CD44 and
activates the NLRP-3 inflammasome [1,74,198,254,270–273]. Furthermore, ATP is released
by the apoptotic and necrotic cells and acts as a neurotransmitter and as a gliotransmitter
in the retina to recruit macrophages and microglia. Once ATP binds P2X7, it activates
the protein kinase C/MAP kinase pathway that leads to the release of chemokines and
pro-inflammatory cytokines [275].
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Figure 3. Overview of DAMPs activating the NLRP3 inflammasome. The first step in the 2-step
process involves activation and translocation of NFκB into the nucleus to regulate the transcription of
the oligomerization-like receptor pyrin-domain-containing protein 3 (NLRP3) inflammasome genes.
The second step is actuation of NLRP3 inflammasome mediated by (a) DAMPs such as biglycan,
LMW hyaluronan, uric acid, and Aβ to release cathepsin from lysosomal degradation; (b) K+ efflux
via P2X7 receptor activation by DAMPs such as biglycan, ATP, Aβ, and cathelicidin; and (c) CD44
activation by LMW hyaluronan caspase-1 signaling pathway leading to caspase-1 activity and the
release of mature IL-1β.
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3.4. Other Pathways

DAMPs can also activate several other pathways in retinal disorders (Figure 4). The
activation of NFκB and AP-1 via CD14 receptors, along with TLR2 or 4, has been reported in
various retinal disorders such as endophthalmitis, glaucoma, and DR [1,11,12,70]. Further,
the regulation of NFκB and AP-1 by IL-33 and IL-1α via MYD88 has been reported in AMD,
glaucoma, DR and PVR [1,201]. Calreticulin and HSP are reported to interact through
CD91 and undergo MHC-II antigen representation through proteasomal degradation. Simi-
larly, F-actin interacts through a dendritic-cell-specific receptor (DNGR-1) and undergoes
endosomal processing and MHC-1 antigen representation [1].
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Figure 4. Overview of DAMPS activating other pathways: (a) In CD14-dependent pathway, DAMPs
such as biglycan, versican, HSP60, and HSP70 activate TLR2, whereas DAMPs such as biglycan,
HSP60, HSP70, S100A8, and S100A9) activate TLR4 signaling. After TLRs become activated, they
dimerize and recruit downstream adaptor molecules, such as myeloid differentiation primary-
response protein 88 (MyD88), initiating downstream signaling cascades that converge at NFκB and
AP1 and leading to the transcription of inflammatory factors; (b) in ILR1/ST2 signaling pathway,
DAMPs such as IL-1α and IL-33 can signal through IL1R1/IL1RAP. IL-1 or IL-33 activate the het-
erodimeric signaling receptor complex formation of IL1R1/IL1RAP, which creates the scaffold for
MyD88 dimerization converging to NFκB pathway; (c) in CD91 signaling pathway, DAMPs such
as calreticulin, HSP60, and HSP70 interact with CD91, which leads to endocytosis of calreticulin or
HSPs and proteosome degradation, and cross-presentation of the chaperoned antigens culminating
in co-stimulation of T cells; (d) in DNGR1 signaling pathway, F-actin interacts with DNGR1, which
signals through the spleen tyrosine kinase (SYK), diverting phagocytosed cargo toward endosomal
compartments, leading to cross-presentation and generation of resident memory CD8+ T cells.
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4. Therapeutic Implications of DAMPs

In retinal disorders, DAMPs are released by necrotic and apoptotic cells to elicit
multiple downstream signaling effects to activate the innate immune system. The emerging
evidence from preclinical and clinical studies suggests that DAMPs play both pathogenic
and protective roles in retinal disorders. A deeper understanding of the mechanisms of
DAMPs will open new opportunities to discover potential biomarkers, therapeutic agents,
and therapeutic targets to combat retinal disorders.

4.1. DAMPs as Biomarkers

The release of DAMPs may promote chronic and sterile inflammation involved in
the pathogenesis of several retinal disorders. Consequently, DAMPs can be valuable
diagnostic and prognostic biomarkers in retinal disorders. The potential biomarkers for
retinal disorders are tabulated in Table 10.

Table 10. DAMPs as biomarkers.

Disorders DAMPs Plasma/
Serum Tear Vitreous Aqueous Refs

HMGB1 × × X × [20]
IL-1α × × X × [23]Endophthalmitis
SAA X × × × [27]
S100 × X × × [30]
HSP X × × × [32]Uveitis
SAA × × × X [33]

Uric acid X × × × [48]
ATP × × X X [50]
Aβ × × × X [51]

Histone X × × × [52]
HMGB1 × × × X [53]

IL-1α × × × X [54]
Decorin × × × X [58]

Glaucoma

SAA X × × × [65]
Uric acid × × × X [88]Ocular cancer

DNA X × × × [92]
HMGB1 × × X × [110]Ischemic

Retinopathies IL-1α X × × × [112]
S100A8, S100A9 X × × × [5]

HMGB1 × × X × [148]
Uric acid X × X × [149]

Cyclophilin A X × × × [151]
Cathelicidin X × × × [154]

Defensins X × × × [155]
Syndecan X × × × [156]
Decorin X × × X [157,158]
Versican X × × × [159]

LMW hyaluronan × X X × [160]
HS × × X × [160]

Fibronectin X × X X [34]
Fibrinogen X × × × [164]

Diabetic
Retinopathy

Tenascin-C × × X × [165]
Uric acid X × × × [197]

ATP × × X × [193]AMD
ET-1 X × × × [204]
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Table 10. Cont.

Disorders DAMPs Plasma/
Serum Tear Vitreous Aqueous Refs

HMGB1 × × X × [19]
ATP × × X × [233]

Histone × × X × [229,234]
Syndecan × × X × [237]
Decorin × × X × [239]

Tenascin-C × × X × [241]

PVR/RRD

Fibrinogen X × × × [242]
IRD Uric acid X × × × [257]

HMGB1 × × X × [260]
The DAMPs are represented by X for their presence and × for their absence.

DAMPs may have utility in designing treatment modalities [23]. In juvenile idiopathic-
arthritis-associated uveitis, measurement of S100 levels from the serum, aqueous humor
and tears help to determine the severity/mitigation of the disease. However, the serum
may not provide representative local inflammation, and access to the aqueous humor
may not be viable. On the contrary, tears are easily accessible and the development of
assays/methods to measure S100 may offer a more precise way to quantify disease activity,
in addition to the current grading of anterior chamber cells by Standardization of Uveitis
Nomenclature criteria [30]. The diagnosis of Behcet’s disease (BD) uveitis in early stages
has been problematic, which may be resolved by measuring serum levels of HSP-70 for BD
uveitis [32]. Similarly, the measurement of serum S100A8/S100A9 concentrations in the
various stages of diabetic retinopathy could provide a greater clue for the progression of
the disease [5]. DAMP biomarkers may provide earlier diagnoses and risk assessments,
possibly catering to safe, personalized treatment to individual patients. However, the
major limitations to their application as biomarkers could be their versatile nature and
activation in multiple diseases. For example, HMGB1 levels were increased in the vitreous
of endophthalmitis, IR, DR, PVR/RRD, and IRDs (Table 10). Therefore, a secondary
diagnostic procedure or signature panel of DAMPs might be instrumental to identify
retinal disorders.

4.2. DAMPs as Therapeutic Targets

The excessive production of DAMPs in response to infection, inflammation, or injury
has led to the discovery of several proteins and molecules that can be targeted to develop
novel therapeutics or repurpose existing drugs to treat retinal disorders. The potential drug
targeting DAMPs suggested in the retinal disorders are tabulated in Table 11. Exploring
DAMPs as therapeutic targets for developing new treatments for chronic disorders, in-
cluding DR, AMD, glaucoma and PVR, involves tight regulation of the immune responses
to retinal injury. In addition, DAMP-targeted therapies could enable the modulation of
excessive inflammatory cascade triggered during the sterile inflammation. For example,
glycyrrhizin reduces diabetes-induced neuronal and vascular damage by inhibiting inflam-
mation, specifically by activating HMGB1 through the sirtuin 1 (SIRT1) pathway. Similarly,
uveitis may be targeted by inhibiting interphotoreceptor retinoid-binding-protein (IRBP)-
specific T cell proliferation and their IFN-γ and IL-17 production [276]. Further, DAMPs
such as HMGB1 have been studied as a therapeutic target in multiple retinal disorders,
including antibody-based therapies; protein, oligonucleotide, and small molecule inhibitors;
blockage of HMGB1-receptor signaling; and targeting with miRNAs [31,276–278]. How-
ever, special consideration is warranted for considering DAMPs as therapeutic targets. It is
essential to discriminate the deleterious role of the DAMPs (usually long-term), contrary to
the innate immune responses initiated in the early stage of the disease progression (protec-
tive role). Recently, we found increased aqueous humor decorin concentrations associated
with the progression of diabetic retinopathy [157]. Additionally, the most effective way to
target DAMPs in the retina is cell- and location-dependent (intracellular or extracellular).
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Thus, long-term targeting of DAMPs may prevent them from initiating regulatory T cells
(Tregs) and promote immunosuppression [279].

Table 11. DAMPs as therapeutic targets.

Retinal Disorders Drug DAMPs Action Refs

Uveitis HMGB1 Ab
Glycyrrhizin HMGB1 Inhibition of IRBP-specific

T cell proliferation [31]

Glaucoma Brilliant Blue G and
N-methyl-d-aspartic acid ATP Antagonists of the P2X7R [280]

Ocular cancer Ansamycins HSP90 G1 Arrest [281]

miR34A and miR-22 HMGB1 Act on autophagy, migration, and
invasion of RB cells [277,278]

Cyclosporin A TFAM Preserves TFAM [113]
Coenzyme Q10 TFAM Preserves TFAM [282]

Ischemic
retinopathies

Brimonidine TFAM Preserves TFAM [114]

Diabetic
retinopathy

Tasquinimod
Glycyrrhizin

S100
HMGB1

Inhibits angiogenesis via TSP-1,
VEGF, ICAM-1 and ERK1/2

Acts on HMGB1 via SIRT1 and
provides neurovascular protection

[276,283]

AMD Geldanamycin HSP90 Inhibits VEGF and HIFα [284]
Anti-histone
Antibodies Histone Reduced retinal damage [234]PVR/RRD

Geranylgeranylacetone HSP70 Activation of Akt pathway [232]

4.3. DAMPs as Therapeutic Agents

DAMPs such as decorin, LIF, defensins, IL-33, syndecan-1, and SAA have been de-
scribed for their anti-inflammatory, anti-angiogenic or anti-fibrotic properties, and are
presented in Table 12. Harnessing these DAMPs as therapeutic agents or therapeutics
is an attractive novel therapeutic strategy against retinal disorders, which will perhaps
find its way into future routine treatment modalities. The availability of DAMPs during
injury or infection is vital for providing the essential host defense system and restoring
homeostasis in the injured tissues. Cathelicidins act as an anti-microbial agent on many
pathogens, including Gram-positive and Gram-negative bacteria, fungi, parasites, and
enveloped viruses in vitro. Cationic cathelicidins can bind and disrupt negatively charged
membranes, leading to microbial cell death. These peptides can also cross membranes and
target intracellular processes such as RNA and DNA synthesis, impair the functions of
enzymes and chaperones, and can stimulate protein degradation [285]. However, under
physiological circumstances, most cathelicidins are impaired by high salt concentrations,
sugars, and other host or microbial factors [285]. IL-33 is upregulated in the uveitis retina
depicting its anti-inflammatory role. However, its effects are model- and disease-specific.
Thus, considering IL-33 as a therapeutic agent needs a complete understanding of its func-
tion in the pathological microenvironment [45]. HSP70 binds to TLR2/TLR4 and exhibits
anti-inflammatory properties via secretion of IL-10 and TGF-β in AMD. Contrarily, the
extracellular HSP70 has been suggested to have a pro-inflammatory effect. Hence, it is too
early to predict the use of HSP-70 as an anti-inflammatory agent. Decorin binds to TGFβ
with high affinity and is known for its anti-fibrotic role compared to traditional anti-fibrotic
adjuvants such as mitomycin-C and 5-fluorouracil [286,287]. Nevertheless, it has both
pro-and anti-angiogenic properties [224]. Similarly, anti-angiogenic therapeutic DAMPs
such as LIF, HS, and IL-33 are also in the early stages and their safety and efficacy profile is
awaited for retinal disorders. Therefore, the application or inhibition of DAMPs must be
designed under strict caveats and precautions using the therapeutic window during the
progression of retinal disorders.
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Table 12. DAMPs as therapeutic agents.

Retinal Disorders DAMPs Therapeutic
Property

Signaling
Pathway Refs

Endophthalmitis Cathelicidin Anti-microbial TLRs [26]

Uveitis IL-33 Anti-inflammatory Macrophage
M2 polarization [45]

Glaucoma Decorin Anti-fibrotic Inhibits TGF-β [286]

Diabetic
retinopathy

LIF
HS

Anti-angiogenic
Anti-angiogenic

HIF-1α and VEGF
Inhibiting

VEGF-VEGFR2 binding
[116,288]

LIF Anti-angiogenic STAT3 pathway [210]
HSP70 Anti-inflammatory TLR2/TLR4 [213,214]AMD
IL-33 Anti-angiogenic Not known [289]

5. Conclusions and Future Directions

In this comprehensive review, we have: (i) described the role of DAMPs in various
retinal disorders; (ii) demonstrated that DAMP-driven signaling pathways are involved in
the pathogenesis of retinal disorders, and iii) discussed the possibility of DAMPs acting
as biomarkers, therapeutic targets, and therapeutic agents for the management of vision-
threatening retinal disorders.

Epigenetic mechanisms have emerged as critical modulators of the host defense system
in the retina. Epigenetic modifications have been implicated in various retinal disorders,
including uveitis, glaucoma, ocular cancer, IR, DR, AMD, PVR, RRD, and IRDs [290].
Though the role of DAMPs in epigenetic modifications in retinal diseases has not been
directly evaluated, excessive or persistent DAMP-mediated signaling cascades may initiate
epigenetic changes in chronic retinal diseases such as DR, AMD, and PVR [143,213,250,291].
Additionally, following severe or prolonged damage, a loss of intracellular DAMPs in-
creases genomic instability and may cause epigenetic alteration [292]. DAMPs such as
biglycan, ATP, Aβ, and cathelicidin can directly activate NLRP3 via the P2X7 receptor,
promoting the inflammatory response (Figure 3). The expression of the P2X7 receptor is
controlled via promoter methylation in neurodegenerative diseases [293]. The extracellular
HMGB1 interacts with RAGE and TLR receptors in retinal diseases (Figures 1 and 2) to
actuate inflammatory pathways [228,264]. HMGB1 may act as an epigenetic modifier that
leads to the silencing of TNF-α and IL-1β responses [294]. Therefore, future in-depth
studies are required to completely understand the epigenetic changes caused by DAMPs in
retinal disorders. The diverse nature of the retinal cell types and their neuronal circuity
complicates our understanding of the cell-specific immune responses and the release of
DAMPs in various retinal disorders. Therefore, future studies are warranted to identify
the DAMPs involved in the molecular mechanisms of retinal diseases, employing single-
cell or cell-specific proteomic signatures to identify/design or repurpose next generation
therapeutics for retinal disorders.
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