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Abstract

Life course epidemiology has used models of accumulation and critical or sensitive

periods to examine the importance of exposure timing in disease aetiology. These mod-

els are usually used to describe the direct effects of exposures over the life course. In

comparison with consideration of direct effects only, we show how consideration of total

effects improves interpretation of these models, giving clearer notions of when it will be

most effective to intervene. We show how life course variation in the total effects de-

pends on the magnitude of the direct effects and the stability of the exposure. We discuss

interpretation in terms of total, direct and indirect effects and highlight the causal as-

sumptions required for conclusions as to the most effective timing of interventions.
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Introduction

In this article we explain how interpretation of life course

models can change when total effects are considered in

addition to direct effects, giving a clearer idea of when

intervention may be most effective and of the pathways an

intervention needs to act on. The article covers principles

of how the direct, indirect and total effects of a repeated

exposure are related. It concludes discussing how the total,

direct and indirect effects can inform the timing and evalu-

ation of interventions, and the assumptions regarding con-

founding that are required. This article focuses on concepts

and is intended as supplementary to more mathematical/

technical treatments of how total, direct and indirect ef-

fects should be estimated.1–4

Key Messages
• Life course models that consider the total effects of exposure improve interpretations regarding the most effective

timing of interventions.

• The magnitude of direct effects and the stability of exposure are both important determinants of how the total effects

of exposure vary over the life course.

• Interpretations from life course models regarding effective timing of interventions require a range of causal

assumptions.
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A starting point for life course epidemiology is the mod-

els of accumulation and critical or sensitive periods.5

Figure 1a describes these models, showing an exposure X

having an influence on a health outcome Y. X is measured

at three time points, at different life stages. The paths a, b

and c refer to the effects of X at each time point on Y, that

is, the expected change in Y caused by a unit change in X

at that time point. Accumulation models suggest that tim-

ing is irrelevant (i.e. a¼ b¼ c): an exposure has an equal

effect whenever it is experienced and thus it is the duration,

rather than the timing of exposure, that is important.

Sensitive period models suggest an exposure has a height-

ened effect at one time compared with other times (e.g.

a> b and b¼ c). This can be generalized to allow for vari-

ation in the effect of the exposure over time (e.g. a> b> c).

Critical period models posit that timing is vital: an expos-

ure only has an effect if experienced within a particular

time window (e.g. a>0 but b¼ c¼0, i.e. a special case of

the sensitive period model).

Accumulation and critical/sensitive period models de-

scribe variation in the magnitude of effects over the life

course, typically referring to the direct effects of exposure.

Further elaboration of these models has included links be-

tween exposures over time. This is illustrated by paths d

and e in Figure 1b, representing the effects on X at a later

time point from X at earlier times. This has allowed for

further ‘pathways’ models such as the ‘chain of risk trigger

model’, where a¼b¼0, and c, d and e are all > 0, or the

‘chain of risk additive model’ where all paths have effects >

0.5,6 Such pathways models are useful for any exposure

that tracks over time [examples could include smoking,

body mass index (BMI), mental health, socioeconomic

disadvantage].

Acknowledging paths d and e means life course models

can be placed in a mediation framework,7 allowing for a

distinction between total, direct and indirect effects. The

total effect of exposure X1 on Y, for example, can be

decomposed into a direct effect of X1, and indirect effects

via X2 and X3.1,2,4,8 If the arrows in Figure 1 represent re-

gression coefficients, with a-c coming from the same model

for Y, the direct effect of X1¼ a, whereas indirect effects

are calculated by multiplying the relevant coefficients (i.e.

d*b for the indirect effect of X2 and d*e*c for X3). The

sum of these direct and indirect effects then gives the total

effect of X1 on Y. This is known as the ‘product of coeffi-

cients’ method and holds when all variables are continuous

and are related in a linear fashion without interactions and

none of the associations are confounded.2,9,10 Coefficients

from such models are often standardized, but these prin-

ciples apply regardless of metric.8 These may be restrictive

conditions (and we return to these later), but this simple

case is useful conceptually. Seen this way, it is recognizable

that the terms of accumulation or critical/sensitive periods

might alternatively describe variations in the magnitude of

the total effects of exposure over the life course, rather

than variation in the direct effects only.

Interdependence of total and direct effects

Knowing the direct effects of an exposure allows some in-

ference regarding life course variation in the total effects,

as shown in Table 1. The implied life course variation in

total effects is sometimes different from life course

Table 1. Life course models for total effects implied by different models of direct effects where exposures track over time

Life course model for direct effects Total effect Implied life course model for total effectsa

X1¼ a þ (d*b) þ (d*e*c) X2¼b þ (e*c) X3¼ c

Early critical period

(a>0 and b¼ c¼0)

a 0 0 Early critical period

Late critical period

(c>0 and a¼b¼0)

d*e*c e*c c Late sensitive period d*e*c < e*c < c

Accumulation (a¼b¼ c) a þ (d*a) þ (d*e*a) a þ (e*a) a Early sensitive period

a þ (d*a) þ (d*e*a) > a þ (e*a) > a

Early sensitive period (a>b> c) a þ (d*b) þ (d*e*c) b þ (e*c) c Early sensitive period

a þ (d*b) þ (d*e*c) > b þ (e*c) > c

Late sensitive period (a<b< c) a þ (d*b) þ (d*e*c) b þ (e*c) c Depends on the relative magnitude of paths a-e

aAssuming 0< d< 1 and 0< e< 1; outside this simplifying assumption the conclusions in this column may not always hold. Specifically, with coefficients > 1 a

late critical period model for the direct effects implies an early rather than a late sensitive period model for the total effects, whereas other conclusions hold. With

coefficients < 0, which would be unusual for a repeated exposure, the pattern of total effects will depend on the relative magnitude of the paths a-e.

Figure 1. Health and risk exposures over time.
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variation in direct effects. Assume that paths d and e in

Figure 1b have coefficients somewhere between 0 and 1,

representing some but not total stability in the exposure

over time (see footnote to Table 1). If the direct effects fol-

low an early critical period model where a> 0 but

b¼ c¼ 0, then the total effects will also follow an early

critical period model. Since b and c are both 0, there are no

indirect effects and the total effect of X1¼ a. X2 and X3

will have total effects equal to 0 because they can only in-

fluence Y via paths involving b or c. However, if the direct

effects follow a late critical period model (c> 0 but

a¼ b¼ 0), then the total effects follow a sensitive period

model where the later exposure X3 has the greatest total ef-

fect, but X1 and X2 also have total effects, albeit weaker

than for X3 because they are indirect.

If the direct effects follow an accumulation model

where a¼ b¼ c, then the total effects will follow a sensitive

period model where earlier exposures have progressively

stronger total effects. This is because earlier exposures

combine indirect effects through later exposure with the

direct effects of exposure. Similarly, earlier exposures will

also have stronger total effects than later exposures where

the direct effects follow an early sensitive period model

(i.e. a> b> c), though the relative difference between the

total effects of earlier and later exposures will be more dra-

matic. However, if the direct effects follow a late sensitive

period model (a< b< c), then the relative magnitude of the

total effects depends on the relative magnitude of the direct

effects (a-c) and the stability of the exposure (d-e). Where

direct effects follow early sensitive/critical period or late

critical period models, inferences from total effects regard-

ing when to intervene will be concordant with those from

direct effects. However, for accumulation and some late

sensitive period models of direct effects, inferences from

total effects regarding when to intervene will be discordant

with those from direct effects. Further, Table 1 shows that

where direct effects follow accumulation or early sensitive/

critical period models, total effects will be stronger for ear-

lier than for later exposures. Only for late critical/sensitive

period models of the direct effects can total effects be

stronger for later than for earlier exposures.

For many models shown in Table 1, the degree to which

the total effects emphasize earlier or later exposures will

depend on the magnitude of the direct effects (a-c) and the

stability of the exposure (paths d-e). Table 2 uses some ar-

bitrary effects sizes (labelled ‘low’, ‘mid’ and ‘high’ relative

to each other) to demonstrate what happens when the

magnitude of the direct effects changes (keeping the stabil-

ity of the exposures constant). The last row of Table 2

compares the total effect of X1 to that of X3. The total ef-

fect of X1 is always larger than that of X3 for accumulation

and early sensitive or critical period models, but as the

magnitude of the direct effects ranges from low to high, the

difference between the total effects of X1 and of X3 in-

creases. In contrast, for the late sensitive period model

where later exposures have larger effects, the relative im-

portance of X1 and X3 can reverse as the magnitude of the

direct effects ranges from low to high. In the provided ex-

ample, where direct effects are small X3 has a larger total

effect than X1, with medium direct effects X1 and X3 are

almost equivalent, and where direct effects are large X1

has a larger total effect than X3. This is not inevitable but

additionally depends on the relative magnitude of the dir-

ect effects. Where later exposures have very strong direct

effects relative to earlier ones (e.g. a late critical period

model), stronger direct effects will result in the total effect

of X3 being stronger relative to X1.

Table 3 demonstrates what happens when the stability

of the exposure changes which, with direct effects kept

constant, can only impact on the total effects via the indir-

ect effects. Where the direct effects follow an accumulation

or early sensitive period model, the total effect of X1 is

Table 2. Comparison of total effects when the magnitude of direct effects varies

Life course model

for direct effects

Accumulation

(a¼b¼ c)

Early sensitive

period (a>b> c)

Early critical period

(a>0; b¼ c¼0)

Late sensitive period

(a<b< c)

Late critical period

(a¼b¼0; c>0)

Magnitude of direct effects Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Effect sizes:

a 0.3 0.5 0.7 0.5 0.7 0.9 0.5 0.7 0.9 0.1 0.3 0.5 0.0 0.0 0.0

b 0.3 0.5 0.7 0.3 0.5 0.7 0.0 0.0 0.0 0.3 0.5 0.7 0.0 0.0 0.0

c 0.3 0.5 0.7 0.1 0.3 0.5 0.0 0.0 0.0 0.5 0.7 0.9 0.5 0.7 0.9

d 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

e 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Total from X1 0.53 0.88 1.23 0.68 1.03 1.38 0.5 0.7 0.9 0.38 0.73 1.08 0.13 0.18 0.23

Total from X2 0.45 0.75 1.05 0.35 0.65 0.95 0.0 0.0 0.0 0.55 0.85 1.15 0.25 0.35 0.45

Total from X3 0.30 0.50 0.70 0.10 0.30 0.50 0.0 0.0 0.0 0.50 0.70 0.90 0.50 0.70 0.90

Difference (X1-X3) 0.23 0.38 0.53 0.58 0.73 0.88 0.5 0.7 0.9 �0.13 0.03 0.18 �0.38 �0.53 �0.68
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larger than that of X3 and this difference widens when ex-

posures are more stable over time. For early critical period

models, there are no indirect effects so changing the stabil-

ity makes no difference. The late sensitive period example

shows that the stability of the exposure can reverse the dir-

ection of the difference between the total effects of X1 and

X3. In the late critical period example, the relative import-

ance of X3 still diminishes as stability increases, but the dir-

ection of the difference does not necessarily reverse.

Inference from total, direct and indirect
effects

Whether a particular period is sensitive in terms of total ef-

fects only or in terms of total and direct effects has implica-

tions for theoretical explanations of how the exposure acts

on the outcome. For example, adolescence is receiving

increasing attention as a potential sensitive period.11,12.

Say X1 represents smoking during adolescence, X2 and X3

represent smoking later in life and Y represents breast can-

cer. A Canadian study found that initiating smoking during

puberty was associated with increased risk of breast cancer

in women after adjusting for life course smoking dur-

ation.13 This implies that adolescence (or puberty at least)

is a sensitive period for the direct effects of smoking,

requiring a theoretical explanation for the heightened dir-

ect effect in adolescence (e.g .enhanced carcinogenic effects

of smoking on rapidly dividing tissue during pubertal de-

velopment513). Had there been no effect of pubertal initi-

ation after adjusting for smoking duration, this would

imply an accumulation model for the direct effects: there

would be no need to postulate theories for sensitive direct

effects.

Nevertheless, in the smoking example above, if initi-

ation of smoking in adolescence leads to a greater risk of

smoking in adulthood, adolescence should be interpreted

as a sensitive period in terms of total effects regardless of

sensitivity in direct effects. It will still be a key point for

intervention, and this message may be missed by focusing

only on the direct effects. Similarly, examples abound

where socioeconomic disadvantages are associated cumu-

latively with greater risks for mortality or poor

health.14,15–18 If later disadvantages are more likely be-

cause of earlier ones and the direct effects of socioeco-

nomic disadvantages are more or less equal, then earlier

disadvantages will have stronger total effects than later

ones, and might be considered sensitive periods for

intervention.

With an interest in when it will be most efficient to

intervene, the total effects are relevant as they indicate

when the effects of intervening could be maximized. If ado-

lescence is a sensitive period, then this may be the best time

to intervene, regardless of whether it is sensitive in terms of

total effects only or in terms of both total and direct ef-

fects. Compared with looking only at the direct effects,

total effects will tend to direct toward intervention earlier

in life, as for most combinations of effect sizes the total ef-

fects will be stronger for earlier than for later exposures.

Considering total effects also recognizes how exposure sta-

bility influences conclusions regarding efficient interven-

tion timing: where early exposures are strong determinants

of later exposure, total effects will be stronger earlier in life

(excepting critical period patterns of direct effects).

However, the relative strength of the direct and indirect

contributions to the total effects highlights the relative im-

portance of the paths the intervention should act on.

Taking the smoking example from above, if most of the ef-

fect of smoking in adolescence is indirect through increased

duration of smoking in adulthood, then a key criterion for

evaluating interventions on adolescent smoking will be the

extent to which they reduce the risk of prolonged smoking

in adulthood. Conversely, if most of the effect were direct

Table 3. Comparison of total effects when the stability of exposures varies

Life course model for

direct effects

Accumulation

(a¼b¼ c)

Early sensitive

period (a>b> c)

Early critical period

(a>0; b¼ c¼0)

Late sensitive

period (a<b< c)

Late critical period

(a¼b¼0; c>0)

Stability of exposures Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Effect sizes:

a 0.5 0.5 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.0 0.0 0.0

b 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0

c 0.5 0.5 0.5 0.3 0.3 0.3 0.0 0.0 0.0 0.7 0.7 0.7 0.7 0.7 0.7

d 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

e 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Total from X1 0.70 0.88 1.10 0.88 1.03 1.20 0.7 0.7 0.7 0.51 0.73 0.99 0.06 0.18 0.34

Total from X2 0.65 0.75 0.85 0.59 0.65 0.71 0.0 0.0 0.0 0.71 0.85 0.99 0.21 0.35 0.49

Total from X3 0.50 0.50 0.50 0.30 0.30 0.30 0.0 0.0 0.0 0.70 0.70 0.70 0.70 0.70 0.70

Difference (X1-X3) 0.20 0.38 0.60 0.58 0.73 0.90 0.7 0.7 0.7 �0.19 0.03 0.29 �0.64 �0.53 �0.38
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via a sensitive direct effect, interventions could focus sim-

ply on adolescent smoking and ignore adult smoking.

Confounding

As noted, a model such as that in Figure 1b is essentially a

mediation analysis (e.g. with X2 and X3 as mediators of

X1). Whatever analysis method is used, confounding

should be considered.2,19–21 Consider Figure 2, which is a

directed acyclic graph (DAG) of confounding in medi-

ation2 replacing the mediator with a second measurement

of the exposure. DAGs can be useful tools for representing

the assumed causal structure underlying the data and iden-

tifying possible confounders a priori so that they can be

measured and adjusted for.11,19 Causal inference requires

appropriate adjustment for relevant confounders and as-

sumes no influence from unmeasured confounders.22

Specifically, if we refer to X1 as the exposure and X2 as the

mediator, four assumptions regarding confounding might

be required for causal interpretation: (i) no unmeasured

confounding of the exposure-outcome relationship (i.e. X1

to Y); (ii) no unmeasured confounding of the mediator-

outcome relationship (i.e. X2 to Y); (iii) no unmeasured

confounding of the exposure-mediator relationship (i.e. X1

to X2); and (iv) no mediator-outcome confounders that are

affected by the exposure (as depicted by L in

Figure 21,2,10). For assumptions (i)-(iii), sensitivity analyses

can be used to identify how large the effect of unmeasured

confounders would have to be to negate observed find-

ings.1,2,10 Total effects only require assumption (i),

whereas direct and indirect effects require more, depending

on the specific effect being estimated.3

Even if measured and adjusted for, mediator-outcome

confounders that are affected by the exposure (L) can be

problematic because such variables are both confounders

and mediators.22 Adjusting can remove a part of the ‘dir-

ect’ effect of the exposure (i.e. the effect not via the medi-

ator) and not adjusting can introduce collider-bias.1

Solutions are available using special techniques and/or fur-

ther assumptions1,3,23 or alternatively, an L-type con-

founder might be viewed as an additional mediator with

indirect effects fully decomposed into those via X2 alone,

those via L alone and those via L and X2.4 It may not al-

ways be clear which type of confounding is present, e.g.

where X1 and a mediator-outcome confounder are meas-

ured concurrently, but analysing the data under different

assumptions (e.g. C- or L-type) can show how sensitive

conclusions are to those assumptions.

Consider briefly what assumption (iii), no unmeasured

confounding of the exposure-mediator relationship (i.e .X1

to X2), means within the repeated-exposure context.

Effects of early on later exposures are assumed to be

causal, i.e. exposure status at one point in time has a causal

influence on later exposure status: a change in the earlier

status will produce a change in later status. This will be es-

pecially important where strong total effects of early ex-

posures are largely mediated indirectly through later

exposures. For example, if X represents income, and early

life income has strong effects largely mediated through in-

come stability, we might wish to intervene to raise income

in early life. If the association between early and later life

income is causal then this may be effective, but if this asso-

ciation is confounded by other factors then raising early

life income will not affect later life income. It will fail to

activate the strong indirect paths to Y, leaving only the

weaker direct effect of early life income. As another ex-

ample, diet and exercise interventions can be effective in

producing short-term weight loss, but losses are often not

maintained24,25 and so their impact on cardiovascular dis-

ease outcomes may be limited. If an intervention fails to

address the underlying causes of an exposure trajectory,

that trajectory may not be altered over the long term and

any potential for large indirect effects via reduced exposure

across that trajectory will be lost.

Estimation

Traditional mediation analysis involves estimation of a ser-

ies of regression models, with the indirect effect calculated

by multiplying relevant coefficients together, or alterna-

tively by examining the difference in the coefficient of the

exposure before and after the mediator is added to the

model.1,2,7,10 Supported by consideration of confounding

as described above, these approaches will be valid (and

mathematically equivalent) where variables are related in

linear fashion without interactions.2,3,10 If the outcome or

mediator is binary then similar methods employing logistic

regressions may also be valid, but if a binary outcome is

not rare neither method will be accurate as odds ratios are

not collapsible.2,26 A further traditional alternative is to es-

timate all associations jointly as a series of simultaneous

equations (e.g. path analysis, structural equation model-

ling27), which again relies on assumptions of linearity and

no interactions.4,10

More recent developments in the causal inference litera-

ture include more precisely decomposed definitions ofFigure 2. Confounding for effects of repeated exposures.
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direct and indirect effects, which allow for interactions be-

tween the exposure and mediator,2–4,10 and flexible simu-

lation methods to overcome constraints regarding no

interactions and linearity.2,10 As researchers consider finer

decompositions of total effects that explicitly include inter-

active effects of exposures and mediators, we recommend

that a thoughtful comparison of the decomposed and total

effects will remain valuable, as we have shown it to be in

the simple case here. This is particularly relevant for life

course models where there are multiple measures of expos-

ure (or multiple mediators), as this dramatically increases

the complexity of effect decomposition.4 Further research

as to how the principles introduced here would apply in

more complex situations would be worthwhile.

Conclusion

Distinguishing total, direct and indirect effects can aid under-

standing of life course models where exposures track over

time. Inferences about when it may be most efficient to inter-

vene should take into account total, direct and indirect ef-

fects. Applying mediation techniques to life course models

with a view to causal inference requires full consideration of

confounding, including confounding of the direct effects of

repeated exposures [i.e. assumptions (i), (ii) and (iv) above]

and confounding of exposure stability [assumption(iii)].
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