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Abstract

We previously showed, in a pilot study with publicly available data, that T cell receptor

(TCR) repertoires from tumor infiltrating lymphocytes (TILs) could be distinguished from

adjacent healthy tissue repertoires by the presence of TCRs bearing specific, biophysico-

chemical motifs in their antigen binding regions. We hypothesized that such motifs might

allow development of a novel approach to cancer detection. The motifs were cancer specific

and achieved high classification accuracy: we found distinct motifs for breast versus colo-

rectal cancer-associated repertoires, and the colorectal cancer motif achieved 93% accu-

racy, while the breast cancer motif achieved 94% accuracy. In the current study, we sought

to determine whether such motifs exist for ovarian cancer, a cancer type for which detection

methods are urgently needed. We made two significant advances over the prior work. First,

the prior study used patient-matched TILs and healthy repertoires, collecting healthy tissue

adjacent to the tumors. The current study collected TILs from patients with high-grade

serous ovarian carcinoma (HGSOC) and healthy ovary repertoires from cancer-free women

undergoing hysterectomy/salpingo-oophorectomy for benign disease. Thus, the classifica-

tion task is distinguishing women with cancer from women without cancer. Second, in the

prior study, classification accuracy was measured by patient-hold-out cross-validation on

the training data. In the current study, classification accuracy was additionally assessed on

an independent cohort not used during model development to establish the generalizability

of the motif to unseen data. Classification accuracy was 95% by patient-hold-out cross-vali-

dation on the training set and 80% when the model was applied to the blinded test set. The

results on the blinded test set demonstrate a biophysicochemical TCR motif found over-

whelmingly in women with HGSOC but rarely in women with healthy ovaries, strengthening

the proposal that cancer detection approaches might benefit from incorporation of TCR
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motif-based biomarkers. Furthermore, these results call for studies on large cohorts to

establish higher classification accuracies, as well as for studies in other cancer types.

Introduction

Despite the tremendous genomic heterogeneity between cancers, there is evidence that cancer

patients mount T cell responses against antigens they have in common, including tumor anti-

gens. Shared tumor antigens can be generally classified into three categories: (1) self-antigens

with dysregulated expression or increased copy numbers, such as MelanA, HER2, SOX2, and

NY-ESO-1 [1–5], (2) altered self-antigens, such as recurrent oncogenic mutations, including

BRAFV600E and CDKR24C [6] and TGF-βRII frameshift mutations [7], and (3) non-self-anti-

gens–viral epitopes expressed by virus-induced cancers, such as those derived from Human

Papilloma Virus [8, 9], Hepatitis B Virus [10], and Epstein Barr Virus [11]. Ovarian cancer is

considered rich in the first category of shared tumor antigens, with relatively large percentages

of ovarian cancers expressing MAGE-A1, MAGE-A3, NY-ESO-1, and others [12, 13]. In the

case of the alpha folate receptor, 97% of ovarian cancers were found to express it, with the vast

majority having moderate or strong expression levels, while only 63% of healthy ovaries were

found to express it, and in all cases the expression was weak [14].

Evidence for T cell responses against shared tumor antigens comes from studies demon-

strating the presence of T cells with binding capacity for, and reactivity to, the shared antigens

[1, 3, 4, 15–20]. Indeed, responses against shared tumor antigens may outnumber those against

mutated neoantigens, including for highly mutated cancers such as melanoma [21, 22]. In

addition to effector T cells responding to tumor antigens, a significant portion of the tumor-

infiltrating lymphocyte (TIL) population is expected to be regulatory T cells that are reactive to

tissue-restricted self-antigens associated with the organ of cancer origin, as these T cells are

highly enriched in cancer lesions [21]. Thus, on balance, we expect much of a TIL population

to be composed of T cells with specificity for antigens shared across cancer patients and not

present, or present at significantly reduced levels, in cancer-free individuals.

We hypothesized that the above-described T cell responses could serve as the basis for cancer

early detection biomarkers and sought to develop a method for detecting them that didn’t require

knowledge of the target antigens and didn’t rely on the assumption that T cells responding to a

common target would express T cell receptors with the same amino acid sequence. Utilizing pub-

licly available TCR deep sequencing data, we applied multiple instance learning (MIL) after con-

verting the TCR amino acid sequences to a biophysicochemical representation using Atchley

Factors [23–25]. We found that TCR repertoires from breast or colorectal cancer TILs could be

distinguished from adjacent healthy tissue repertoires by the presence of TCRs bearing specific,

biophysicochemical motifs in their antigen binding regions [25]. The motifs were different

between the two cancer types, and both achieved high classification accuracy. The colorectal cancer

motif achieved 93% accuracy, while the breast cancer motif achieved 94% accuracy.

In the current study, we sought to establish the plausibility of using TCR motifs for ovarian

cancer detection and applied our method to locally collected patient samples. We made two

significant advances over the prior work. First, the prior study used patient-matched TILs and

healthy repertoires, collecting healthy tissue adjacent to the tumors. Thus, the classification

task was to distinguish two repertoires that had both been collected from an organ effected by

cancer, one repertoire from within the cancerous lesion and one repertoire from a lesion-free

region. The current study collected TILs from patients with high-grade serous ovarian carci-

noma (HGSOC) and collected healthy ovary repertoires from cancer-free women undergoing

hysterectomy with salpingo-oophorectomy for benign disease. Thus, the current classification
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task is distinguishing repertoires from women with HGSOC versus repertoires from women

with healthy ovaries. The second advance comes from the opportunity to assess the motif on a

blinded test data set. In the prior study, only a training data set was available, and classification

accuracy was measured by patient-hold-out cross-validation. In the current study, both a train-

ing and test data set were available. Thus, in addition to assessing classification accuracy of the

motif by patient-hold-out cross-validation, the ability of the motif to generalize to a new, inde-

pendent cohort of data not used for motif discovery was assessed.

The current study revealed a TCR biophysicochemical motif present overwhelmingly in

HGSOC TILs repertoires but rarely in healthy ovary repertoires. The motif is specific to

HGSOC, i.e., it is different from the motifs previously identified for colorectal and breast can-

cer. The classification accuracy assessed by cross-validation on the training data was 95% (19/

20). Applying the same model selection and cross-validation procedure to data with permu-

tated labels resulted in an average classification accuracy of 55%, and the accuracies of all 20

permutations were < 95%. Application of the best model to the unseen test set resulted in a

classification accuracy of 80% (16/20), indicating that the motif has some capacity to general-

ize. These results strengthen the proposal that cancer detection approaches might benefit from

incorporation of TCR motif-based biomarkers and call for studies assessing the approach on

large training and testing data sets and on additional cancer types.

Materials and methods

Datasets

We obtained 40 archived tissue blocks from the Pathology Laboratories of Parkland Health and

Hospital System and two university hospitals associated with UT Southwestern Medical Center

(St. Paul Hospital and Clements University Hospital): 20 HGSOC specimens and 20 normal

ovary specimens. The study was approved by the UT Southwestern Medical Center IRB, study

number STU-2018-0239, with a waiver of consent because anonymized, archived, FFPE tissue

blocks were used. We divided the blocks into two cohorts, one training cohort (Cohort I) and

one test cohort (Cohort II), each with 10 HGSOC specimens and 10 normal ovary specimens

(Table 1). In both cohorts, all donors were between 50 and 59 years of age. In the training

cohort, eight of the HGSOC samples were stage IIIC, and two were stage IVB. The test cohort

was more heterogeneous with respect to the HGSOC stage. Six were stage IIIC; one was stage

IVB. The remaining three samples were stages IIA, IIB, and IIIA1(i). Of the 20 control samples,

in addition to normal ovarian tissue, 12 had fallopian tube tissue within the block from which

our samples were cut. In seven of the remaining eight cases, ovarian sections demonstrated

serous (tubal-type) epithelial inclusions. Thus, these controls are representative of the tissue

from which ovarian cancer is believed to arise. Tissue curls were sent to Adaptive Biotechnolo-

gies for sequencing of the TCR β (TCRB) locus at survey depth. Sequencing was based on geno-

mic DNA, and, for the tissue blocks with fallopian tube tissue or epithelial inclusions, the DNA

from the various tissue types was combined for sequencing. We did not quantify the number of

TILs present in the tissue by immunohistochemistry prior to sequencing, but the number of

unique TCR in Table 1 estimates the number of T cell clones present the sequencing sample

[26, 27]. The study design is shown in Fig 1A.

The data are freely available from the VDJServer Community Data Portal (CDP) (vdjserver.

org) under the project accession 3276777473314001386-242ac116-0001-012 [28]. The

sequences are available in FASTA format in the “Browse Project Data” section. Annotated

alignments are available in the tab-separated-values format recommended by the Adaptive

Immune Receptor Repertoire Community in the “View Analyses and Results” section as out-

put from IgBlast [29, 30].
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Representing TCRs

As previously described [25], we analyzed X-ray crystallographic structures of human TCRs

bound to peptide–MHC complex obtained from the Protein Data Bank in order to determine

how to represent TCRB sequence in a way that would capture the antigen binding capabilities

Table 1. Patient characteristics. Age, stage, patient diagnosis, and the number of unique TCRB sequences for each sample in the training and validation cohorts.

Age FIGO Stage Diagnosis Unique TCRBs

Cohort I, Training Cohort HGSOC Cases 52 IVB High-grade serous carcinoma 8353

55 IIIC High-grade serous carcinoma 1343

58 IVB High-grade serous carcinoma 3249

52 IIIC High-grade serous carcinoma 2692

50 IIIC High-grade serous carcinoma with endometrioid component 719

53 IIIC High-grade serous carcinoma 2225

53 IIIC High-grade serous carcinoma 7363

55 IIIC High-grade serous carcinoma 1667

59 IIIC High-grade serous carcinoma 190

52 IIIC High-grade serous carcinoma 227

Normal Ovary Cases 52 - Cervix with LSIL 695

51 - Cervix with LSIL; uterus with LM, AM 603

55 - Uterus with LM, AM 1870

55 - Uterus with LM, AM 780

53 - Uterus with DPE, LM, AM 3788

51 - Uterus with LM, AM; contralateral ovary with EM 2896

58 - Contalateral ovary with MCT 1101

55 - Uterus with LM, AM 337

51 - Uterus with AM 1409

52 - Uterus with LM, AM 423

Cohort II, Test Cohort HGSOC Cases 51 IIIC High-grade serous carcinoma 467

56 IVB High-grade serous carcinoma 1562

57 IIIA1(i) High-grade serous carcinoma 572

57 IIIC High-grade serous carcinoma 2414

51 IIIC High-grade serous carcinoma 1134

56 IIA High-grade serous carcinoma 1036

55 IIIC High-grade serous carcinoma 2532

54 IIB High-grade serous carcinoma 398

57 IIIC High-grade serous carcinoma 2287

51 IIIC High-grade serous carcinoma 332

Normal Ovary Cases 51 - Uterus with LM 803

50 - Uterus with LM, AM 1290

50 - Uterus with LM 1285

50 - Uterus with LM 807

55 - Uterus with LM 439

52 - Uterus with LM, AM 685

53 - Uterus with LM 1708

50 - Uterus with LM 152

50 - Uterus with LM 1405

57 - Uterus with LM 202

LM: Leiomyoma; AM: Ademomyosis; DPE: disordered proliferative endometrium; MCT: mature cystic teratoma; EM: endometriosis; LSIL: low-grade squamous

intraepithelial lesion.

https://doi.org/10.1371/journal.pone.0229569.t001
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Fig 1. Study overview. (a) Ovarian samples are collected from patients with and without HGSOC cancer. High-

throughput immune receptor sequencing reveals the TCRβ CDR3 sequences found in each tissue sample. (b) The

CDR3 sequences are cut in motifs. In this example, a motif is assembled from three amino acid residues. Only a single

residue from the CDR3 may be skipped, allowing for a single gap. Otherwise, the amino acid residues are contiguous

neighbors. (c) Each amino acid residue is converted into a set of five chemical features using Atchley factors for a total

of fifteen features describing the motif. The relative abundance of each motif is included as an additional sixteenth

feature. (d) Each feature is multiplied by a weight (β1 through β16) that determines its relative importance, and a bias

value (β0) is added to calculate a logit. The logit can be converted into a probability value for that motif. (e) The weights

and bias value are picked such that there is at least one motif with a probability value close to 1 in each HGSOC sample

and all motifs in each healthy ovary sample have a probability close to 0.

https://doi.org/10.1371/journal.pone.0229569.g001
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of the corresponding TCRB chain. We focused on complementarity determining region 3

(CDR3), because it is the somatically generated portion of the gene and the primary determi-

nant of the chain’s antigen-binding specificity. We also focused on residues that directly con-

tact peptide in a peptide–MHC complex. The crystal structure analysis revealed that TCRB

CDR3 residues in contact with peptide tend to lie near each other, forming a local neighbor-

hood of contact residues. The size and relative location of this neighborhood varied, but it

rarely included any of the first or last three CDR3 residues, its average length was four, and in

~25% of cases, a non-contact residue was interspersed between the contact residues. Thus, to

capture CDR3 contact residues, we excluded the first and last three CDR3 residues and parti-

tioned the remaining sequence into every possible contiguous strip of three amino acid resi-

dues, referred to as a motif (Fig 1B). We also allowed one residue in the CDR3 sequence to be

skipped when assembling a motif (Fig 1B). Such skipped residues are referred to as a gap. Our

expectation is that, for each TCRB CDR3, at least one of its motifs contains residues that con-

tact the peptide component of the receptor’s cognate antigen. Alternative models were consid-

ered but exhibited reduced performance (Table 2).

When different TCRs bind the same peptide, the TCRB CDR3 contact residues may be dif-

ferent amino acids across the different TCRs. Thus, to identify motifs with different amino

acid sequences but similar antigen-binding capabilities, we represented each motif using

numerical values for the biophysicochemical properties of its component amino acids. We

used Atchley factors as the biophysicochemical descriptors [24]. Atchley factors were derived

from a set of over 50 amino acid properties by identifying clusters of properties that co-vary.

The five Atchley factor values for each amino acid residue correspond loosely to its polarity,

secondary structure, molecular volume, codon diversity, and electrostatic charge. For input

into our model, each amino acid residue was represented by a vector of its five Atchley factor

values (Fig 1C). With three amino acid residues in a motif, there are a total of 15 Atchley factor

values that we represent using the symbols f1 through f15.

T-cells undergo clonal expansion in response to antigen stimulation, creating copies of the

T-cell and its receptor. Thus, the quantity of a motif can indicate whether receptors containing

it have encountered their cognate antigen. We therefore included an estimator of motif quan-

tity as a feature in the model. When calculating the relative abundance of a motif in each sam-

ple, we identified every TCRB sequence containing the motif in its CDR3 and summed over

the sequences’ template counts, CCDR3. This provided the motif count, Cmotif. We then divided

by the total count of all motifs in the sample, T, to get the motif’s relative abundance, fq.

Cmotif ¼
X

CDR3s
with motif

CCDR3 ; T ¼
X

all motifs
from sample

Cmotif ; fq ¼
Cmotif

T

As with most statistical classifiers, it is important to normalize the input into the model, i.e.,

the model features. For each feature, we calculated a weighted mean and variance of the feature

values over all motifs, where the weights were the relative abundances of each motif, fq. Thus,

motifs that appear more frequently exerted a greater influence on feature mean and variance

than motifs that appeared only once or a few times. We then subtracted the mean from each

feature value and divided by the square root of the variance to obtain a normalized value for

model input.

Logistic model

The 15 Atchley factor values for the three motif residues along with the motif’s relative abun-

dance were combined into a single vector [f1, f2, . . ., f15, fq] representing the features of a motif.
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Every motif was scored on the basis of these features using a logistic function that calculates

the probability that a motif was derived from a HGSOC-associated repertoire. We used the

logistic function because of its widespread use and simplicity, and because it models the out-

come of a two-category process. The first step was to compute a biased, weighted sum of the

features, referred to as a logit. The logit for the ith motif is represented as li.

li ¼ b0 þ b1 � f1 þ b2 � f2 þ . . .þ b15 � f15 þ b16 � fq ð1Þ

The bias term β0 along with the weights β1 through β16 are the parameters of the model and

were fit using gradient descent optimization techniques as described below. Every motif was

scored using the same values for the weights and bias term.

Table 2. Different model configurations evaluated on Cohort 1. Each row represents a different model, and the columns describe the configuration of each model. The

first row (bold font) corresponds to the model configuration with the best performance for the breast and colorectal cancer datasets [25]. The second row (bold underlined

font) corresponds to the best performing model configuration presented here. The first column indicates the number of amino acid residues in the motif. The second col-

umn indicates the number of CDR3 amino acid residues that could be skipped when assembling a motif. For example, if the value is 2, then 2 CDR3 amino acid residues

could be skipped. The third column indicates if binary indicators indicating whether the corresponding CDR3 residue was ignored were used. For example, if a CDR3 resi-

due was ignored but would have been in the third position of a motif if it had been included, then the 3rd indicator would have a value of 1. The fourth column indicates if

an amino acid was skipped in the CDR3 for the given position in the motif. The fifth column indicates if the expected frequency of the motif in blood was included as a fea-

ture. The expected frequency was estimated using publicly available data from 786 presumed healthy individuals [31]. The sixth column indicates if the log of the motif rel-

ative abundance was used for the relative abundance term. Column 7 indicates if each feature is squared and used as an additional feature, resulting in 2nd order terms in

the model. Column 8 indicates if batch normalization was used. Column 9 (fourth from last) is the log-loss averaged across the one-holdout cross-validations. Column 10

(third from last) is the accuracy computed over the one-holdout cross-validations. Column 11 (second from last) is the number of gradient steps used to fit the model as

determined by early-stopping. Column 12 is the number of fits to the training data, of which the best fit to the training data is applied to the holdout sample.

FEATURES CROSS-VAL

LOG-LOSS

CROSS-VAL

ACCUR-ACY

EARYL

STOPP-ING

NUM

FITS TO

TRAIN
Motif

Size

# of Gap

Positions

One-Hot

Indicator of

Gap Position

Restricting

Gap to

Position X

Expected

Frequency in

Blood

Log

Frequency

Instead

2nd

Order

Terms

Batch

Norm.

4 0
p

0.666 90% 1211 131072

3 1 0.332 95% 2499 131072

4 0
p p

0.680 75% 9 131072

3 1
p

0.400 95% 1687 131072

4 0
p

0.887 65% 1506 524288

3 1
p p

0.477 90% 1411 786432

3 2
p p

0.963 65% 467 131072

4 1
p p

1.004 55% 692 65536

4 2
p p

0.639 80% 3222 131072

3 0 1.083 50% 3 131072

4 0 1.037 50% 4 131072

3 1 x = 1 1.043 50% 1 131072

3 1 x = 2 1.089 50% 1 131072

3 1 x = 3 1.072 50% 4 131072

3 1
p

0.378 90% 2499 786432

3 2
p

1.016 75% 1145 131072

4 0
p p

1.083 50% 5 131072

3 1
p p p

1.049 50% 5 131072

3 0
p

0.823 85% 1036 131072

4 0
p

1.108 50% 1 131072

4 3
p

0.447 85% 2499 131072

To ensure each model can run in a reasonable amount of time, only the top 65,536 most abundant motifs in a biopsy are used.

https://doi.org/10.1371/journal.pone.0229569.t002
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Once the logit was computed, the value was passed through the sigmoid function to obtain

a probability value between 0 and 1 for the ith motif.

Pi ¼ 1=1þ e� li ð2Þ

Aggregating motif probabilities (multiple instance learning)

To predict whether a repertoire was derived from HGSOC or healthy ovarian tissue, the proba-

bilities assigned to each motif must be aggregated into a single value that predicts the reper-

toire-level label. This problem of predicting a label for a set of objects from the scores for the

individual objects in the set can be formally described as MIL [23]. According to the standard

assumption of MIL, at least one motif from HGSOC-derived repertoires must have a high

probability, while none of the motifs from healthy tissue-derived repertoires should have a

high probability. This assumption can be implemented by simply taking as the repertoire score

the maximum score over all motif scores in the repertoire. Thus, the probability that repertoire

j is tumor-derived given the individual motif probabilities was computed as:

PðjÞtumor ¼ MaxfP1; P2; P3; . . .g ð3Þ

Using 0.5 as the threshold score, a repertoire is predicted to be tumor-derived when at least

one motif is scored with a probability� 0.5. The predictions from Eq (3) were used to fit the

model’s parameters using Cohort I.

Parameter fitting

Values for the bias term β0 and weights β1 through β16 were selected to maximize the probabil-

ity that each prediction from Eq (3) is correct, assigning tumor-derived repertoires a probabil-

ity close to 1 and healthy ovary-derived repertoires a probability close to 0, using the following

objective function:

ln L ¼
X

j

yðjÞtumor � ln PðjÞtumor þ ð1 � yðjÞtumorÞ � ln ð1 � PðjÞtumorÞ ð4Þ

where yðjÞtumor Eq (3) introduces a nonlinear operation into the model, resulting in a model that

cannot be fitted using standard optimization techniques for logistic regression. Thus, gradient

optimization techniques were used, such that each parameter is iteratively adjusted along the

gradient in a direction that maximizes the log-likelihood, which in turn maximizes the likeli-

hood that each prediction is correct (Fig 2).

Because gradient optimization techniques are sensitive to the initial values of the bias and

weight terms, the initial values must be carefully selected. As is typical, the bias term β0 was ini-

tialized to 0. The weight values β1 through β16 were initialized using two different distributions,

depending on the feature. Weight values β1 through β15 are for Atchley factors, and initial val-

ues were sampled from We
1ffiffi
2
p N ð0; 1

15
Þ. The weight value for β16 is for the relative abundance

of each motif, and an initial value was sampled from We
1ffiffi
2
p N 0; 1ð Þ. This initialization scheme

ensures that the contribution from the 15 Atchley factors has the same expected magnitude as

the contribution from the motifs’ relative abundances.

Next, the Adam optimizer, a gradient descent-based optimizer, was run for 2,500 iterations

with a step size of 0.01 [32]. Default values for the other Adam optimizer settings were used (b1

= 0.9, b2 0.999, ε =10−8). A limitation of gradient descent-based methods is there is no guaran-

tee of finding the globally optimal solution. Although the logistic model is a linear model, the
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motif probabilities were aggregated together in a non-linear fashion, and multiple local min-

ima could exist. To address this, 217 = 131,072 runs of Adam optimization, each starting from

different initial values as described in the previous paragraph, were used, and the best fit solu-

tion over all runs was used to classify new samples. By identifying the best fit to the training

data across a huge number of runs, we were attempting to find the globally optimal solution.

Overfitting

Overfitting is always a concern with any statistical classifier. We previously found that L1/L2

regularization and dropout worsened the performance of our approach, perhaps because of

the highly non-linear characteristics of our model [33]. Thus, we did not apply them in this

study, but we did apply early stopping, as described below, which we previously found to sig-

nificantly improve the model’s performance.

Fig 2. Workflow for model selection and parameter fitting. (a) Left Panel: The diagram shows how cohort I is used to train and

evaluate each model. Model performance is evaluated by an exhaustive 1-holdout cross-validation using only cohort I. (b) Right Panel:

The diagram shows how the best performing model is evaluated with unseen test data. The best performing model is refitted to all the

samples in cohort I, and then used to score the test samples from cohort II. The same random initial β-coefficients are reused from (a)

when refitting the best performing model in (b).

https://doi.org/10.1371/journal.pone.0229569.g002

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0229569.g002
https://doi.org/10.1371/journal.pone.0229569


Model selection and testing

We used Cohort I for model selection and validation by patient-hold-out cross-validation (Fig

2, left panel). The same initial values for the weights β1 through β16 were reused with each

cross-validation, ensuring the only variation between runs was due to the patient sample being

held out, and not because each cross-validation used differential initial values for the weights

β1 through β16. We evaluated multiple models (Table 2) and selected as the best model the one

with the lowest average negative log-likelihood on patient hold-out cross-validation. Briefly,

we considered motifs of either three or four amino acid residues. We also considered gaps,

where we allowed either one or two amino acid residues from the CDR3 to be skipped when

assembling each possible motif. Additional features and modifications to the model were con-

sidered, as indicated in Table 2. For each model, the optimal number of gradient optimization

steps was determined by examining the average log-likelihood of each model at each training

step in the patient-holdout cross-validation.

To account for model selection bias, the phenomenon whereby we identified a model that

performs well on Cohort I without having discovered a generalizable signal, we evaluated the

selected model on the test cohort, Cohort II (Fig 2, right panel). The weights and bias term for

the best model identified via cross-validation on Cohort I were refit using all 20 Cohort I sam-

ples, and then Cohort II samples were scored.

The code is available here: https://github.com/jostmey/MaxSnippetModelOvarian.

Results

Cohort I

The best performing model by patient-holdout cross-validation on Cohort I used a motif of

three amino acid residues and allowed for a single gap (Table 2). Under that model, the average

number of motifs per tumor sample was 7,683.3, and the average number of motifs per healthy

sample was 6,154.2. The largest number of motifs in any sample was 13,277. The best average

log-likelihood was observed at the last (2,500th) gradient optimization step. The model cor-

rectly classified 95% (19/20) of held-out samples with an average log-likelihood of 0.332 bits

(Fig 3A). The model correctly classified all healthy ovarian samples, giving a specificity of

100%, although one was quite close to the threshold score of 0.5. The model correctly classified

all but one tumor sample, giving a sensitivity of 90%. To estimate the probability of correctly

classifying 19 of 20 samples by chance, we performed a permutation analysis with 20 permuta-

tion runs. For each permutation, the sample labels were permuted and then patient-holdout

cross-validation was performed. Early stopping was applied. The classification accuracies of all

20 permutations were< 95%, allowing us to assign p < 0.05 to the observed accuracy

(Table 3). The average log-likelihood over all permutations was 0.993 bits, and the average

accuracy was 55%.

To discern the features that increase the probability of a HGSOC categorization, we exam-

ined the model weights across all 20 cross-validation runs (Fig 3B). The weights reveal how

each Atchley factor contributes to the score and the relative importance of each position in the

motif. Motifs with a positively charged, hydrophilic residue that tends to participate in alpha-

helices in position 1, followed by a small residue that tends to participate in bends and coils in

position 2, followed by a large, positively charged residue in position 3 will be scored by the

model with a high probability of deriving from a HGSOC-associated repertoire. The weight

for the relative abundance of the motif is positive indicating that more abundant motifs would

have a higher probability than less abundant motifs.
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We aligned the high scoring motifs from each holdout sample and present them within the

context of the CDR3 sequences from which they originated (Fig 3C). The motifs varied in

terms of their component residues, but a restricted set of amino acids was observed at each

position. Amino acids Glutamic acid, Lysine, and Arginine were common in position 1, Tryp-

tophan and Tyrosine were common in position 2, and Histidine and Tryptophan were com-

mon in position 3. We also determined the number of times each CDR3 appeared in each

sample and noted that most of them appear only once. None of the CDR3 sequences are shared

across patients.

Fig 3. Results. (a) Classification results obtained by leave-out cross-validation for each patient in Cohort I. (b) Illustration of the

classifier weights averaged across all 20 cross-validation runs (error bars for the standard deviation are omitted because the range was

too small to plot relative to the size of each arrow). For each of the five Atchley factors, the weights are shown for the three residue

positions. The weight for the log-frequency of the receptor is also shown. Positive weight values are shown pointing up, and negative

weight values are shown pointing down. The length of the arrow corresponds to the weight’s magnitude. (c) All motifs with a score

above 0.5 (middle column) are shown for the 20 patient samples. Each motif is shown in the context of its respective CDR3. The leftmost

column indicates the patient and the right most column indicates the number of times the motif is observed in the sample. (d)

Classification results obtained on Cohort II test samples. (e) The ROC curve shows true and false positive rates for different thresholds of

a positive diagnosis based on the model applied to Cohort II. The area under the curve is 0.79. (f) All motifs with a score above 0.5

(middle column) shown for the 20 patient samples in Cohort II. Each motif is shown in the context of its respective CDR3. The leftmost

column indicates the patient and the right most column indicates the number of times the motif is observed in the sample.

https://doi.org/10.1371/journal.pone.0229569.g003
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Cohort II

Given the potential for overfitting and model selection bias, we assessed the model’s perfor-

mance on samples not used for model selection or parameter fitting, i.e., on Cohort II. After

selecting the best performing model using cross-validation on Cohort I, as described above, we

then refit the parameters of the selected model using all 20 Cohort I samples using 2,500 gradi-

ent optimization steps, which was determined to be the optimal number of steps in the cross-

validation (Table 2). The resulting weights β1 through β16 appear indistinguishable from those

in Fig 3C.

The newly fitted model was then applied to Cohort II and correctly classified 80% (16/20)

of the samples with an average log-likelihood fit of 0.821 bits. The model correctly classified all

but one healthy ovarian sample (specificity 90%) and misclassified three tumor samples (sensi-

tivity 70%) (Fig 3D). The area under the Receiver Operating Characteristic (ROC) curve was

0.79 (Fig 3E).

We aligned the high scoring motifs from the Cohort II samples and present them within

the context of the CDR3 sequences from which they originated (Fig 3F). As with the Cohort I

motifs, the amino acid residues present at each position vary, but the variability is restricted to

a subset. As with the Cohort I samples, amino acids Glutamic Acid and Lysine are common in

position 1, Tryptophan and Tyrosine are common in position 2, and Histidine, and Trypto-

phan are common in position 3. In contrast, Arginine was common in position 1 of Cohort I

motifs but is found in position 1 of only one Cohort II motif, and Aspartic Acid is common in

position 3 of Cohort II motifs but was not observed in position 3 of Cohort I motifs. As with

Table 3. Permutation results. Each row corresponds to a single permutation of the Cohort I data set, indicated in column 1. The second column shows the loss averaged

over all patient-hold-out cross-validations. The third column shows the classification accuracy over all patient-hold-out cross-validations. The fourth column shows the fit-

ting step, out of 2500, at which the lowest average loss was observed.

Run Average Loss Classification Accuracy Early Stopping Step

1 0.972 55% 132

2 1.07 50% 3

3 1.021 50% 3

4 1.06 50% 1

5 1.055 50% 5

6 1.038 60% 471

7 0.77 85% 503

8 1.03 50% 209

9 0.964 65% 295

10 1.041 30% 245

11 1.011 50% 73

12 1.008 55% 158

13 1.076 50% 4

14 0.63 85% 2497

15 1.012 50% 34

16 1.042 50% 4

17 1.044 50% 4

18 1.043 50% 10

19 1.089 50% 44

20 0.891 70% 1005

Average 0.99335 55%

https://doi.org/10.1371/journal.pone.0229569.t003
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Cohort I, we found that the majority of CDR3s containing high-scoring motifs were present

only one time in their sample.

Discussion

We previously hypothesized that T cell responses against antigens shared among cancer

patients might enable development of a new approach to cancer detection [25]. Shared tumor

antigens are not favored for antigen-targeted immunotherapy where the goal is to elicit such a

high degree of tumor-cell killing that the tumor is eradicated. In that case, antigens with

expression patterns highly-restricted to the tumor and that are targeted by high-affinity TCRs

are needed. For cancer detection, however, it is only necessary that the corresponding TCRs be

present in patients with the cancer and not in those without or that they be present with an ele-

vated abundance in those with cancer relative to those without.

To determine whether such T cell responses might enable cancer detection, we first sought

to develop a method for identifying the corresponding TCRs that didn’t require knowledge of

the target antigens and didn’t rely on the assumption that T cells responding to a common tar-

get would express TCRs with the same amino acid sequence. To accomplish this, we developed

the method described here, converting amino acid sequences into numerical vectors whose

components correspond to amino acid biophysicochemical values, such as charge, and apply-

ing multiple instance learning. In all cases in which the method has been applied, it has identi-

fied a motif that can distinguish the tissue or patient groups of interest with solid performance

[25, 33]. We hypothesize that TCRs bearing these motifs have overlapping antigen binding

profiles and are concentrated in cancer tissue due to the presence of a common antigen there.

This is a hypothesis that will have to be tested experimentally, but the strong classification per-

formance of the motifs warrants further study, despite uncertainty regarding any shared anti-

gen specificity.

In our first application of this method to TCRs, we considered motifs of four residues and

did not allow gaps [25]. Additionally, we took the natural logarithm of the motif relative abun-

dance term. Taking that same model and fitting the weight values on Cohort I, we obtained a

classification accuracy of 90% with a likelihood error of 0.666 (Table 2). To determine whether

we could improve the performance, we explored additional models not considered in our

prior work (Table 2). The best performing model used a three-residue motif allowing for one

gap and achieved a classification accuracy of 95% with a likelihood error of 0.332 (Table 2).

Thus, while the approach has produced good results across multiple cancer types, each one has

required optimization of the motif representation to obtain the best performance. Additional

innovation to the modeling approach is required to produce a method that works across multi-

ple cancer types without this customization.

Whenever multiple models are evaluated on the same data and the best performing model

is selected, model selection bias can occur. To determine the extent of model selection bias in

our Cohort I result, we evaluated the selected model’s performance on Cohort II, which is

wholly unseen (i.e., not used for parameter fitting or model selection). The classification accu-

racy on Cohort II is 80% with a likelihood error of 0.821. Reduced performance on test data is

expected, and these results indicate that the model has identified a signal that is expected to

generalize to new samples with 80% accuracy.

We have applied the method to three cancer types and in each case identified a distinct bio-

physicochemical motif. While for breast cancer, all receptors bearing the motif were of high

abundance, and in some cases were the top most abundant clone, for colorectal cancer, all but

a few of the motif-bearing clones were of low abundance [25]. In the case of ovarian cancer, we

again observed that motif-bearing clones are of low abundance, and in fact, in all but a few

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0229569


cases, the corresponding CDR3 sequences were observed in the sample only a single time.

While this is perhaps surprising, we note that frozen tissue was used for the colorectal samples

in our prior study, while the ovarian samples in this study were all formalin-fixed paraffin-

embedded samples that had been collected between 2009 and 2016. The samples are therefore

likely subject to significant DNA damage and to have significantly reduced sequence coverage

of target regions [34]. It seems unlikely that the motif identified by our approach is purely an

artifact given that it correctly classified 80% of the Cohort II samples. Taking the data at face

value, it appears the motifs that mark repertoires as being HGSOC-associated are found in low

frequency clones.

While our previous results demonstrate that TCR repertoires from TILs can be distin-

guished from adjacent healthy tissue repertoires by the presence of TCRs bearing specific, bio-

physicochemical motifs in their antigen binding regions, our current results go further by

demonstrating that TILs repertoires from women with HGSOC can be distinguished from

ovarian tissue-associated repertoires from women with healthy ovaries. Thus, in this case, we

are distinguishing women with cancer from women without cancer, which is the classification

task that is directly relevant to cancer detection. Despite this significant advance over the prior

work, however, there are still several limitations that must be addressed. First, the HGSOC

samples used in this study were primarily from women with stage III or IV disease. It is critical

to determine whether this or another signature can be detected at early stages of disease, par-

ticularly before the appearance of invasive disease. Second, to have any potential utility for can-

cer detection, the signature must be detectable in tissue collected by minimally invasive means.

That typically means blood. While the overlap between TILs T cell repertoires and the periph-

eral T cell repertoire has been shown to be relatively low, it is much higher, with as much as

~50–60% overlap, when the CD8+PD-1+ subset of peripheral T cells is sorted [35–40]. Fur-

thermore, the specific antigens recognized by this subset were similar to that of the TILs popu-

lation [40]. Thus, it is reasonable to expect that a TCR signature found in the tissue can be

detected in this or another peripheral T cell subset.

An additional potential utility of our approach is in the diagnosis of women who present

with an ovarian mass. Thus, it will be essential to assess the signature on benign ovarian

tumors, as well as on ovarian cancers of other types, to determine whether the signature pre-

sented here is present in those cases or whether these have their own unique signature.

Taken together, our current and prior results indicate that TCR-based biomarkers have

potential utility for cancer detection. They justify further studies on larger patient cohorts

designed to improve the generalizability of the signature with a particular focus on blood sam-

ples from patients with early stage disease. Additionally, they justify application of this method

in other cancer types, such as pancreatic cancer, where, like ovarian, the need for early detec-

tion methods are particularly critical.

Author Contributions

Conceptualization: Lindsay G. Cowell.

Data curation: Jared Ostmeyer, Elena Lucas.

Formal analysis: Jared Ostmeyer.

Funding acquisition: Lindsay G. Cowell.

Methodology: Jared Ostmeyer, Scott Christley, Lindsay G. Cowell.

Software: Jared Ostmeyer.

Supervision: Scott Christley, Lindsay G. Cowell.

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 14 / 17

https://doi.org/10.1371/journal.pone.0229569


Validation: Jared Ostmeyer, Elena Lucas.

Visualization: Jared Ostmeyer, Lindsay G. Cowell.

Writing – original draft: Jared Ostmeyer.

Writing – review & editing: Elena Lucas, Scott Christley, Jayanthi Lea, Nancy Monson, Jas-

min Tiro, Lindsay G. Cowell.

References
1. Romero P., Dunbar P.R., Valmori D., Pittet M., Ogg G.S., Rimoldi D., et al. Ex vivo staining of metastatic

lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-

experienced tumor-specific cytolytic T lymphocytes. J Exp Med, 1998. 188(9): p. 1641–50. https://doi.

org/10.1084/jem.188.9.1641 PMID: 9802976

2. Disis M.L., Wallace D.R., Gooley T.A., Dang Y., Slota M., Lu H., et al. Concurrent trastuzumab and

HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol, 2009. 27(28): p.

4685–92. https://doi.org/10.1200/JCO.2008.20.6789 PMID: 19720923

3. Dhodapkar K.M., Gettinger S.N., Das R., Zebroski H. and Dhodapkar M.V., SOX2-specific adaptive

immunity and response to immunotherapy in non-small cell lung cancer. Oncoimmunology, 2013. 2(7):

p. e25205. https://doi.org/10.4161/onci.25205 PMID: 24073380

4. Dhodapkar M.V., Sexton R., Das R., Dhodapkar K.M., Zhang L., Sundaram R., et al. Prospective analy-

sis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopa-

thy. Blood, 2015. 126(22): p. 2475–8. https://doi.org/10.1182/blood-2015-03-632919 PMID: 26468228

5. Dhodapkar M.V., Sznol M., Zhao B., Wang D., Carvajal R.D., Keohan M.L., et al. Induction of antigen-

specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl

Med, 2014. 6(232): p. 232ra51.

6. Kvistborg P., van Buuren M.M. and Schumacher T.N., Human cancer regression antigens. Curr Opin

Immunol, 2013. 25(2): p. 284–90. https://doi.org/10.1016/j.coi.2013.03.005 PMID: 23566921

7. Shima K., Morikawa T., Yamauchi M., Kuchiba A., Imamura Y., Liao X., et al. TGFBR2 and BAX mono-

nucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS

One, 2011. 6(9): p. e25062. https://doi.org/10.1371/journal.pone.0025062 PMID: 21949851

8. Kenter G.G., Welters M.J., Valentijn A.R., Lowik M.J., Berends-van der Meer D.M., Vloon A.P., et al.

Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med, 2009. 361

(19): p. 1838–47. https://doi.org/10.1056/NEJMoa0810097 PMID: 19890126

9. Stevanovic S., Draper L.M., Langhan M.M., Campbell T.E., Kwong M.L., Wunderlich J.R., et al. Com-

plete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted

tumor-infiltrating T cells. J Clin Oncol, 2015. 33(14): p. 1543–50. https://doi.org/10.1200/JCO.2014.58.

9093 PMID: 25823737

10. Koh S., Tan A.T., Li L. and Bertoletti A., Targeted Therapy of Hepatitis B Virus-Related Hepatocellular

Carcinoma: Present and Future. Diseases, 2016. 4(1).

11. Louis C.U., Straathof K., Bollard C.M., Ennamuri S., Gerken C., Lopez T.T., et al. Adoptive transfer of

EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal

carcinoma. J Immunother, 2010. 33(9): p. 983–90. https://doi.org/10.1097/CJI.0b013e3181f3cbf4

PMID: 20948438

12. Krishnadas D.K., Bai F. and Lucas K.G., Cancer testis antigen and immunotherapy. Immunotargets

Ther, 2013. 2: p. 11–9. https://doi.org/10.2147/ITT.S35570 PMID: 27471684

13. Want M.Y., Lugade A.A., Battaglia S. and Odunsi K., Nature of tumour rejection antigens in ovarian can-

cer. Immunology, 2018. 155(2): p. 202–10. https://doi.org/10.1111/imm.12951 PMID: 29772069

14. Markert S., Lassmann S., Gabriel B., Klar M., Werner M., Gitsch G., et al. Alpha-folate receptor expres-

sion in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res, 2008. 28(6A):

p. 3567–72. PMID: 19189636

15. Lee P.P., Yee C., Savage P.A., Fong L., Brockstedt D., Weber J.S., et al. Characterization of circulating

T cells specific for tumor-associated antigens in melanoma patients. Nat Med, 1999. 5(6): p. 677–85.

https://doi.org/10.1038/9525 PMID: 10371507

16. Romero P., Valmori D., Pittet M.J., Zippelius A., Rimoldi D., Levy F., et al. Antigenicity and immunoge-

nicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma.

Immunol Rev, 2002. 188: p. 81–96. https://doi.org/10.1034/j.1600-065x.2002.18808.x PMID:

12445283

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 15 / 17

https://doi.org/10.1084/jem.188.9.1641
https://doi.org/10.1084/jem.188.9.1641
http://www.ncbi.nlm.nih.gov/pubmed/9802976
https://doi.org/10.1200/JCO.2008.20.6789
http://www.ncbi.nlm.nih.gov/pubmed/19720923
https://doi.org/10.4161/onci.25205
http://www.ncbi.nlm.nih.gov/pubmed/24073380
https://doi.org/10.1182/blood-2015-03-632919
http://www.ncbi.nlm.nih.gov/pubmed/26468228
https://doi.org/10.1016/j.coi.2013.03.005
http://www.ncbi.nlm.nih.gov/pubmed/23566921
https://doi.org/10.1371/journal.pone.0025062
http://www.ncbi.nlm.nih.gov/pubmed/21949851
https://doi.org/10.1056/NEJMoa0810097
http://www.ncbi.nlm.nih.gov/pubmed/19890126
https://doi.org/10.1200/JCO.2014.58.9093
https://doi.org/10.1200/JCO.2014.58.9093
http://www.ncbi.nlm.nih.gov/pubmed/25823737
https://doi.org/10.1097/CJI.0b013e3181f3cbf4
http://www.ncbi.nlm.nih.gov/pubmed/20948438
https://doi.org/10.2147/ITT.S35570
http://www.ncbi.nlm.nih.gov/pubmed/27471684
https://doi.org/10.1111/imm.12951
http://www.ncbi.nlm.nih.gov/pubmed/29772069
http://www.ncbi.nlm.nih.gov/pubmed/19189636
https://doi.org/10.1038/9525
http://www.ncbi.nlm.nih.gov/pubmed/10371507
https://doi.org/10.1034/j.1600-065x.2002.18808.x
http://www.ncbi.nlm.nih.gov/pubmed/12445283
https://doi.org/10.1371/journal.pone.0229569


17. Munson D.J., Egelston C.A., Chiotti K.E., Parra Z.E., Bruno T.C., Moore B.L., et al. Identification of

shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR. Proc Natl Acad

Sci U S A, 2016. 113(29): p. 8272–7. https://doi.org/10.1073/pnas.1606994113 PMID: 27307436

18. Massa C., Robins H., Desmarais C., Riemann D., Fahldieck C., Fornara P., et al. Identification of

patient-specific and tumor-shared T cell receptor sequences in renal cell carcinoma patients. Oncotar-

get, 2017. 8(13): p. 21212–28. https://doi.org/10.18632/oncotarget.15064 PMID: 28177902

19. Bai X., Zhang Q., Wu S., Zhang X., Wang M., He F., et al. Characteristics of Tumor Infiltrating Lympho-

cyte and Circulating Lymphocyte Repertoires in Pancreatic Cancer by the Sequencing of T Cell Recep-

tors. Sci Rep, 2015. 5: p. 13664. https://doi.org/10.1038/srep13664 PMID: 26329277

20. Nakanishi K., Kukita Y., Segawa H., Inoue N., Ohue M. and Kato K., Characterization of the T-cell

receptor beta chain repertoire in tumor-infiltrating lymphocytes. Cancer Med, 2016. 5(9): p. 2513–21.

https://doi.org/10.1002/cam4.828 PMID: 27465739

21. Savage P.A., Leventhal D.S. and Malchow S., Shaping the repertoire of tumor-infiltrating effector and

regulatory T cells. Immunol Rev, 2014. 259(1): p. 245–58. https://doi.org/10.1111/imr.12166 PMID:

24712470

22. Gee M.H., Han A., Lofgren S.M., Beausang J.F., Mendoza J.L., Birnbaum M.E., et al. Antigen Identifica-

tion for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell, 2018. 172(3):

p. 549–63 e16.

23. Carbonneau M.-A., Cheplygina V., Granger E. and Gagnon G., Multiple instance learning: A survey of

problem characteristics and applications. Pattern Recognition, 2018. 77: p. 329–53.

24. Atchley W.R., Zhao J., Fernandes A.D. and Druke T., Solving the protein sequence metric problem.

Proc Natl Acad Sci U S A, 2005. 102(18): p. 6395–400. https://doi.org/10.1073/pnas.0408677102

PMID: 15851683

25. Ostmeyer J., Christley S., Toby I.T. and Cowell L.G., Biophysicochemical Motifs in T-cell Receptor

Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue.

Cancer Res, 2019. 79(7): p. 1671–80. https://doi.org/10.1158/0008-5472.CAN-18-2292 PMID:

30622114

26. Carlson C.S., Emerson R.O., Sherwood A.M., Desmarais C., Chung M.W., Parsons J.M., et al. Using

synthetic templates to design an unbiased multiplex PCR assay. Nat Commun, 2013. 4: p. 2680.

https://doi.org/10.1038/ncomms3680 PMID: 24157944

27. Robins H.S., Ericson N.G., Guenthoer J., O’Briant K.C., Tewari M., Drescher C.W., et al. Digital geno-

mic quantification of tumor-infiltrating lymphocytes. Sci Transl Med, 2013. 5(214): p. 214ra169.

28. Christley S., Scarborough W., Salinas E., Rounds W.H., Toby I.T., Fonner J.M., et al. VDJServer: A

Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrange-

ments. Front Immunol, 2018. 9: p. 976. https://doi.org/10.3389/fimmu.2018.00976 PMID: 29867956

29. Vander Heiden J.A., Marquez S., Marthandan N., Bukhari S.A.C., Busse C.E., Corrie B., et al. AIRR

Community Standardized Representations for Annotated Immune Repertoires. Front Immunol, 2018.

9: p. 2206. https://doi.org/10.3389/fimmu.2018.02206 PMID: 30323809

30. Ye J., Ma N., Madden T.L. and Ostell J.M., IgBLAST: an immunoglobulin variable domain sequence

analysis tool. Nucleic Acids Res, 2013. 41(Web Server issue): p. W34–40. https://doi.org/10.1093/nar/

gkt382 PMID: 23671333

31. Emerson R.O., DeWitt W.S., Vignali M., Gravley J., Hu J.K., Osborne E.J., et al. Immunosequencing

identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell reper-

toire. Nat Genet, 2017. 49(5): p. 659–65. https://doi.org/10.1038/ng.3822 PMID: 28369038

32. Kingma, D. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

33. Ostmeyer J., Christley S., Rounds W.H., Toby I., Greenberg B.M., Monson N.L., et al. Statistical classifi-

ers for diagnosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioin-

formatics, 2017. 18(1): p. 401. https://doi.org/10.1186/s12859-017-1814-6 PMID: 28882107

34. Carrick D.M., Mehaffey M.G., Sachs M.C., Altekruse S., Camalier C., Chuaqui R., et al. Robustness of

Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue. PLoS One, 2015.

10(7): p. e0127353. https://doi.org/10.1371/journal.pone.0127353 PMID: 26222067

35. Chen Z., Zhang C., Pan Y., Xu R., Xu C., Chen Z., et al. T cell receptor β-chain repertoire analysis

reveals intratumour heterogeneity of tumour-infiltrating lymphocytes in oesophageal squamous cell car-

cinoma. The Journal of pathology, 2016. 239(4): p. 450–8. https://doi.org/10.1002/path.4742 PMID:

27171315

36. Page D.B., Yuan J., Redmond D., Wen Y.H., Durack J.C., Emerson R., et al. Deep Sequencing of T-cell

Receptor DNA as a Biomarker of Clonally Expanded TILs in Breast Cancer after Immunotherapy.

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 16 / 17

https://doi.org/10.1073/pnas.1606994113
http://www.ncbi.nlm.nih.gov/pubmed/27307436
https://doi.org/10.18632/oncotarget.15064
http://www.ncbi.nlm.nih.gov/pubmed/28177902
https://doi.org/10.1038/srep13664
http://www.ncbi.nlm.nih.gov/pubmed/26329277
https://doi.org/10.1002/cam4.828
http://www.ncbi.nlm.nih.gov/pubmed/27465739
https://doi.org/10.1111/imr.12166
http://www.ncbi.nlm.nih.gov/pubmed/24712470
https://doi.org/10.1073/pnas.0408677102
http://www.ncbi.nlm.nih.gov/pubmed/15851683
https://doi.org/10.1158/0008-5472.CAN-18-2292
http://www.ncbi.nlm.nih.gov/pubmed/30622114
https://doi.org/10.1038/ncomms3680
http://www.ncbi.nlm.nih.gov/pubmed/24157944
https://doi.org/10.3389/fimmu.2018.00976
http://www.ncbi.nlm.nih.gov/pubmed/29867956
https://doi.org/10.3389/fimmu.2018.02206
http://www.ncbi.nlm.nih.gov/pubmed/30323809
https://doi.org/10.1093/nar/gkt382
https://doi.org/10.1093/nar/gkt382
http://www.ncbi.nlm.nih.gov/pubmed/23671333
https://doi.org/10.1038/ng.3822
http://www.ncbi.nlm.nih.gov/pubmed/28369038
https://doi.org/10.1186/s12859-017-1814-6
http://www.ncbi.nlm.nih.gov/pubmed/28882107
https://doi.org/10.1371/journal.pone.0127353
http://www.ncbi.nlm.nih.gov/pubmed/26222067
https://doi.org/10.1002/path.4742
http://www.ncbi.nlm.nih.gov/pubmed/27171315
https://doi.org/10.1371/journal.pone.0229569


Cancer immunology research, 2016. 4(10): p. 835–44. https://doi.org/10.1158/2326-6066.CIR-16-

0013 PMID: 27587469

37. Emerson R.O., Sherwood A.M., Rieder M.J., Guenthoer J., Williamson D.W., Carlson C.S., et al. High-

throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lym-

phocytes in ovarian cancer. The Journal of pathology, 2013. 231(4): p. 433–40. https://doi.org/10.1002/

path.4260 PMID: 24027095

38. Jang M., Yew P.Y., Hasegawa K., Ikeda Y., Fujiwara K., Fleming G.F., et al. Characterization of T cell

repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing.

Oncoimmunology, 2015. 4(11): p. e1030561. https://doi.org/10.1080/2162402X.2015.1030561 PMID:

26451311

39. Sims J.S., Grinshpun B., Feng Y., Ung T.H., Neira J.A., Samanamud J.L., et al. Diversity and diver-

gence of the glioma-infiltrating T-cell receptor repertoire. Proceedings of the National Academy of Sci-

ences of the United States of America, 2016: p. 201601012.

40. Gros A., Parkhurst M.R., Tran E., Pasetto A., Robbins P.F., Ilyas S., et al. Prospective identification of

neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med, 2016. 22(4):

p. 433–8. https://doi.org/10.1038/nm.4051 PMID: 26901407

PLOS ONE TCR motifs as a biomarker for ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0229569 March 5, 2020 17 / 17

https://doi.org/10.1158/2326-6066.CIR-16-0013
https://doi.org/10.1158/2326-6066.CIR-16-0013
http://www.ncbi.nlm.nih.gov/pubmed/27587469
https://doi.org/10.1002/path.4260
https://doi.org/10.1002/path.4260
http://www.ncbi.nlm.nih.gov/pubmed/24027095
https://doi.org/10.1080/2162402X.2015.1030561
http://www.ncbi.nlm.nih.gov/pubmed/26451311
https://doi.org/10.1038/nm.4051
http://www.ncbi.nlm.nih.gov/pubmed/26901407
https://doi.org/10.1371/journal.pone.0229569

