
Chemogenomic Profiling of Antileishmanial Efficacy and
Resistance in the Related Kinetoplastid Parasite Trypanosoma
brucei

Clare F. Collett,a* Carl Kitson,a Nicola Baker,b* Heather B. Steele-Stallard,a Marie-Victoire Santrot,a Sebastian Hutchinson,b*
David Horn,b Sam Alsforda

aLondon School of Hygiene and Tropical Medicine, London, United Kingdom
bWellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom

ABSTRACT The arsenal of drugs used to treat leishmaniasis, caused by Leishmania
spp., is limited and beset by toxicity and emergent resistance. Furthermore, our un-
derstanding of drug mode of action and potential routes to resistance is limited.
Forward genetic approaches have revolutionized our understanding of drug mode
of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we
screened our genome-scale T. brucei RNA interference (RNAi) library against the cur-
rent antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, milte-
fosine, and amphotericin B. Identification of T. brucei orthologues of the known
Leishmania antimonial and miltefosine plasma membrane transporters effectively val-
idated our approach, while a cohort of 42 novel drug efficacy determinants provides
new insights and serves as a resource. Follow-up analyses revealed the antimonial
selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily
transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-asso-
ciated membrane protein TbVAMP7B and a flippase contribute to amphotericin B
and miltefosine action and are potential cross-resistance determinants. Finally, multi-
ple phospholipid-transporting flippases, including the T. brucei orthologue of the
Leishmania miltefosine transporter, a putative �-subunit/CDC50 cofactor, and addi-
tional membrane-associated hits, affect amphotericin B efficacy, providing new in-
sights into mechanisms of drug uptake and action. The findings from this orthology-
based chemogenomic profiling approach substantially advance our understanding of
antileishmanial drug action and potential resistance mechanisms and should facili-
tate the development of improved therapies as well as surveillance for drug-resistant
parasites.
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The kinetoplastid parasites Leishmania species, Trypanosoma brucei subspecies, and
Trypanosoma cruzi are endemic throughout much of the tropics and subtropics,

sub-Saharan Africa, and Latin America, respectively. They are responsible for various
forms of leishmaniasis (Leishmania spp.) (1), human African trypanosomiasis (HAT) (T.
brucei gambiense and T. brucei rhodesiense), the livestock disease nagana (T. brucei
brucei and related African trypanosomes) (2), and Chagas’ disease (T. cruzi) (3). Collec-
tively, these parasites cause a huge burden of disease among predominantly poor
populations in affected regions. Leishmaniasis is caused by a range of Leishmania
species, leading to cutaneous and visceral forms of the disease, of which there are 0.7
million to 1.3 million and 0.2 million to 0.4 million cases per year, respectively (4). While
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cutaneous leishmaniasis can be self-limiting, infections with Leishmania braziliensis (and
other members of the Viannia subgenus) can develop into mucocutaneous leishman-
iasis, a profoundly disfiguring form of the disease (4). Visceral leishmaniasis (VL), also
known as kala-azar, is typically fatal if untreated.

There are four current antileishmanial drugs, sodium stibogluconate (SSG), paromo-
mycin, miltefosine, and amphotericin B, which are unsatisfactory due to toxicity,
emerging drug resistance, complex administration protocols, and variable efficacy
depending on the disease type or infecting Leishmania species (5). With the exception
of miltefosine (in use against leishmaniasis since 2002), the current antileishmanial
drugs have been in use for many decades. Until recently, efforts have focused on the
development of more-effective drug delivery regimens and combination therapies,
with the aim of reducing dosages (and, therefore, side effects) and combating the
emergence of resistance. The rise of antimonial-resistant Leishmania donovani on the
Indian subcontinent now precludes the use of SSG (6), while miltefosine-resistant L.
donovani has been confirmed in the clinic (7). Consequently, the World Health Orga-
nization recommends various combination therapies, depending on the Leishmania
species and geographical region (8). However, it is relatively easy to generate Leish-
mania parasites resistant to combination therapies in the laboratory (9, 10). More
recently, new drugs have entered the clinical development pipeline. However, the most
advanced of these, fexinidazole, which recently passed phase 2/3 clinical trials against
HAT (11) and has antileishmanial activity in vitro (12), lacks efficacy in vivo (13).

Given the ease with which Leishmania parasites become resistant to the available
drugs, it is critically important to understand how this resistance might develop.
Identification of the genetic changes underlying drug resistance will enable the devel-
opment of molecular diagnostics to inform treatment choice (14). Leishmania genome
and transcriptome analyses have identified large numbers of candidate genes (15, 16),
but relatively few have been directly linked to drug action. While some drugs can freely
move across membranes, many are taken up via specific surface receptors and trans-
porters. For example, miltefosine uptake is dependent on a Leishmania amino
phospholipid-transporting (P4)-type ATPase (or flippase) and its �-subunit/CDC50 co-
factor, Ros3 (17, 18), while the Sb(III) form of SSG is taken up via an aquaglyceroporin,
AQP1 (19). There is also evidence that the ABC transporter MRPA influences SSG uptake
and sequestration (20), and several other proteins have been implicated in SSG efficacy
(reviewed in reference 14). In addition, the generation of drug-resistant Leishmania in
the laboratory and various omics analyses have provided insights into antileishmanial
drug action and resistance mechanisms. Proteomic analyses of paromomycin-resistant
L. donovani revealed a complex picture, with a range of proteins being upregulated,
including several involved in translation regulation, vesicular trafficking, and glycolysis
(21). A similar analysis of amphotericin B-resistant Leishmania infantum highlighted the
differential expression of metabolic enzymes and the upregulation of proteins involved
in protection against reactive oxygen species (22). Metabolomic analyses suggested
that oxidative defense also contributes to SSG-amphotericin B and SSG-paromomycin
resistance in L. donovani (23).

The studies described above highlight the phenotypic consequences of changes in
drug sensitivity but not necessarily the genetic changes responsible. Forward genetic
approaches can identify genes that contribute to drug action and resistance. For
example, genome-scale RNA interference (RNAi) library screening, coupled with RNA
interference target sequencing (RIT-seq), has revolutionized our understanding of
anti-HAT drug action and resistance (24, 25). In addition, cosmid sequencing (Cos-seq)
has enabled gain-of-function screening in Leishmania (26), leading to target validation
for N-myristoyltransferase (27) and the identification of a panel of putative antimony
and miltefosine resistance genes (28). While undoubtedly a powerful technique, Cos-
seq is unable to identify drug uptake or activation mechanisms, which can be charac-
terized by loss-of-function approaches such as RIT-seq. However, due to the absence of
the RNAi machinery in most Leishmania species (with the notable exception of L.
braziliensis [29]), this loss-of-function approach is not possible for these parasites.
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Although T. brucei and Leishmania have distinct life cycles, they are phylogenetically
related kinetoplastid parasites that exhibit a high degree of biochemical and genetic
similarity (30). Indeed, the majority of orthologous genes are syntenic, indicating little
change in gene order since divergence from a common ancestor. Perhaps not surpris-
ingly, then, several “dual-purpose” drugs display activity against both parasites, includ-
ing pentamidine (5), fexinidazole (11, 12), and the proteasome inhibitor GNF6702 (31).
T. brucei is also susceptible to in vitro killing by the four current antileishmanial drugs.
Therefore, we hypothesized that T. brucei RNAi library selection with the antileishmanial
drugs would enable the identification of candidate drug efficacy determinants with
orthologues in Leishmania.

Here, we describe RIT-seq library screening using each of the current antileishmanial
drugs. We identified 44 high-confidence putative drug efficacy determinants, including
T. brucei orthologues of the Leishmania SSG and miltefosine transporters (MTs). Among
many previously unknown drug efficacy determinants, we found that the vesicle-
associated membrane protein TbVAMP7B contributes to miltefosine and amphotericin
B efficacy and highlight a role for a cohort of amino phospholipid-transporting P4-type
ATPases (or “flippases”) in driving amphotericin B efficacy. This collection of validated
and putative antileishmanial drug efficacy determinants provides new insight into
mode of action and potential resistance mechanisms and represents an important
resource to guide future study.

RESULTS
Orthology-based chemogenomic profiles for antileishmanial drugs. The four

current antileishmanial drugs SSG, paromomycin, miltefosine, and amphotericin B have
in vitro 50% effective concentration (EC50) values against T. brucei of 1.8 �g · ml�1,
17 �M, 30 �M, and 260 nM, respectively (Fig. 1A). The equivalent values versus intra-
cellular L. donovani amastigotes in mouse peritoneal macrophages are approximately
an order of magnitude higher (SSG and paromomycin) or lower (miltefosine and
amphotericin B) (32). To identify factors whose loss renders T. brucei less sensitive to
each antileishmanial drug, a bloodstream-form (BSF) T. brucei RNAi library was induced
for 24 h, and each drug was then added at 1� to 3� EC50; selection and induction were
maintained thereafter (Fig. 1B). After selection for approximately 10 days, populations
with reduced drug sensitivity emerged and grew consistently under continued selec-
tion (Fig. 1C).

Following robust growth for at least 2 days, genomic DNA was isolated from the
drug-selected populations and subjected to RNAi construct-specific PCR, generating
distinct banding patterns for each (Fig. 1C). We sequenced the amplified RNAi target
fragment populations from the selected RNAi libraries on an Illumina HiSeq platform
(see Table S1 in the supplemental material). For each selected RNAi library, we mapped
more than 3 million individual sequence reads, representing antileishmanial enriched
RNAi target fragments, to the TREU927 T. brucei reference genome (33) using our
established RIT-seq methodology (34) (Fig. 1B). The presence of the RNAi construct-
specific barcode identified “high-confidence” hits, i.e., those represented by more than
99 barcoded reads/kb/predicted transcript (open reading frames plus predicted un-
translated regions, as annotated in the TREU927 reference genome available at www
.tritrypdb.org) and recovery of at least two independent RNAi target fragments (Fig. 2,
Fig. S1, and Table S1).

Importantly, we identified T. brucei orthologues of two known Leishmania determi-
nants of antileishmanial drug efficacy. RNAi target fragments that mapped to the
TbAQP2-3 locus (Tb927.10.14160-70), which encodes two aquaglyceroporins, domi-
nated the SSG-selected RNAi library; L. donovani AQP1 (LdBPK_310030.1) is a key
mediator of SSG uptake (19). Another significant hit identified following miltefosine
selection was a putative flippase (Tb927.11.3350); the corresponding coding sequence
is syntenic with the L. donovani miltefosine transporter (LdBPK_131590.1) (17). The
identification of T. brucei orthologues of these known antileishmanial efficacy determi-
nants highlights the power of this chemogenomic profiling approach in the identifi-
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cation of mechanisms of action and resistance that are also relevant to Leishmania
parasites. In addition to these hits, our RIT-seq analyses yielded a further 42 high-
confidence hits (Fig. 2, Fig. S1, and Table S1).

TbAQP3, an orthologue of Leishmania AQP1, is linked to antimonial action.
Aquaglyceroporin defects in T. brucei and in Leishmania have been linked to arsenical
and antimonial resistance (see above), but specific relationships among drugs and
AQPs have not been fully elucidated. For example, TbAQP2 is responsible for pentam-
idine and melarsoprol uptake (35), possibly via receptor-mediated endocytosis in the
former case (36), and mutations that disrupt TbAQP2 are responsible for melarsoprol
resistance in patients (37). L. donovani AQP1 has also been linked to antimonial
resistance in patients (38). Notably, TbAQP3 and Leishmania AQP1 have the same set of
selectivity filter residues (NPA/NPA/WGYR), while TbAQP2 has a divergent set (NSA/
NPS/IVLL) (39). Therefore, we investigated the specificity of the interaction between
SSG and TbAQP2/TbAQP3, the major hits in the SSG screen.

Sequence mapping of the RNAi target fragments following SSG selection revealed that
approximately 71% and 29% of mapped reads containing the RNAi construct-specific
barcode corresponded to TbAQP2 (Tb927.10.14170) and TbAQP3 (Tb927.10.14160), respec-
tively (Fig. 3A); only 0.08% of reads mapped elsewhere in the genome. These data are
consistent with the idea that both aquaglyceroporins contribute to SSG action. How-
ever, the TbAQP2 and TbAQP3 coding sequences are 82.3% identical; thus, while an

FIG 1 Antileishmanial drug selection of a genome-scale T. brucei RNAi library. (A) Representative EC50 charts showing the
susceptibility of T. brucei to the antileishmanial drugs. Individual EC50 assays were carried out in quadruplicate; error bars
represent standard deviations. Insets show structures of the antileishmanial drugs (downloaded from https://en.wikipedia
.org/wiki/Sodium_stibogluconate and Sigma-Aldrich). (B) Schematic showing bloodstream-form T. brucei RNAi library
selection and RNAi fragment identification by RIT-seq. Tet, tetracycline. (C) Growth during antileishmanial drug selection
of the BSF T. brucei RNAi library. Selection was initiated at 1.5� EC50, except for miltefosine (1.0� EC50), and adjusted as
indicated (black arrows); induction with 1 �g · ml�1 tetracycline was maintained throughout. Genomic DNA was prepared
at the indicated times (red arrows). Insets show RNAi library-specific PCR.

Collett et al. Antimicrobial Agents and Chemotherapy

August 2019 Volume 63 Issue 8 e00795-19 aac.asm.org 4

https://en.wikipedia.org/wiki/Sodium_stibogluconate
https://en.wikipedia.org/wiki/Sodium_stibogluconate
https://aac.asm.org


RNAi fragment may unambiguously map to TbAQP2, it may be sufficiently similar to
TbAQP3 to elicit its depletion. Therefore, we tested the relative contribution of the
encoded aquaglyceroporins to SSG action against T. brucei using aqp2-3-null and
reexpression cell lines (35).

Deletion of the TbAQP2-3 locus led to a 6.7-fold increase in the SSG EC50 (Fig. 3B),
consistent with the output from the screen. Inducible expression of green fluorescent
protein-tagged TbAQP2 (GFPTbAQP2) in the null cell line had little effect on T. brucei SSG
sensitivity (Fig. 3C, left); however, GFPTbAQP3 expression reduced the SSG EC50 5.5-fold
(Fig. 3C, right). In contrast, and as shown previously (35), GFPAQP2 expression comple-
mented the pentamidine resistance of aqp2-3-null T. brucei (Fig. 3D, left), while GFPAQP3
expression had no effect on pentamidine sensitivity (Fig. 3C, right). Therefore, SSG
sensitivity and resistance are specifically determined by TbAQP3 expression. This
indicates that the NPA/NPA/WGYR selectivity filter, present in both TbAQP3 (39) and
Leishmania AQP1, may be selective for antimonial uptake.

T. brucei lysosomal MFST influences aminoglycoside action. Selection of the BSF
T. brucei RNAi library with the antileishmanial aminoglycoside paromomycin identified
50 hits, 28 of which fulfilled our high-stringency criteria (Table S1). Twenty-one of the
high-confidence hits were functionally annotated and included several associated with
transport and nucleic acid processing. The top three hits with functional annotations
were Tb927.9.6360-80 (major facilitator superfamily [MFS] transporters [MFSTs]),
Tb927.11.6680 (amino acid transporter [AAT15]), and Tb927.11.14190 (Tudor domain-
containing staphylococcal nuclease [TSN]) (40), targeted by approximately 84%, 1.7%,
and 0.9% of the mapped reads, respectively (Fig. 4A, Fig. S2, and Table S1). However,
while parasites able to deplete AAT15 and TSN persisted in the population over the
12 days of selection with paromomycin, we were unable to detect a significant advan-
tage versus wild-type T. brucei during the course of a standard 72-h EC50 assay (Fig. S1).
Therefore, we focused our attention on the MFST genes.

The genes at the Tb927.9.6360-80 locus share at least 92% sequence identity and
encode three putative MFSTs, a ubiquitous family of proteins responsible for mem-
brane transit of a wide range of solutes, including drugs (41). Comparison with the
sequences annotated “MFS” or “major facilitator superfamily transporter” in the L. major
reference genome confirmed that the syntenic coding sequence, LmjF.15.0870, is most
closely related to Tb927.9.6360-80 (Fig. 4B and Fig. S3). The Leishmania and T. brucei

FIG 2 Genome-scale maps showing hits in each screen. Illumina sequencing of the amplified RNAi
target fragments identifies T. brucei orthologues of known Leishmania drug transporters and novel
putative drug efficacy determinants. RNAi fragments amplified from each selective screen were
mapped against the TREU927 T. brucei reference genome. Red bars correspond to T. brucei
orthologues of known Leishmania drug transporters: AQP2-3 (aquaglyceroporin-2-3 locus)
(Tb927.10.14160-70) and MT (miltefosine transporter orthologue) (Tb927.11.3350). The y axes are
truncated to 104 reads/kb/transcript. SSG, sodium stibogluconate; Pmm, paromomycin; Milt, milte-
fosine; AmB, amphotericin B.
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proteins share similar trans-membrane (TM) domain organizations and the cytoplasmic
loop between TM6 and TM7, which is characteristic of MFST proteins (Fig. 4C) (42).

We previously identified the Tb927.9.6360-80 locus as a key contributor to suramin
efficacy against T. brucei, with RNAi depletion of the three transcripts leading to a
10-fold reduction in parasite sensitivity to suramin; localization studies also indicated
that at least one of these transporters is lysosomal (24). Deletion of the whole locus (Fig.
4D) revealed that the three encoded proteins are collectively dispensable in cultured
BSF T. brucei (Fig. 4E) and enabled us to confirm that these proteins influence not only
suramin efficacy (Fig. 4F) but also those of paromomycin (Fig. 4G) and the related
aminoglycoside neomycin (Fig. 4H). While loss of these MFST proteins dramatically
reduces suramin efficacy, the effect on paromomycin and neomycin sensitivity is less
pronounced (1.5- and 2.8-fold EC50 increases, respectively) although significant. Our
mutant BSF T. brucei parasites also exhibited better tolerance than wild-type parasites
to the aminoglycosides at concentrations equivalent to or greater than the EC99 during
the first 24 h of exposure (Fig. S4).

TbVAMP7B, a cross-efficacy determinant for amphotericin B and miltefosine.
To identify antileishmanial cross-efficacy determinants, we next used pairwise compar-
isons of RNAi library screen outputs (Fig. 5). We first identified a small cohort of hits
represented by at least two RNAi target fragments and �99 reads/kb/transcript in more
than one screen. This group included the AQP2-3 locus, represented by at least 100
reads in all four screens. We did not explore this locus further since the read count was
at least 3 orders of magnitude lower in each screen than in the SSG screen, and
leishmanial AQPs have not been implicated in resistance to the other drugs (see above).
Two other loci fulfilled our stringency criteria, and both were enriched following

FIG 3 TbAQP3, a T. brucei orthologue of Leishmania AQP1, is selective for sodium stibogluconate. (A)
Total (red) and RNAi construct-specific 14-mer-containing (blue) reads mapping to the TbAQP2-3
locus, Tb927.10.14160-70. Targeted open reading frames are highlighted in green; flanking open
reading frames are in gray. (B) Sodium stibogluconate EC50 assay following deletion of the T. brucei
AQP2-3 locus (aqp2-3). (C and D) Sodium stibogluconate (C) and pentamidine (D) EC50 assays
following expression of GFPAQP2 (GAQP2) (left) and GFPAQP3 (right) in aqp2-3-null T. brucei. Individual
EC50 assays were carried out in quadruplicate. Error bars represent standard deviations. WT, T. brucei
wild type for the AQP2-3 locus.
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amphotericin B and miltefosine selection, Tb927.5.3550-70 and Tb927.11.3350 (Table S1);
further analysis of the former hit is considered in this section, while the contribution of
Tb927.11.3350 to drug action is addressed subsequently.

RIT-seq analysis revealed that 2.2% and 97% of mapped reads identified Tb927.5.3550-70
in the amphotericin B and miltefosine screens, respectively (Fig. 6A). This locus encodes a
thioredoxin-like protein (Tb927.5.3550); a vesicle-associated membrane protein, TbVAMP7B
(Tb927.5.3560) (43); and a hypothetical protein (Tb927.5.3570). Analysis of the RNAi target
fragments mapping to Tb927.5.3550-70 revealed that few uniquely targeted the TbVAMP7B

FIG 4 The T. brucei lysosomal major facilitator superfamily protein influences the efficacy of aminoglycoside drugs. (A) Total (red) and RNAi
construct-specific 14-mer-containing (blue) reads mapping to the MFST locus, Tb927.9.6360-80. Targeted open reading frames are
highlighted in green; flanking open reading frames are in gray. (B) Unrooted neighbor-joining tree comparing representative Leishmania
MFST proteins with Tb927.9.6360-80 (highlighted in green) (see Fig. S3 in the supplemental material for an extended tree). (C) Predicted
trans-membrane organization of the Tb927.9.6360-80 proteins and the selected Leishmania proteins (vertical bars, TM domains). aa, amino
acids. (D) MFST locus deletion strategy and Southern hybridization confirming the generation of heterozygous (�/�) and homozygous
(�/�) MFST locus-null T. brucei parasites. X, XhoI; D, deletion probe; F, flanking probe; PAC, puromycin acetyltransferase; BSD, blasticidin
S deaminase; WT, wild type. (E) Growth of WT and MFST locus-null (mfst) T. brucei parasites in culture. (F to H) Representative data from
EC50 assays comparing the sensitivities of WT and mfst T. brucei parasites to suramin (F), paromomycin (G), and neomycin (H). Inset charts
summarize EC50 data from three independent biological replicates. Individual growth (E) and EC50 (F to H) assays were carried out in
triplicate and quadruplicate, respectively. Error bars represent standard deviations. P values were derived from Student’s t test (**,
P � 0.01).
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coding sequence (Fig. 6A). Instead, the RNAi target fragments that mapped to the flanking
genes overlapped either the TbVAMP7B coding sequence (Tb927.5.3550 RNAi target frag-
ments) or the 3= untranslated region (Tb927.5.3570 RNAi target fragments). This pattern is
consistent with the poor tolerance of TbVAMP7B depletion. Our previous high-throughput
phenotypic analysis indicated that TbVAMP7B RNAi knockdown is associated with a sig-
nificant loss of fitness, while depletion of the flanking transcripts had a less dramatic effect
(Table S1) (44). Taken together, these data suggested that TbVAMP7B is an amphotericin
B-miltefosine cross-efficacy determinant, while the identification of the flanking genes was
due to bystander effects.

To test this hypothesis, we generated stem-loop RNAi BSF T. brucei cell lines
targeting TbVAMP7B and Tb927.5.3570. As predicted, depletion of Tb927.5.3570 had no
effect on growth or sensitivity to amphotericin B or miltefosine (Fig. S5). In contrast,
knockdown of TbVAMP7B following induction with tetracycline at 2 ng or 1 �g · ml�1

resulted in a significant growth defect (Fig. 6B). To assess the contribution of TbVAMP7B
to drug efficacy, we induced RNAi with 2 ng · ml�1 tetracycline for 24 h and assessed
drug sensitivity over a further 30 h under inducing conditions. Incubation with low-
concentration tetracycline and a shorter EC50 analysis (as opposed to the standard 72-h
protocol) ensured that the growth defect due to TbVAMP7B RNAi knockdown was
minimized while still allowing us to test the protein’s contribution to drug action.

Unexpectedly, RNAi knockdown of TbVAMP7B reduced the amphotericin B EC50, by
24% (Fig. 6C). However, TbVAMP7B depletion also resulted in a significant decrease in
the Hill coefficient. Consequently, while the EC50 decreased upon TbVAMP7B depletion,
the EC90 and EC99 increased 1.45-fold and 3-fold, respectively (Fig. 6D); the EC25

decreased by 44%, consistent with the effect on the EC50 and the change in the Hill
coefficient. Therefore, small changes in TbVAMP7B expression can lead to a significant
loss of sensitivity to high-concentration amphotericin B while enhancing sensitivity to
the drug at a low concentration. This relative resistance to high-concentration ampho-

FIG 5 Pairwise comparisons identify putative amphotericin B-miltefosine cross-efficacy loci. Shown are pairwise comparisons of the
sequenced outputs from the four selective screens. Data were converted to reads per kilobase per million mapped reads (RPKM) to
control for minor interlibrary variations in read depth. Dashed lines represent stringent 100-read cutoffs for each selected RNAi library
converted to RPKM. High-confidence cross-efficacy determinants following comparison of the miltefosine- and amphotericin
B-selected RNAi libraries are highlighted in red in the top right quadrant.
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tericin B explains the enrichment of TbVAMP7B-targeting RNAi fragments following
selection of the RNAi library at 1.5� EC50. In contrast, miltefosine at relatively low
concentrations complemented the TbVAMP7B RNAi growth defect and further in-
creased growth at lower concentrations (Fig. 6E and F).

Our findings indicate specific interactions between TbVAMP7B and both amphoter-
icin B and miltefosine. VAMP7 proteins are involved in endosome and lysosome
membrane fusion (45), and it is notable in this respect that amphotericin B disrupts
membranes and that miltefosine is a phospholipid drug. TbVAMP7B depletion does not
significantly increase the EC50 for either drug, but nevertheless, these interactions may
be important in a clinical setting where exposure will be variable in different tissues and
at different times following dosing.

Multiple hits link amphotericin B action to phospholipid transport and metab-
olism. Our amphotericin B screen yielded 13 high-confidence hits, for which Gene
Ontology (GO) term profiling revealed links to membranes and lipids (Table S2 and

FIG 6 T. brucei VAMP7B, Tb927.5.3560, and the action of amphotericin B and miltefosine. (A) Total (red) and RNAi
construct-specific 14-mer-containing (blue) reads mapping to Tb927.5.3550-70 following amphotericin B and miltefosine
selection. Targeted open reading frames are highlighted in green; flanking open reading frames are in gray. (B) T. brucei
population growth following TbVAMP7B (Tb927.5.3560) RNAi knockdown. The inset shows confirmation of RNAi knock-
down by Northern blotting following 24-h induction with 1 �g · ml�1 tetracycline; an ethidium bromide-stained gel is
shown as a loading control. (C) Representative data from a 30-h amphotericin B EC50 assay following TbVAMP7B RNAi
knockdown induced with 2 ng · ml�1 tetracycline. The inset chart summarizes Hill coefficient data for five biological
replicates. (D) Effect of TbVAMP7B RNAi knockdown on ECX for five biological replicates. Data for each replicate were
derived from EC50 values and Hill coefficients presented in panel C. (E) Representative data from a 30-h miltefosine EC50

assay following TbVAMP7B RNAi knockdown induced with 2 ng · ml�1 tetracycline. Data are plotted to show population
growth relative to untreated T. brucei (uninduced or induced). The dashed ellipse highlights miltefosine-mediated
complementation of the Tb927.5.3560 RNAi growth defect. (F) Chart summarizing T. brucei population growth in the
presence or absence of TbVAMP7B RNAi at a subset of miltefosine concentrations from five independent biological
replicates. Individual growth (B) and EC50 (C and E) assays were carried out in triplicate and quadruplicate, respectively.
Error bars represent standard deviations. P values were derived from paired Student’s t test (**, P � 0.01; ***, P � 0.001).
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Fig. S6). This is consistent with disruption of membranes by amphotericin B.
Miltefosine uptake in Leishmania is dependent on a flippase (17, 18), which also
contributes to the antileishmanial action of amphotericin B (46). RNAi fragments
targeting the syntenic locus in T. brucei, Tb927.11.3350, were enriched following
selection with amphotericin B and miltefosine (Fig. 5 and Fig. 7A). Depletion of
Tb927.11.3350, while having no effect on parasite growth in culture (Fig. 7B), led to
a reproducible increase in amphotericin B and miltefosine EC50s (Fig. 7C and D).
RNAi knockdown also significantly enhanced short-term survival in high-concen-
tration amphotericin B and miltefosine (Fig. S6). Therefore, as in Leishmania, the T.
brucei miltefosine transporter orthologue contributes to the action of miltefosine
and amphotericin B.

In addition to Tb927.11.3350, the T. brucei genome contains three other putative
flippases (Fig. 8A) as well as three putative �-subunits, including Tb927.11.13770,
the syntenic orthologue of Leishmania Ros3 (18). Three of the four flippases
(Tb927.4.1510, Tb927.11.3350, and Tb927.11.13000) have a domain organization
similar to that of the Saccharomyces cerevisiae flippases and possess the DEGT and
DKTGT motifs characteristic of the actuator and phosphorylation domains (47). The
fourth, Tb927.6.3550, lacks the flippase DEGT domain, although it clusters with the
Leishmania flippase LmjF.34.2630. However, it also lacks the TGES domain characteristic
of related cation-transporting P-type ATPases such as yeast Pay2 (47), so its identity is
unclear (Fig. 8A).

In addition to the Leishmania miltefosine transporter orthologue, Tb927.11.3350,
RNAi fragments targeting the flippases Tb927.11.13000 and Tb927.6.3550 and the
�-subunit Tb927.11.13200 were enriched following selection with amphotericin B,
with Tb927.11.13000 represented by 78% of mapped reads (Fig. 8B and Table S1).
Targeted RNAi depletion of Tb927.11.13000 led to a mild growth defect (Fig. 8C)
and a �2-fold EC50 increase, validating this protein as an amphotericin B efficacy
determinant in T. brucei (Fig. 8D). The impact of Tb927.11.13000 depletion was most

FIG 7 The T. brucei miltefosine transporter orthologue, Tb927.11.3350, influences miltefosine and amphotericin B
efficacy against T. brucei. (A) Total (red) and RNAi construct-specific 14-mer-containing (blue) reads mapping to
Tb927.11.3350 following amphotericin B (AmB) or miltefosine selection. Targeted open reading frames are high-
lighted in green; flanking open reading frames are in gray. (B) T. brucei population growth following RNAi
knockdown of Tb927.11.3350. The inset shows confirmation of RNAi knockdown by Northern blotting; an ethidium
bromide-stained gel is shown as a loading control. (C and D) Representative data from amphotericin B and
miltefosine EC50 assays following RNAi knockdown of Tb927.11.3350. Inset charts summarize data from three
independent biological replicates. Individual growth (B) and EC50 (C and D) assays were carried out in triplicate and
quadruplicate, respectively. Error bars represent standard deviations. P values were derived from Student’s t test
(*, P � 0.05; **, P � 0.01). RNAi inductions were carried out with 1 �g · ml�1 tetracycline.
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pronounced during the initial 24 h of drug exposure, enabling the parasite popu-
lation to increase approximately 1.3-fold and 4-fold over 8 and 24 h, respectively, in
the presence of 0.7 �M (�EC99) amphotericin B (Fig. S6). The uninduced population
declined by more than 40% and 60% over the same periods. In addition, while
exposure to 1.8 �M (�EC99.9) amphotericin B led to an 80% decline in the induced
population over 24 h, cultures of uninduced cells were cleared within 4 h of
exposure to this drug concentration (Fig. S6). Depletion of this putative phos-
pholipid-transporting ATPase had no effect on miltefosine efficacy (Fig. 8E), con-
firming its specific contribution to amphotericin B action.

Our results reveal that multiple T. brucei flippases drive the efficacy of amphotericin
B, all of which have syntenic orthologues in Leishmania (Fig. 8A). Therefore, in addition
to the well-characterized miltefosine-transporting flippase, other Leishmania flippases
may play significant, and potentially specific, roles in the antileishmanial action of
amphotericin B and miltefosine.

FIG 8 Flippases influence the action of amphotericin B. (A) Neighbor-joining phylogenetic tree showing the T. brucei and
L. major flippases versus the S. cerevisiae flippases (Neo1p [UniProt accession number P40527], Drs2p [accession number
P39524], and DNF1-3 [accession numbers P32660, Q12675, and Q12674]) and a representative cation-transporting P-type
ATPase (Pay2 [E9P982]). Shown are schematics of predicted T. brucei and L. major flippases, including the miltefosine
transporter (MT) (red), and representative S. cerevisiae flippases (Neo1p and DNF3) (blue) and P-type ATPase (Pay2)
(orange). Conserved domains (actuators, TGES [green triangles] and DEGT [pink triangles]; phosphorylation, DKTGT [yellow
triangles]), predicted signal peptides (vertical red bar), and predicted trans-membrane domains (vertical black bars) are
highlighted. (B) Total (red) and RNAi construct-specific 14-mer-containing (blue) reads mapping to Tb927.11.13000 and
Tb927.6.3550 following amphotericin B selection. Targeted open reading frames are highlighted in green; flanking open
reading frames are in gray. (C) T. brucei population growth following RNAi knockdown of Tb927.11.13000. The inset shows
confirmation of RNAi knockdown by Northern blotting; an ethidium bromide-stained gel is shown as a loading control. (D
and E) Representative data from amphotericin B and miltefosine EC50 assays following RNAi knockdown of Tb927.11.13000.
Inset charts summarize data from three independent biological replicates. Individual growth (C) and EC50 (D and E) assays
were carried out in triplicate and quadruplicate, respectively. Error bars represent standard deviations. P values were
derived from Student’s t test (*, P � 0.05; **, P � 0.01). RNAi inductions were carried out with 1 �g · ml�1 tetracycline,
unless otherwise stated.
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DISCUSSION

In the current absence of an effective genome-scale loss-of-function screen in
Leishmania, we speculated that selection of a T. brucei RNAi library would provide
insights into antileishmanial drug action while also revealing novel T. brucei biology. By
selecting our genome-scale BSF T. brucei RNAi library with the current antileishmanial
drugs followed by RIT-seq analysis, we identified a panel of putative antileishmanial
drug efficacy determinants (see Table S1 and Fig. S1 in the supplemental material). SSG
and miltefosine selection identified TbAQP3, an orthologue of the known Sb(III) trans-
porter, and Tb927.11.3350, the T. brucei orthologue of the Leishmania miltefosine
transporter (MT), respectively, confirming the power of this approach. In addition to
these known drug transporters, we validated several novel drug efficacy determinants
identified by our selective screens: Tb927.9.6360-80 (paromomycin), Tb927.5.3560
(miltefosine and amphotericin B), and Tb927.11.13000 (amphotericin B). Our results
highlight the role of a lysosomal transporter in paromomycin efficacy, emphasize the
importance of membrane composition for the action of amphotericin B and miltefosine,
provide insight into the substrate selectivity of the trypanosomatid aquaglyceroporins,
and present several new candidate antileishmanial drug efficacy determinants (Fig. 9).

SSG contains Sb(V), which is not reduced in Leishmania medium, limiting its efficacy
against the extracellular promastigote stage (48). However, once it enters the host

FIG 9 Known and candidate drivers of antileishmanial drug efficacy in Leishmania. The key T. brucei
proteins identified in our antileishmanial loss-of-function screen (left) and their Leishmania orthologues
(right) represent candidate antileishmanial drug efficacy determinants. Red denotes known Leishmania
drivers of antileishmanial efficacy whose loss of function reduces drug efficacy (see the text for details).
The strain prefix for the truncated gene identifications is at the top of each panel, with the exception of
the sterol biosynthetic enzymes recently shown to contribute to amphotericin B efficacy against L.
mexicana (73). Gray-filled circles (endosomes) and ellipses (lysosome) represent the endocytic system.
The purple blocks represent membranes modified by changes in sterol biosynthesis and the putative
action of the flippases and their �-subunit; changes in membrane composition anywhere in the
endocytic system may influence the intracellular transit of amphotericin B or its ability to form ion-
permeable channels. Tb927.11.3350 has an intracellular localization in procyclic-stage T. brucei; however,
in the current absence of data from BSF T. brucei, we speculate that this protein localizes to the plasma
membrane in BSF T. brucei, as per its Leishmania orthologue.

Collett et al. Antimicrobial Agents and Chemotherapy

August 2019 Volume 63 Issue 8 e00795-19 aac.asm.org 12

https://aac.asm.org


macrophage, it is thought to be reduced to the toxic Sb(III) form, which can be taken
up by intracellular Leishmania amastigotes via AQP1 (19, 49). In contrast, we speculate
that Sb(V) is reduced to Sb(III) in T. brucei HMI9 medium due to the presence of
supplementary L-cysteine (50). Thus, in common with intracellular Leishmania amasti-
gotes, cultured extracellular T. brucei parasites treated with SSG are exposed to toxic
Sb(III). T. brucei RNAi library selection with SSG and our subsequent validation experi-
ments identified a single efficacy determinant, TbAQP3. Aquaglyceroporins are ubiq-
uitous transporters of water, glycerol, and other small solutes, whose specificity is
defined by their selectivity filter residues. Leishmania AQP1 and the T. brucei proteins
TbAQP1 and TbAQP3 have the same selectivity filter, NPA/NPA/WGYR, while TbAQP2
possesses a divergent filter, NSA/NPS/IVLL (39). TbAQP2 is a key drug transporter in T.
brucei, mediating the uptake of pentamidine and melarsoprol, and its loss contributes
to clinical drug resistance (35–37). In addition, TbAQP2 plays an important role in
glycerol transport, as its loss increases parasite sensitivity to alternative oxidase inhi-
bition, which leads to elevated intracellular glycerol levels (51). The in vivo roles of the
other T. brucei aquaglyceroporins remain unknown, although all three are capable of
arsenite and antimonite transport in yeast and Xenopus laevis heterologous expression
systems (52). In contrast, our data demonstrate that in T. brucei, these transporters are
selective for arsenic-containing melarsoprol (TbAQP2 [35]) and Sb(III) (TbAQP3). Intrigu-
ingly, RNAi library selection with SSG failed to identify TbAQP1, even though it contains
the same selectivity filter as TbAQP3. This suggests important functional and regulatory
differences between TbAQP1 and TbAQP3, which may influence their ability to con-
tribute to Sb(III) uptake in bloodstream-form T. brucei. For example, TbAQP3 is localized
to the plasma membrane in bloodstream-form T. brucei, and TbAQP1 localizes to the
flagellar membrane (35, 53). This differential localization may influence their ability to
mediate antimonial uptake.

The aminoglycoside paromomycin is thought to inhibit protein synthesis in Leish-
mania and enters the cell via endocytosis (21, 54, 55). However, RNAi library selection
did not identify a surface receptor, suggesting that, at least in T. brucei, paromomycin
entry is not dependent on a specific ligand-receptor interaction. Rather, the high
endocytic flux associated with variant surface glycoprotein (VSG) internalization (56)
may drive drug uptake. In addition, our screen did not identify proteins with identifiable
roles in translational regulation. This perhaps surprising observation may be due to the
relative essentiality of such proteins, whose loss, while capable of affecting paromo-
mycin action, may also cause a substantial loss of fitness. Instead, RNAi fragments
targeting Tb927.9.6360-80 dominated the paromomycin-selected RNAi library, with the
remaining 28 high-confidence hits constituting only 9% of mapped reads. This locus
encodes a set of closely related MFST proteins, at least one of which localizes to the
lysosome, and has previously been associated with suramin efficacy (24). In contrast to
paromomycin, several other endocytic pathway proteins, including three lysosomal
proteins (p67, cathepsin L, and the MFST proteins), influence suramin efficacy (24). This
led to the proposal that proteolytic processing in the lysosome releases suramin from
bound proteins, enabling neutralization in the acidic environment or association with
an alternative endogenous carrier and escape to the cytoplasm via one or more of the
lysosomal MFSTs (57). In contrast, the absence of hits targeting other endocytic
components following paromomycin RNAi library selection suggests little reliance on
the endocytic network per se. Therefore, the lysosomal MFST proteins may influence
paromomycin efficacy indirectly. MFST proteins mediate the transit of a diverse range
of molecules, including polyamines and amino acids (41), and changes in the intracel-
lular flux of these molecules may affect translation efficiency, which in turn may
influence paromomycin efficacy. Deletion of the Tb927.9.6360-80 locus from T. brucei
yields only a 2-fold increase in the paromomycin EC50. However, the MFST protein
encoded by the syntenic single-copy gene in Leishmania (e.g., LmjF.15.0870) remains to
be characterized and may make a more substantial contribution to paromomycin
action against this parasite.

Combination therapies are increasingly being used to treat leishmaniasis, enabling
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reduced dosing and treatment duration, resulting in fewer side effects (8). For example,
a single dose of liposomal amphotericin B in combination with a short course of oral
miltefosine or intramuscular paromomycin is an effective treatment for visceral leish-
maniasis (VL) in the Indian subcontinent (58). In East Africa, SSG-paromomycin combi-
nation therapy is effective against VL (59). However, L. donovani parasites resistant to
these and other antileishmanial drug combinations can be selected for in vitro (9, 10),
and oxidative defense upregulation and changes in membrane fluidity have been
associated with cross-resistance in laboratory-derived lines (23). Therefore, we carried
out pairwise comparisons of our RNAi library screen data to identify potential cross-
efficacy determinants. Only two hits fulfilled our stringency criteria, both of which
influence amphotericin B and miltefosine action: TbVAMP7B, an endosomal SNARE
protein responsible for endosome-lysosome fusion in other eukaryotes (45, 60), and
Tb927.11.3350, the T. brucei orthologue of the Leishmania miltefosine transporter (17).
However, while both of these proteins may influence membrane fluidity (see below), it
seems unlikely that either one contributes significantly to oxidative defense. Recent
Cos-seq gain-of-function analyses in L. infantum identified several candidate proteins
whose overexpression reduces sensitivity to multidrug exposure (26); these proteins
also lack an obvious connection to oxidative defense. Therefore, rather than being
dependent on the increase or decrease in the expression of a single protein, changes
in oxidative defense that lead to antileishmanial resistance are likely to be multifacto-
rial. Our findings also suggest that amphotericin B-miltefosine combination therapy is
most vulnerable to loss-of-function mutation, while others may be less susceptible to
the downregulation of a single protein. This finding is particularly significant given that
recent trials have confirmed the efficacy of amphotericin B-miltefosine combination
therapy in treating VL (61, 62).

In contrast to the other antileishmanial drug efficacy determinants described here,
TbVAMP7B depletion does not simply increase the drugs’ EC50s. Instead, TbVAMP7B
RNAi knockdown reduces the amphotericin B EC50 and has little effect on the milte-
fosine EC50. The drop in the amphotericin B EC50 is due to a substantial decrease in the
amphotericin B Hill coefficient, which has the opposite effect on EC90 and EC99,
increasing both and enabling TbVAMP7B-depleted parasites to persist at these drug
concentrations. Our data show that T. brucei has limited tolerance for TbVAMP7B
depletion, presumably due to impairment of endosome-lysosome fusion (45). Intrigu-
ingly, exposure to low-concentration miltefosine complements the growth defect seen
following TbVAMP7B depletion, suggesting that miltefosine treatment is able to pro-
mote vesicle membrane fusion in the endocytic system, a possible consequence of the
enhanced membrane fluidity seen upon miltefosine exposure (63). TbVAMP7B has also
recently been identified as a putative T. brucei apolipoprotein L1 (apoL1) sensitivity
determinant (64), and other workers have highlighted the importance of the intracel-
lular transit of the apoL1-carrying membrane for trypanolysis (65, 66). Our findings
suggest that such transit also contributes to amphotericin B and miltefosine action. The
VAMP7 proteins are highly conserved between T. brucei and Leishmania (43), suggest-
ing that Leishmania parasites will also be sensitive to VAMP7B loss (LmjF.08.0030).
However, subtle changes in VAMP7B expression that can be tolerated may enable
parasites to take advantage of variations in amphotericin B and miltefosine tissue
penetrance.

Miltefosine uptake in Leishmania is dependent on a phospholipid-transporting
flippase (the MT) and its �-subunit, Ros3 (17, 18); both in vitro-selected lines and
miltefosine-resistant L. donovani clinical isolates harbor mutations in the MT (7, 67, 68).
Consistent with this, T. brucei RNAi library selection with miltefosine led to enrichment
for RNAi fragments mapping to the syntenic sequence in T. brucei (Tb927.11.3350). RNAi
library selection with amphotericin B also enriched for RNAi fragments mapping to this
gene, consistent with recent findings in Leishmania (46), as well as two other flippases
and a putative �-subunit (Tb927.11.13200). Interestingly, the �-subunit targeted was
not the syntenic orthologue of Ros3, previously shown to interact with the MT (18).
Therefore, different flippase/�-subunit dependencies may have evolved following the
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divergence of the Leishmania and T. brucei lineages. A further difference in the
behaviors of these proteins between Leishmania and T. brucei lies in their localization.
The MT and Ros3 localize to the plasma membrane in Leishmania (18), whereas in
procyclic-form T. brucei, the MT orthologue (Tb927.11.3350) and a second flippase
(Tb927.11.13000) localize to an intracellular structure reminiscent of the endosomal
system (www.TrypTag.org) (69); their localization in BSF T. brucei is unknown. Therefore,
while flippases influence drug action against Leishmania and T. brucei, they may
mediate drug and/or phospholipid transit across different membranes in each parasite.

Phospholipid transport by flippases maintains the membrane asymmetry necessary
for membrane fusion, vesicle trafficking, and sterol homeostasis (47). The identification
of a single flippase following miltefosine selection is consistent with its role as a drug
transporter (17). In contrast, amphotericin B selection identified three flippases, sug-
gesting an indirect role in drug action, possibly through changes in membrane com-
position and transit through the endosomal system (Fig. 9). Amphotericin B acts by
binding membrane ergosterol (70), leading to the formation of ion-permeable channels
and downstream oxidative damage (71). Consistent with the importance of ergosterol
to amphotericin B action, resistant clinical isolates exhibit elevated membrane fluidity
and reduced ergosterol content (72). Recent findings have highlighted the mutation of
key sterol biosynthetic enzymes, such as CYP51, and reduced ergosterol production as
drivers of resistance in laboratory-derived amphotericin B-resistant Leishmania mexi-
cana (73, 74). In contrast, amphotericin B selection of the BSF T. brucei RNAi library did
not identify TbCYP51 (Tb927.11.6210) or any other recognizable component of the
ergosterol biosynthetic pathway, suggesting that limiting ergosterol production in BSF
T. brucei is unable to reduce amphotericin B efficacy. However, our data indicate that
changes in flippase expression may provide an alternative route to amphotericin B
resistance. We speculate that reduced flippase activity may lead to changes in mem-
brane ergosterol content or accessibility, thereby reducing the efficiency of amphoter-
icin B binding and uptake. Therefore, functional characterization of the syntenic
Leishmania orthologues of the T. brucei flippases may provide additional insights into
the processes that drive the antileishmanial action of amphotericin B.

In summary, using our genome-scale BSF T. brucei RNAi library, we have identified
a panel of putative antileishmanial drug efficacy determinants, highlighting two can-
didate cross-efficacy determinants, as well as roles for multiple flippases in the action
of amphotericin B. The findings from this orthology-based chemogenomic profiling
approach substantially advance our understanding of antileishmanial drug mode of
action and potential resistance mechanisms and should facilitate the development of
improved therapies as well as surveillance strategies to identify drug-resistant parasites.

MATERIALS AND METHODS
T. brucei strains. MITat1.2/2T1 BSF T. brucei parasites (75) were maintained in HMI9 (50) (Invitrogen,

LifeTech) supplemented with 10% fetal calf serum (Sigma) at 37°C with 5% CO2. Transfection was carried
out in either cytomix or Tb-BSF buffer (76), for integration at the 2T1 “landing pad” (75, 77) or
Tb927.9.6360-80, respectively, using a Nucleofector (Lonza) set to program X-001. Transformants were
selected with 2.5 �g · ml�1 hygromycin, 2 �g · ml�1 puromycin, or 10 �g · ml�1 blasticidin, as
appropriate. The BSF T. brucei RNAi library was maintained with 1 �g · ml�1 phleomycin and 5 �g · ml�1

blasticidin (34). For growth assays, cultured BSF T. brucei parasites were seeded at �105 cells · ml�1,
counted using a hemocytometer, and diluted back every 24 h, as necessary, for 3 days in the absence of
antibiotics. All selective antibiotics were purchased from InvivoGen.

Drug sensitivity assays. Half-maximal effective concentrations (EC50s) of the antileishmanial and
antitrypanosomal drugs (sodium stibogluconate [GSK], paromomycin [Sigma], miltefosine [Paladin],
amphotericin B [E. R. Squibb, UK], pentamidine [Sigma], and suramin [TDR/WHO]) and neomycin (G418;
InvivoGen) were determined over 78 or 30 h. BSF T. brucei parasites were seeded at 2 � 103 cells · ml�1

(or 2 � 105 cells · ml�1) in 96-well plates with a 2-fold dilution series of each drug; assays were carried
out in the absence of other antibiotics. After 72 or 24 h, resazurin (Sigma) in phosphate-buffered saline
(PBS) was added to a final concentration of 12.5 �g · ml�1 per well, and the plates were incubated for
a further 6 h at 37°C. Fluorescence was determined using a fluorescence plate reader (Molecular Devices)
at an excitation wavelength of 530 nm, an emission wavelength of 585 nm, and a filter cutoff of 570 nm
(78). Data were processed in Microsoft Excel, and nonlinear regression analysis was carried out with
GraphPad Prism. The short-term kinetics of killing at high concentrations of the drug (�EC99) were
determined in triplicate over 24 h from a starting cell density of 1 � 105 cells · ml�1.
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T. brucei RNAi library screening and RIT-seq. RNA library screening was carried out as previously
described (34). Briefly, library expression was induced with 1 �g · ml�1 tetracycline (Sigma) for 24 h prior
to selection with each antileishmanial drug at 1� to 3� EC50. Cell density was assessed daily using a
hemocytometer and diluted to no less than 20 million cells in 100 ml medium; induction and antileish-
manial drug selection were maintained throughout. Once robust growth had been achieved for at least
2 days, genomic DNA was prepared for RNAi target identification. The RNAi cassettes remaining in the
antileishmanial-selected RNAi libraries were amplified from genomic DNA using the primer pair LIB2F/
LIB2R and sequenced on an Illumina HiSeq platform at the Beijing Genome Institute.

The sequenced RNAi target fragments were mapped against the T. brucei strain TREU927 reference
genome (release 6.0), as described previously (34). Briefly, mapping was carried out using Bowtie2 (79)
set to “very sensitive local” alignment, and output SAM files were processed using SAMtools (80). The
resultant BAM files were viewed against the reference genome in the Artemis genome browser (81).
Reads containing the RNAi construct-specific 14-base barcode were identified using a custom script (34)
and corresponded to at least 22% of reads from each selected RNAi library. This subset of reads was
mapped against the TREU927 reference genome, as described above. Plots were generated using the
Artemis graph tool and processed in Adobe Photoshop Elements 8.0. Stacks of reads that included the
14-base barcode on the positive strand were used to define RNAi target fragment junctions and to assign
high-confidence hits as those identified by at least two RNAi target fragments. RNAi target fragment read
numbers were converted to RPKM (reads per kilobase per million reads mapped) to account for
interlibrary read depth variations when comparing RNAi library sequencing outputs.

Alignments were carried out in Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), unrooted
neighbor-joining trees were formatted in Dendroscope 3 (http://dendroscope.org/) (82), and putative
trans-membrane domains were identified using TOPCONS (http://topcons.cbr.su.se/) (83). GO term
profiles were constructed using the GO analysis tool at http://tritrypdb.org.

Plasmid and T. brucei strain construction and analysis. Tb927.9.6360-80 locus deletion constructs
were assembled by incorporating targeting fragments flanking either a puromycin acetyltransferase
(PAC) or a blasticidin S deaminase (BSD) open reading frame. Deletion constructs were linearized with
NotI/ApaI (New England Biolabs [NEB]) to expose the flanking targeting fragments prior to transfection.
Stem-loop RNAi constructs targeting Tb927.11.6680 (AAT15), Tb927.11.13000, Tb927.11.3350, Tb927.5.3560
(TbVAMP7B), and Tb927.5.3570 were assembled in pRPa-iSL (77). RNAi targeting fragments were de-
signed using the RNAit primer design algorithm to minimize off-target effects (84). pRPa-iSL constructs
were linearized with AscI (NEB) prior to transfection and targeted integration at the ribosomal DNA
(rDNA) spacer landing-pad locus in 2T1 BSF T. brucei (75). Details of all primers are available upon request.
Tb927.9.6360-80 allelic replacement was confirmed by Southern hybridization following XhoI (New
England Biolabs) digestion of genomic DNA. RNAi knockdown was confirmed by northern hybridization
of total RNA or, in the case of Tb927.11.6680, by reverse transcription-quantitative PCR (RT-qPCR), as
described previously (85). For Southern and Northern hybridization, digoxigenin-dUTP (Roche)-labeled
DNA probes were generated by PCR, hybridized, and detected according to standard protocols and the
manufacturer’s instructions.

Data availability. Sequence data are available as FASTQ files at the European Nucleotide Archive
(https://www.ebi.ac.uk/ena) under study accession number PRJEB31973 (amphotericin B, accession
number ERS3348616; miltefosine, accession number ERS3348617; paromomycin, accession number
ERS3348618; sodium stibogluconate, accession number ERS3348619).
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