
RESEARCH ARTICLE

Specificity of Genetic Biomarker Studies in
Cancer Research: A Systematic Review
Garrett Green, Ruben Carmona, Kaveh Zakeri, Chih-Han Lee, Saif Borgan, Zaid Marhoon,
Andrew Sharabi, Loren K. Mell*

Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America

* lmell@ucsd.edu

Abstract
As genetic information becomes more readily available, there is increasing demand from

both patients and providers to develop personalized approaches to cancer care. Investiga-

tors are increasingly reporting numbers of studies correlating genomic signatures and other

biomarkers to survival endpoints. The extent to which cancer-specific and non-specific

effects are reported in contemporary studies is unknown. In this review of 85 high-impact

studies associating genetic biomarkers with cancer outcomes, 95% reported significant

associations with event-free survival outcomes, yet less than half reported effects on a can-

cer-specific endpoint. This methodology leaves open the possibility that observed associa-

tions are unrelated to cancer.

Introduction

Prognostic Biomarker In Clinical Practice
Gene expression diagnostics and related biomarkers are useful for risk-stratifying patients
according to their potential to benefit from various treatment approaches [1]. Compared to
conventional clinical and pathologic criteria, biomarkers have augmented the prognostic and
predictive information available to patients. For example, Oncotype DX, a commercially avail-
able gene signature, helps predict which patients with node-negative breast cancer will benefit
from adjuvant chemotherapy [2]. Ideally, correlating the gene expression profiles with out-
comes will lead to improved cancer outcomes.

The U.S. National Cancer Institute has increasingly emphasized biomarker development,
with the goal “to deliver the right drug to the right patient at the right time” [3]. For example,
clinical trials such as the NCI-Molecular Analysis for Therapy Choice (NCI-MATCH) will
analyze patients’ tumors to determine whether they contain genetic abnormalities with an
actionable drug target and assign treatment based on the abnormality. Similarly the first ever
American Society of Clinical Oncology (ASCO) Targeted Agent and Profiling Utilization Reg-
istry (TAPUR) study is a prospective non-randomized clinical trial that will deliver specific
anticancer drugs based upon identified genomic variations in a patient’s tumor. These studies
as well as the developing field of cell-free tumor DNA or “liquid biopsies” highlight the critical
role biomarkers will play in the future of oncology.
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Over the past decade an increasing number of studies associating gene expression profiles
with event-free survival outcomes have been reported. However, in patients at risk for compet-
ing causes of mortality, associations between biomarker and poorer survival may be unrelated
to cancer. This could result in overtreatment, by combining patients at high risk of cancer mor-
tality and those at risk of mortality from other causes into the same risk pool. To determine
optimal treatment strategies, it is necessary to distinguish whether cancer or non-cancer events
are related to the biomarker effect.

How Genetic Biomarkers Predict Clinical Outcomes
Various methods for validating gene signatures have been used. Frequently researchers per-
form RNA-based analysis of formalin fixed paraffin embedded cancer cells to identify genes
that are relatively over- or under-expressed. A common approach to biomarker discovery is
the “top down” approach, where a set of known clinical outcomes is correlated with character-
istic gene expression patterns without any biological assumptions specified a priori [4,5]. In
contrast, the “bottom up” approach involves identifying gene expression profiles linked to a
specific biological process (such as metastasis, invasion, cell cycle regulation, angiogenesis, etc.)
with poorer outcomes or features known to be associated with poor outcomes (such as high
grade) [5].

While the methodology behind the validation of genetic biomarkers is well-developed, the
technique does not require that the mechanism of the gene products or their relationship with
outcomes be understood, yet inferences would differ considerably depending on whether the
expression profile was correlated with cancer-specific or non-specific events. The importance
of reporting effects of treatments and other covariates on both cancer-specific endpoints, such
as cancer recurrence or mortality, and competing events, such as non-cancer mortality, is well
established in the clinical medical literature [6]. However, it is not clear how well this knowl-
edge has been disseminated amongst the basic research community.

Many cancer patients are at high risk of competing causes of death unrelated to cancer, for
example due to age or underlying cardiovascular or pulmonary comorbidities. When only
effects on combined endpoints such as overall survival (which aggregates cancer and non-can-
cer mortality) or disease-free survival (which typically aggregates cancer recurrence and death
from any cause) are reported, it is possible that an effect could correspond in whole or part to
the non-cancer part of the endpoint, which would have a significant impact on the inferences
of the effect with respect to cancer. It is known that even amongst randomized trials published
in leading medical journals, investigators frequently neglect to report cause-specific effects [6].
We hypothesized that a similar problem would affect studies correlating genetic biomarkers
with clinical outcomes, and sought to interrogate this question through a systematic literature
review.

Materials and Methods

Outcomes Reporting In Genetic Biomarker Studies
Our primary aim was to estimate the proportion of contemporary studies OF genetic biomark-
ers in oncology that report their effects on both cancer-specific and competing events. Second-
ary aims were to estimate how often a primary endpoint could be identified, how often
outcomes were defined, and how many articles reported statistically significant effects on clini-
cal outcomes. The study design was a systematic review, based on methods defined a priori and
implemented previously [6] (Fig 1 and S1 File). We followed the PRISMA guidelines (S3 File)
for reporting results of systematic reviews [7]. We searched MEDLINE for studies published
between January 1, 2007 and August 1, 2014 analyzing overall survival or at least one other
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event-free survival (EFS) endpoint (defined as an endpoint combining one or more cancer-spe-
cific events with death from any cause). This time period was chosen to represent contempo-
rary articles indicative of prevailing reporting norms and guidelines, and to be wide enough to
yield a representative sample while narrow enough to yield a manageable set of articles for
detailed review. Examples of biomarkers we analyzed were multigene expression signatures
such as CINSARC sarcoma and leukemia stem cell specific gene signatures.

We selected studies from 10 journals with high 5-year impact factor in 2013 (JNCI, JAMA,
NEJM, Lancet, Nature, JCO, PNAS, Cancer Research, Nature Medicine, Nature Genetics) [8],
yielding 253 studies for further review (S2 File). We selected these journals to represent a high
level of reporting standards in the medical literature. We excluded preclinical studies (n = 76),
commentaries (n = 10), meta-analyses or reviews (n = 6), studies involving multiple cancers
(n = 4), studies lacking time to event data (n = 5), studies unavailable online, and studies exclu-
sively in metastatic disease (n = 66), leaving 85 studies for analysis (Fig 1). Metastatic disease
studies were excluded because competing non-cancer events were expected to be low.

Fig 1. Flow diagram of exclusion criteria.

doi:10.1371/journal.pone.0156489.g001
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All studies were reviewed and the following data were extracted: disease site, primary (and
secondary, if reported) endpoint(s)—if identified, endpoint definition(s)–if identified, and
results of tests of statistical significance. If an EFS endpoint was not explicitly defined, we
assumed that the authors followed common conventions [9] and included death from any
cause as an event, while endpoints that referred exclusively to events such as recurrence, metas-
tasis, locoregional control, etc. were cause-specific. Articles were categorized according to
whether effects on both cancer-specific and non-cancer events were reported, what statistical
analyses (if any) were performed, and whether clinicopathologic associations were reported.
Wilson’s method [10] was used to estimate the 95% confidence interval (CI) for our primary
endpoint. Fisher’s exact test was used to test differences according to disease site.

Results
The majority of studies included were in breast cancer (27%) and leukemia/lymphoma (25%).
We found that 81 studies (95%) reported a statistically significant association with at least one
clinical outcome. The most common endpoints reported were overall survival (33%) and dis-
ease-free survival (15%) (Fig 2). 46 studies (54%) did not identify a primary outcome or end-
point (Fig 2), and 28 studies (33%) did not define the endpoint(s) that was (were) being
reported.

Overall, we found that 54% of studies (95% confidence interval (CI), 44%-64%) did not
report effects of the biomarker on any cancer-specific outcome. However, 83 studies (98%) did
report associations with clinicopathologic cancer-specific factors, such as stage or grade. We
observed that studies in genitourinary cancer (p< 0.05) were significantly more likely to report
effects on a cancer-specific outcome compared to other disease sites.

In summary, a high proportion of studies purporting to show significant associations
between gene expression and clinical outcomes did not define or identify the primary endpoint
of interest, or report effects on a cause-specific outcome. This occurred despite restricting our
analysis to studies published in highly selective journals.

Recommendations
Pitfalls in using EFS endpoints, including overall survival, have been frequently discussed in
the medical literature [11–15]. Confounding by non-specificity is an important problem that
can undermine the validity of conclusions from clinical studies, including population-based
analyses and randomized trials [16–18]. This form of confounding may contribute to publica-
tion bias as well (by way of confirmation bias), a problem known to beset scientific literature
[19]. Such bias can occur when investigators observe the positive effect of a treatment on sur-
vival they hoped to find, despite the effect being wholly or partially attributable to positive
effects on non-specific events (such as non-cancer mortality). This effect may be traced to
either selection bias or random imbalances in unmeasured factors [16,17]. Interestingly, a
remarkably high percentage of studies in our sample (95%) were “positive” (i.e., reported statis-
tically significant associations between their biomarker and a clinical outcome).

For studies reporting associations between outcomes and biomarkers, we recommend the
following steps, in keeping with guidelines promulgated by other investigators [20]:

1. Clearly identify the study’s primary endpoint(s) (i.e., the endpoint or set of endpoints used
for sample size (or power) calculation), and secondary endpoint(s), if any.

2. Clearly identify the starting point for time-to-event calculations (e.g., date of registration,
date of diagnosis, date of treatment completion, etc.)
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3. For composite endpoints, clearly identify the events comprising the endpoint and criteria
used for censoring. In particular, investigators should indicate whether “death from any
cause” is treated as an event. Endpoints termed “progression”, “recurrence”, “failure”, “time
to progression”, “time to recurrence”, “time to failure”, “distant metastasis”, “local control”
or “locoregional control”, and “cause-specific mortality” or “cancer mortality” are cause-
specific and should treat deaths from competing causes as censored, whereas endpoints
termed “progression-free survival”, “disease-free survival”, “event-free survival”, etc. are not
cause-specific, and should treat death from any cause as an event.

4. Define the protocol used for assessing time to recurrence/progression, including frequency
of clinic visits and imaging, type of imaging used, whether biopsy was required, and indica-
tions used to trigger visits, imaging, or biopsy.

Fig 2. Histogram of (A) All Endpoints and (B) Primary Endpoints Reported.

doi:10.1371/journal.pone.0156489.g002
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5. Clearly and separately distinguish effects on cause-specific events from effects on non-spe-
cific or competing events (particularly competing mortality), along with appropriate tests of
statistical significance

6. Clearly identify the statistical methods and/or models used to test associations, including
criteria for significance, how covariates were coded and controlled, how assumptions of the
models were checked, and criteria for including/excluding covariates from the model

A nice example from the literature we reviewed, which we recommend emulating, was the
study by Yothers et al. [21].

Conclusions
Specificity is as crucial in outcomes research as any branch of science. Our findings indicate
that a high proportion of studies in oncology analyzing associations between gene expression
biomarkers and clinical outcomes use non-specific methodology. We restricted our analysis to
high impact journals so the extent of this problem in likely even greater in the broader medical
literature. Our sample omitted studies in metastatic disease and was temporally restricted to
more recent studies, but we expected the quality of reporting would be higher for studies in
competing risks settings, where non-specificity is of greater concern, and in modern articles,
due to more recent publication of reporting guidelines. We recommend that such studies place
greater attention on reporting both cancer-specific and non-specific effects to facilitate their
interpretation.
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