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Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that

express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin Bmetabolites

presented by the highly conserved major histocompatibility complex (MHC) class I

like molecule, MR1. The vitamin B metabolites are produced by several commensal

and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can

trigger MAIT cell activation in a TCR-independent manner, through the release of

pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the

innate like T family of cells with a memory phenotype, which allows them to rapidly

release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances

Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune

response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a

variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the

analysis of the transcriptome of MAIT cells activated in different experimental conditions,

an important function in tissue repair and control of immune homeostasis has emerged,

shared with other innate-like T cells. In this review, we discuss these recent findings,

focussing on the understanding of the molecular mechanisms underpinning MAIT cell

activation and effector function in health and disease, which ultimately will aid in clinically

harnessing this unique, not donor-restricted cell subtype.
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INTRODUCTION

MAIT cells are unconventional T lymphocytes that were first described by Porcelli et al. as one
of two cell populations enriched in the CD4− CD8− T cell fraction (the other being Vα24+

iNKT cells) (1). It is now established that canonical MAIT cells express a semi-invariant TCRα-
chain (in humans mostly Vα7.2-Jα33/Jα20, in mice Vα19-Jα33) paired with a number of TCR
β-chains, contributing to a limited TCR repertoire (2, 3). Because of the limited TCR repertoire,
and their similarities with iNKT cells, it was initially proposed by Tilloy and colleagues that these
cells could be restricted by a non-classical MHC like molecule presenting either an endogenous
ligand or a ubiquitous pathogen (4). Subsequently, it was demonstrated that MAIT cells are
restricted to the highly conserved MHC-class I-related protein 1 (MR1) (5, 6). MR1 is β2m-
associated, nonpolymorphic, and conserved across various mammalian species, with 90% of
sequence similarity between mice and humans (7). The high inter-species conservation of MR1
and TCRα chain results in cross-reactivity between human and non-human species such as bovine,
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mouse, and rat (8, 9). Interestingly, a murine autoreactive MAIT
hybridoma was shown to strongly recognize cells expressing
bovine or rat MR1, but not humanMR1, and this was pinpointed
to residue Q151, present in the human but not the murine
sequence (9). In the same study, polyclonal human MAIT cells
were activated by rat, murine, and bovine MR1, but were not
autoreactive (9).

MAIT cells preferentially locate in mucosal-associated tissue
such as gut, lamina propria, and lung, in both humans and mice
(6). Recent research has demonstrated that MAIT cells are also
present in liver and human blood, where they can represent up
to 50 and 10% of circulating CD8+ T cells, respectively (10, 11).
Through the combined use of MR1 tetramers and Jα33−/− mice,
other populations of MR1-restricted T cells have been described,
which express TCRs distinct from the canonical Vα7.2-Jα33, and
may play antimicrobial as well as immunoregulatory functions
(3, 11–13).

For many years after the discovery of MAIT cells restriction to
MR1, the nature of the antigen MAIT cells detect in association
with MR1 was unclear. In 2012, Kjer-Nielsen et al. demonstrated
that MAIT cells TCRs recognize intermediates of the vitamin
B2 (riboflavin) biosynthetic pathway (14). Several bacteria and
fungi previously associated with MAIT cell activation (15, 16)
produce agonist vitamin B2 metabolites that stimulate MAIT
cell activation in a TCR-dependent manner. Viruses are unable
to synthesize vitamin B2 metabolites and cannot elicit TCR-
dependent MAIT cell activation. Nevertheless, viral infections
can elicit MAIT cell activation in a TCR-independent manner,
through the release of different cytokines such as IL-12 and
IL-18 (17, 18). MAIT cell activation results in the production
of a variety of chemokines and pro-inflammatory cytokines,
associated with both Th1 (IFN-γ and TNF-α) (16, 19) and Th17
immunity (IL-17 and IL-22) (20), but in certain tissues or upon
prolonged stimulation MAIT cells can also release IL-10 and
IL-13 (21, 22). Like conventional T cells, cytokine secretion is
controlled by key transcription factors, mainly T-bet and RORγt
(23). In addition, MAIT cells efficiently lyse bacterially-infected
epithelial cells through granzyme and perforin molecules (24, 25)
and MAIT-derived granulysin and granzyme B may be effective
against antibiotic resistant bacterial species (26).

Like iNKT cells, MAIT have a unique developmental
pathway and their effector-memory phenotype is controlled
by the master transcription factor PLZF (27). Several recent
reviews have extensively discussed MAIT cell development,
their antimicrobial role, and their contribution to cancer and
inflammatory diseases (23, 28–30). Herein, we will discuss their
role at the interface between innate and adaptive immunity and
recent results describing an important contribution ofMAIT cells
to tissue homeostasis, with a view to potentially harnessing their
immunomodulatory properties.

TIGHT REGULATION OF MAIT CELL
ACTIVATION

Like other populations of lymphocytes straddling across
innate and adaptive immunity, such as iNKT and γδ T cells

(31, 32), MAIT cells are emerging as important modulators
of immune responses. As MAIT cells are particularly
abundant at mucosal surfaces, where antigen might also
be available at higher concentrations, tight regulation
of their activity is required to avoid immunopathology:
for example, accumulation of activated MAIT cells has
been reported in the inflamed mucosa in ulcerative colitis
(33) and in the gastric mucosa during Helicobacter pilori
infection (34). Tight regulation of MAIT cell activity
is likely to occur through several mechanisms, from
regulation of MR1 expression, to antigen availability,
stability, and modulation of MAIT cell activation through
cognate interactions.

MR1 Ligands and Their Importance in
Modulating MAIT Cell Function
MR1 is ubiquitously expressed at the transcript level (7), although
the protein is retained in the ER and surface expression is
tightly regulated by antigen availability (35). The most potent
natural MAIT cell agonists known to date are intermediates
of the vitamin B2 biosynthetic pathway (14, 36), present in a
number of bacteria, commensals and pathogenic (37, 38). Despite
stabilizing MR1 molecules at the cell surface, folate derivatives
are not recognized by the MAIT TCR (14, 36), although more in
depth analysis with folate-loaded MR1 tetramers has identified
small subsets of circulating TRAV1.2+ and TRAV1.2− reactive T
cells (3).

The structure-activity relationship of MR1 ligands has been
well characterized and while MR1 surface upregulation correlates
with the ability of the compounds to form a Schiff base with
Lys43 of MR1, the agonist activity correlates with binding
of the compound ribityl moiety to the TCR, via its Tyr95α
residue (2, 39–41). Recently, a very elegant study with 20 altered
metabolite ligands and 11 crystal structures of TCR-MR1-ligand
ternary complexes has refined the molecular basis underpinning
the potency and specificity of MAIT cell antigens, with the
identification of an “interaction triad” between Tyr95α (in the
MAIT TCR), Tyr152 (in the MR1 groove), and 5’ and 2’ OH
groups in 5-OP-RU, which needs to be preserved for maximal
agonist activity (42). These findings will be invaluable in future
investigations exploring how to design ligands to better harness
MAIT cell activity.

The full spectrum of MAIT cell ligands is still under
appreciated, although two studies have reported agonist activity
of drugs and drug like molecules (43) and of synthetic
compounds identified in silico (44). The weak agonist activity
of drugs like diclofenac and the antagonist activity of salicylates
potentially underscores a much broader involvement of MAIT
cells in several physio-pathological processes. Inhibitory ligands
have the potential to be used to downregulate MAIT cell
activation. Indeed, a synthetic derivative of the vitamin B9
metabolite 6-FP (i-6FP) has been used to inhibit MAIT cell
activation and improve the course of the autoimmune disease
lupus in FcγRIIb−/− mice, a spontaneous model of systemic
lupus erythematosus in which MAIT cells have been shown to
enhance autoantibody production and tissue inflammation (45).
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While the majority of antagonists stabilize MR1 through
a Schiff base but lack a moiety capable of interacting with
the MAIT TCR, a novel mechanism of inhibition has recently
been identified (44). Two synthetic non-microbial compounds,
DB28 and its derivative NV-18, retain MR1 in the endoplasmic
reticulum in an immature ligand-receptive form and compete
with stimulatory ligands for MR1 binding. Neither DB28 nor
NV18 form a Schiff base with MR1, but they are both sequestered
in the A’ MR1 pocket by a network of hydrophobic and polar
contacts (44).

Antigen Stability
The potentMAIT cell antigens 5-(2-oxopropylideneamino)-6-D-
ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-
6-D-ribitylaminouracil (5-OE-RU) derive from enzymatic
and non-enzymatic condensation of 5-amino-6-(1-D-
ribitylamino)uracil (5-A-RU) with glyoxals and methylglyoxals
(host or bacteria derived). However, 5-OP-RU and 5-OE-RU are
unstable and unless bound to MR1 via a Schiff base with Lys43
of the antigen presenting groove, they rapidly cyclize to less
potent lumazines (36, 46). Furthermore, the biological activity
of 5-A-RU is affected by long-term storage and spontaneous
oxidation, unless prepared in dimethylsulfoxide solutions (46).
To overcome the intrinsic instability of 5-A-RU, Lange et al.
synthesized a pro-drug modifying the 5′ aminogroup with a
cleavable valine-citrulline-p-aminobenzyl carbamate (47). The
prodrug is stable and is cleaved intracellularly by cathepsin B,
leading to preferential loading in the recycling endosomes.

Antigen Availability
Antigen availability influences MAIT cell population expansion
throughout life. 5-OP-RU MR1-tetramer binding cells are few
at birth, but they rapidly increase within the first year of life,
accounting for the majority of Vα7.2+ CD161++ cells in the
circulation (48). Germ free mice lack MAIT cells (6, 49–51)
and mono-colonization with riboflavin producing bacteria, or
exposure to synthetic 5-OP-RU, is sufficient to rescue MAIT cell
development (51). These results, although surprising in view of
the instability of 5-OP-RU, underscore the high sensitivity of
TCRs in detecting cognate antigens bound to the relevant antigen
presenting molecule.

At steady state, microbial diversity and density increases
from the upper to the lower gastrointestinal tract (52) and
mucosal conditions affect the relative abundance of MAIT-
stimulatory metabolites, thus influencing MAIT cell activation
(37). It was shown that E. coli bacteria grown in anaerobic
conditions, stationary phase, and in medium supplemented with
glucose, xylose, ribose, or glycerol stimulated more potently
MAIT cell activation (37). These growth conditions correlated
with increased accumulation of stimulatory MAIT cell ligands,
detected by mass spectrometry (37). Furthermore, location
of bacteria in the luminal space vs. areas adjacent to the
epithelium (such as for bacteroides spp., proteobacteria) is also
likely to influence antigen availability (37). Finally, the relative
expression of individual enzymes in the vitamin B2 biosynthetic
pathway influences the balance of MAIT cell-activating and

inhibitorymetabolites, as shown for Salmonella typhimurium and
Streptococcus pneumoniae isolates (53–55).

Direct and Indirect MAIT Cell Activation
When the phenotype of MAIT cells from paired mucosal and
blood samples has been analyzed, important differences have
been highlighted. Colon resident MAIT cells are more activated
(higher expression of CD137, CD69, HLA-DR, and CD25),
but they also express higher levels of inhibitory receptors,
such as TIGIT, CTLA-4, PD1, and LAG3 (37). This phenotype
might reflect continuous exposure to metabolites derived from
commensals and/or pathogenic bacteria and the expression of
inhibitory receptors may balance this exposure. During bacterial
infections, in addition toMR1-antigen complexes,MAIT cells are
exposed to a variety of inflammatory cytokines that co-stimulate
and enhance their activation, potentially overcoming inhibitory
signals (Figure 1). The relative importance of TCR-driven vs.
cytokine driven MAIT cell stimulation also changes during the
course of an infection, with the former dominating at earlier
stages of the response (56). Unlike conventional memory T cells,
in vitro, MAIT cells are poorly responsive to anti CD3/anti CD28
stimulation, but their responsiveness is greatly enhanced by IL-
12 and IL-18 (Figure 1A) (57). Freshly isolated blood MAIT
cells and MAIT cell lines are potently activated by synthetic
5-OP-RU presented by myeloid cells, and in this setting their
activation is mostly MR1-dependent (58). Yet, a high fraction
of cells undergoes activation induced cell death, and perhaps
cytokine dependent signals, including IL-12, IL-18, and IL-15,
increase MAIT cell viability through changes in expression of pro
and anti-apoptotic proteins, such as Bcl2 and Bax1 (59, 60).

The high expression of IL-12 and IL-18 receptors by MAIT
cells [as well as by iNKT cells (61, 62)] facilitates their
activation in a TCR-independent manner, during viral infections
[reviewed in (63)]. In addition, cytokine stimulation is important
during infections with Group A streptococcus bacteria, lacking
the vitamin B2 biosynthetic pathway (64). In this paper the
authors showed that MAIT cell activation occurs in response to
streptococcal exotoxins of the superantigen family, recognized by
the Vβ2 TCR chain, but independently of MR1 (64). Similarly,
MAIT cell responsiveness to Staphylococcus enterotoxin B (SEB)
superantigen occurs in a TCR Vβ13.2 dependent manner but
is MR1-independent and is largely contributed by IL-12 and
IL-18 (65).

The importance of cytokines signaling for achieving full
MAIT effector function is also underscored by the observation
that chronic stimulation by type I IFN (such as in HIV infected
patients) results in impaired MAIT cell responses to bacteria, via
IL-10-dependent suppression of IL-12 secretion by APCs (66).
However, in other settings, type IFNs synergize with other signals
to enhance MAIT cell activation, consistent with the notion
that type I IFNs are an important third signal that shapes the
differentiation of memory conventional T cells (67). Accordingly,
in HCV infected patients treated with type I IFN and antivirals
it was reported that MAIT cells express higher CD69, indicative
of activation (17), and a synergistic activity of type I IFN and
IL-15 was also demonstrated. Furthermore, type I IFN has also
been shown to co-stimulate TCR dependent MAIT cell activation
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FIGURE 1 | Co-stimulatory signals that enhance MAIT cell activation. (A) TLR agonists, including PAM2Cys, CpG, and PolyI:C, enhance MAIT cell response in the

presence of the ligand. (B) Co-stimulation through the TL1A-DR3 pathway results in enhanced MAIT cell proliferation and the release of Granzyme B, IFN- γ, and

TNF- α. (C) Infections trigger IL-7 release by different cells, including hepatocytes. IL-7 co-stimulates MAIT cells enabling cell proliferation and the release of IL-17,

Granzyme B, and TNF- α. (D) Bacterial infection induces the expression of ICOS ligand (ICOSL) and ICOS (ICOS) on APC and MAIT, respectively. The increased

expression of ICOS and IL23R signalling in MAIT cells enhance secretion of pro-inflammatory cytokines.
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(68) in addition to the TCR independent activation discussed
above (17).

Other inflammatory cytokines that have been shown to
enhance MAIT cell responsiveness to antigen include the gut-
associated TNF superfamily member TL1A (via death receptor
3, DR3 (Figure 1B) (69, 70) and IL-7 (Figure 1C). IL-7 is
essential for proliferation of liver-derived MAIT cells, which
like the colonic MAIT have a semi-activated state yet they have
higher expression of negative regulators (SOCS1 and SOCS3),
in addition to lower expression of TCR signaling components,
which may be an adaptation to constant antigen exposure (71).
Furthermore, in HIV patients, IL-7 has been shown to rescue
the defective MAIT cell cytolytic capacity and cytokine secretion,
both in vitro and in vivo, in patients on anti-retroviral therapy
(72, 73).

In vivo, population expansion of MAIT cells following
infection with S. typhimurium depends on riboflavin metabolites
and microbial signals (74). Indeed, synthetic 5-OP-RU injection
intranasally or intravenously is not sufficient to increase
MAIT cell frequency and numbers in the lung and draining
lymph nodes, unless it is accompanied by TLR-derived signals
(Pam2Cys, polyI:C, or CpG) (Figure 1D). Likewise, infection
with riboflavin-deficient S. typhimurium mutants does not lead
to MAIT cells population expansion, unless complemented with
synthetic 5-OP-RU (74). However, more recently, intraperitoneal
injection (51) or skin application of 5-OP-RU (50) was shown
to be sufficient to activate and expand MAIT cells, locally and
systemically. Whether these discrepancies are due to differences
in the microbial flora of the animal colonies of the different
investigators, to different sensitivity of lung, skin vs. thymic
MAIT cells, or to different antigen preparations and doses of
antigens reaching the sites, it remains to be determined.

Nevertheless, for sustained expansion and cytokine secretion,
some form of co-stimulation of MAIT cells seems to be
required. Following cutaneous application of S. epidermidis,
population expansion of MAIT cells is reduced in the absence
of IL-18, but not IL-23, while IL-1 signaling is required for
licensing of IL-17A production by MAIT cells (50). Using a
mouse model of conditional MR1 targeting, the authors also
demonstrated that MAIT cell population expansion following S.
epidermidis application is MR1 dependent, although homeostatic
maintenance of MAIT cells is not, as their frequency is
unchanged 3 weeks post deletion of MR1.

Specific costimulatory requirements have been identified for
population expansion of RORγt+ MAIT cells in response to
intranasal Salmonella typhimurium or Legionella longbeachae
(75). In this paper, through mixed bone marrow chimeras the
authors showed that APCs-bone marrow derived and epithelial-
are important in MR1-dependent antigen presentation. In
addition, they demonstrated a role for ICOS-mediated co-
stimulation and IL-23/IL-23R signaling in MAIT cell expansion
and activation (Figure 1D). Both ICOS-deficiency and IL-23
deficiency impaired expansion mainly of the RORγt MAIT
subset, suggesting they are required for maintenance of RORγt
expression and IL-17 secretion. IL-23 was also shown to be
sufficient on its own to co-stimulate MAIT cell proliferation, in
the presence of 5-OP-RU and to up-regulate ICOS expression,

although IL-23 and ICOS double deficient mice were not tested,
nor was IL-23 measured in ICOS deficient mice (75). These
results are consistent with the high expression of both ICOS
and IL-23R in MAIT cells, compared to conventional T cells
in naïve mice. In this context IL-23 signaling is important,
presumably via STAT3, to maintain the Th17 signature of tissue
resident MAIT cells. As homeostatic IL-23 contributes to MAIT
cell development/accumulation in the presence of a normal
microbial flora (50), these results also are consistent with the
observation that patients with STAT3 loss of function mutations
have, amongst others, a deficiency of MAIT cells (76).

A TCR-DEPENDENT TISSUE REPAIR
FUNCTION OF MAIT CELLS

Overall, the above results are consistent with the hypothesis that
due to ubiquitous MR1 expression and abundance of MAIT
cells in tissues, their function needs to be tightly regulated,
and for maximal effector function (i.e., during an infection)
a combination of TCR, cytokine, and co-stimulation signals is
required. In the absence of inflammatory signals, only minimal
cell activation might be elicited. To understand the extent of
MAIT cell functional plasticity and changes in their functional
program in the course of an infection, several groups have
analyzed their transcriptional signatures, in bulk and at the
single cell level. At steady state, in both humans and mice,
distinct transcriptional patterns have been identified, according
to tissue specificity: despite different frequencies in different
organs, MAIT/iNKT1 subsets, and MAIT/iNKT17 subsets share
transcriptional signatures that are developmentally imprinted,
including their tissue residency (77). Transcriptional changes
occur at each developmental stage in the thymus and are
underpinned by expression of the key transcription factors PLZF,
T-bet and RORγt (27, 78), imprinting specific tissue residence
signatures and Th1 or Th17 bias.

Recently, three groups compared the transcriptional signature
of human and murine MAIT cells activated by bacterial infection
(Legionella longbeachae), cytokines, and/or TCR stimulation (60,
69, 79). Despite differences in experimental models, common
signatures were observed by the three groups. As expected
from previous analysis at the protein level, upon activation,
both human and murine MAIT cells expressed genes encoding
for proinflammatory cytokines (such as GM-CSF, IL-17, INF-
γ) and chemokines (such as XCL1, CCL3, CCL4, CXCL16)
(60, 69). Human MAIT activated by anti-CD3/CD28 displayed
a signature intermediate between unstimulated MAIT cells and
those activated by cytokines and anti-CD3/28 (69). In turn, the
transcriptional signature of human MAIT activated by cytokines
and anti-CD3/CD28 (69) resembled that of 5-OP-RU activated
human MAIT cells (60). Some species-specific differences were
observed, such as higher expression of LIGHT and IL-2 in
human MAIT cells, and higher TRANCE and RANKL in murine
cells, but these could also be explained by different activation
modes (60). Furthermore, and in line with their innate-like
function, it was reported that the transcriptome of TCR-activated
murine MAIT cells resembled that of iNKT cells, while upon

Frontiers in Immunology | www.frontiersin.org 5 August 2020 | Volume 11 | Article 1556

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ioannidis et al. MAIT as Immunoregulators

resolution of infection it was more similar to γδ T cells (60).
Interestingly, γδ T cells are a population of unconventional
T cells that crucially contribute to tissue integrity and repair
(80). Accordingly, an interesting finding common across these
studies was the identification of a tissue repair signature upon
TCR-dependent activation of MAIT cells. This signature was
previously identified in H2M3 restricted CD8 Tc17 cells upon
exposure to the commensal S. epidermidis (81) and was also seen
in skin MAIT cells upon S. epidermidis topical application (50).
Key genes in this signature are involved in tissue repair and
remodeling (MMP25, FURIN, PDGFB, TGFB1) and angiogenesis
(CSF2, VEGFB, PDGFB). Other MAIT cell-derived factors with
potential role of tissue homeostasis were IL-26, OSM, and
HBEGF (69, 79). Hence an important function of tissue resident
MAIT cells could be maintenance of tissue homeostasis in the
presence of commensals, limiting inflammation, and associated
tissue injury. In agreement with these findings, MAIT cells
in the female genital tract, in the oral mucosa, and in fetal
mucosal tissues show a bias toward IL-22 and IL-17 secretion,
and a potential role in barrier immunity and tissue homeostasis
(20, 82, 83). This hypothesis is also consistent with in vitro
results demonstrating that supernatants of activated MAIT cells
promote closure of scratches of monolayers of Caco2 cells
(69) and in vivo results showing that MR1 deficient mice have
reduced re-epithelization of skin wounds (50). In addition,
the MAIT tissue repair function could account for increased
gut permeability in MR1−/− NOD mice, compared with MR1
sufficient littermates (84). Finally, alteration of gut permeability
and MAIT cell numbers following conditioning regimens and
allogeneic bone marrow transplantation could contribute to
intestinal symptoms of Graft versus host disease (GvHD) (85, 86).
In the future it will be interesting to investigate whether there is
an alteration in the homeostatic tissue repair function of MAIT
cells in chronic fibrotic diseases, in which a pathogenic MAIT cell
role has been suggested (87–89).

MAIT CELLS: THE NEW iNKT/γδ T CELLS?

Common features across the three major populations of innate-
like lymphocytes—iNKT, γδ, and MAIT cells—are their peculiar
thymic differentiation program, after which the cells emerge
as pre-set memory/effectors, poised to a rapid response upon
antigen encounter (31, 32, 90, 91). Through secretion of a variety
of cytokines and chemokines, iNKT cells and γδ T cells regulate
the function of several immune cell subsets and have emerged
as central players in immunobiology and immunopathology,
bridging innate and adaptive responses (Figure 2). We will
discuss the existing evidence in favor of the immunomodulatory
activity of MAIT cells.

Interactions With Myeloid Cells
MAIT cells can modulate myeloid cell function directly,
following MR1-cognate interactions, or indirectly, through
soluble factors. During in vivo pulmonary infection with
Francisella tularensis live vaccine stain (LVS), it has been shown
that MAIT cells produce critical antimicrobial cytokines (IFN-γ,
IL-17A, TNF-α) and in MR1−/− mice there is a higher bacterial

burden and delayed bacterial clearance (92). In addition, through
early GM-CSF production, pulmonary MAIT cells promote
the differentiation of CCR2+ inflammatory monocytes into
dendritic cells (DC) (93). As DC are critical for priming adaptive
immunity, recruitment of activated TCRβ+ CD4+ and CD8+

cells is significantly delayed in MR1 deficient mice (92), but it
can be rescued by adoptive transfer of in vivo differentiated DC
(93). In this experimental system,MAIT cells influencemonocyte
differentiation into DC in a GM-CSF dependent but MR1
independent way (93). In other models, however, MAIT cells can
modulate DC function in an MR1-dependent manner. Indeed, it
has been shown that primary human MAIT cells and MAIT cell
lines induce maturation and activation of monocyte-derived DC
and primary DC upon MR1-dependent recognition of 5-OP-RU
complexes (58). DC maturation is dependent on CD40-CD40L
signaling and results in secretion of bioactive IL-12, which can
further modulate NK cell activation (58). Interestingly, murine
MAIT cells can also upregulate CD40L upon activation (75),
although it remains to be determined whether they are able
to induce antigen specific adaptive T cell responses through
CD40L dependent DC maturation, as is the case for iNKT
cells (94, 95).

Additionally, MAIT cells have been shown to exert a
protective function in non-alcoholic fatty liver disease, inducing
M2-macrophages polarization through IL-4 secretion (96).

Interactions With B Cells
MAIT cells final differentiation and peripheral expansion
depends on cognate interactions with B cells in mice, although
this does not seem to be critical in humans (6, 97). MAIT
can be directly activated by bacterial infected B cells with up-
regulation of CD69, and secretion of IFN-γ, TNF-α, and IL-17
(98). The observation that in Vibrio cholera infection (99) and
Shigella dysenteriae vaccination (24) the circulating frequency
of MAIT cells correlates with the pathogen-specific antibody
response suggests some form of helper activity from MAIT cells.
In a murine model of lupus, MAIT cell activity correlates with
autoantibodies, germinal center reaction, and severity of disease
(45). In this paper, the authors also reported that, in vitro, MAIT
cells enhanced IgG production by LPS-stimulated B cells through
CD40-CD40L cognate interactions (45).

In vitro, MAIT cell supernatants have been shown to induce
plasmablast differentiation and antibody secretion from memory
B cells (100). In this system, help for B cells is provided in
an MR1-dependent, but CD40L independent manner, likely
via cytokines like IL-6, IL-10, and IL-21 (100). However, the
authors only blocked soluble CD40L and did not address whether
during cognate interaction between B cells and MAIT cells
the CD40/CD40L axis has a role for B cell differentiation.
Furthermore, as the CD161 ligand LLT1 has been shown to play
a role in the germinal center reaction (101), there remains the
possibility that CD161++ MAIT cells, in addition to the more
abundant CD161+ follicular DC subset, might contribute to B
cell differentiation through cognate interactions. Lastly, it is not
yet established whether a T-follicular helper subset of MAIT cells
exists, akin to Bcl-6+ iNKT cells providing cognate B cell help in
the lymph node (102–104).
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FIGURE 2 | Interactions of MAIT cells and other leukocytes. MAIT cells recognize MR1-antigen complexes on the surface of target cells and modulate their activity

through cognate interactions (i.e., via CD40/CD40L) or through soluble factors.
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Interactions With Neutrophils
In the presence of monocytes, MAIT (and γδ) T cells rapidly
respond to bacterial infected neutrophils, and through secretion
of GM-CSF, IFN-γ, and TNF-α they increase neutrophil survival
and promote their differentiation into antigen presenting cells,
expressing CD64, CD83, HLADR, CD54, CD40, and HLA A,
B, C (105). In addition, in this manuscript, MAIT and γδ

T cells activated neutrophils acquired the ability to uptake
exogenous antigens, and cross-present antigenic peptides to
CD8+ T cell clones (105). The ability of MAIT cells to
modulate neutrophils function could play an important role
in sepsis patients (106), where the number of circulating
MAIT cells might affect the outcome of infection, particularly
in the aging population with declining numbers of MAIT
cells (107). Furthermore, as MAIT cells can become anergic
upon recognition of microbial superantigens that often are
associated with sepsis (65), and are then impaired in their
ability to respond to bacterial infected cells, licensing of
activated neutrophils to present antigens to CD4+ and CD8+

T cells may become crucial for the establishment of protective
immunity (105).

Contradicting the above results, a recent study found that
neutrophils inhibit MAIT cell activation through cell contact
and hydrogen peroxide and that MAIT cells-derived TNF-α
induces neutrophil death (108). The discrepancies might be
related to different experimental settings, for example, one study
isolated neutrophils by dextran sedimentation followed by Ficoll-
Plaque centrifugation and hypotonic lysis of remaining red blood
cells, while the other study purified them from whole blood or
Lymphoprep separated granulocytes by HetaSep sedimentation
and negative selection with the EasySep neutrophil enrichment
kit; one study activated MAIT cells with 5-OP-RU, while the
other with anti-CD3/28 beads, hence the amount of cytokines
in the supernatants would be different. Therefore, further
research is required to understand the exact outcome of MAIT-
neutrophils interactions.

It also remains to be determined whether, like iNKT cells,
MAIT cells are able to modulate the suppressive function of
granulocytic myeloid derived suppressor cells, which could be of
relevance to relive cancer immunosuppression and amenable to
clinical harnessing (109, 110).

CONCLUDING REMARKS

Because of their high numbers in humans and of the restriction
by amonomorphic molecule, MAIT cells represent an interesting
population to target to enhance antigen specific immunity,
through their multiple interactions with cells of the innate
immune system. Despite great progress since the first discovery of
T cell populations bearing semi-invariant TCRs, several aspects
of MAIT cell biology remain to be fully unraveled before
harnessing MAIT cells can be taken forward into the clinic.
We need to better understand the role of MAIT cells in several
diseases in which their numbers or functionality is altered, such
as cancers and autoimmune diseases. The molecular mechanisms
of ligand antigen presentation are not completely defined and
a characterization of endogenous antigens, if they exist, is still
lacking. Known ligands occupy the MR1 A’ pocket and it remains
to be determined if ligands or chaperones will bind the F’ pocket.
Pathogen evasion mechanisms fromMAIT immune-surveillance
have been identified (55, 111), but further research in this field
is also needed. Lastly, the recently described MAIT tissue-repair
function needs to be molecularly defined as well as the interplay
with the host microbiota, which is key in homeostasis.
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