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Abstract

Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction
between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a
pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response
(including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been
crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided
by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible
subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen
interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can
substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in
infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The
need to understand the role of human genetic variants in disease severity and clinical outcome has been further
highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our
future pandemic preparedness.
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Introduction

Even today, one of the leading causes of morbidity and mor-
tality globally is infectious diseases [1–5]. This highlights the
functional role of widespread infectivity of the pathogen/s that
is leading to mortality among human population/s. The rapid
emergence of infectious diseases within the last two decades
and their exacerbation to a pandemic scale with possible role of
globalization is increasing the risk of life-threatening infections,
both acute and chronic. This also has challenged the health-
care infrastructure globally with economic consequences. The
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outcome of the disease is determined by the dynamic interplay
between the host and the pathogen. We summarize here the
modern tools, techniques and scientific discoveries, which have
been important to understand this relationship and the asso-
ciations thus observed. The need for multidimensional stud-
ies combining genomic data of both host and pathogen, over-
laid with clinical and demographic status of patients, would be
pivotal in the modern era. In the current ongoing pandemic,
initiatives such as COVID-19 Host Genetics Initiative serve as
an important advancement to understand and highlight the
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milieu of host–pathogen interactome. The initiative paves theway
for comprehensive meta-analysis projects bringing worldwide
researchers together to identify determinants of COVID-19 sus-
ceptibility, severity and outcomes. Simultaneously, it has laid
the groundwork for diagnostic markers and therapeutic target
discovery [6].

Human genetic diversity

The genetic basis of diseases is a reflection of the evolution
of the human genome. One of the fundamental characteristics
that portray the host component in pathogenic diseases is the
fact that life-threatening clinical disease is manifested only
in a small percentage of infected individuals. This variation
highlights the importance of studying human genetic diversity
in the context of pathogenic diseases. To understand these
relevant genetic components, an understanding of differences
in the human genome is important. Approximately 90% of
human allelic variations are polymorphisms that date back
to our African origin [7]. New mutations arise in the human
population naturally at the rate of 175 mutations per diploid
human genome per generation [8].

Importance of studying genetic diversity in the
background of pathogenic diseases

During the current COVID-19 global pandemic, identifying a sus-
ceptible group of population can significantly modulate the out-
come of the pandemic vis-a-vis human population. This includes
priority healthcare access and close monitoring. Thus, any leads
in that direction are too important to be undermined.Thehistory
of human genetic susceptibility in pathogenic disease outbreaks
dates back to the identification of resistance factors for the
disease, inclusive of the individual’s heterozygous allele state for
sickle variants of erythrocytes having resistance to malaria in
the 1950s [9, 10]. Another factor is the lack of expression of the
Duffy antigen receptor for chemokines (DARC) on red cells due
to single nucleotide polymorphism (SNP) rs2814778 leading to a
negligible infection in Western and Central Africa [10, 11].

Similarly, the Delta 32 mutation at rs333 in the entry receptor
C-C chemokine receptor type 5 (CCR5) for Human Immunodefi-
ciency Virus-Acquired Immunodeficiency Syndrome (HIV-AIDS)
[12] confers resistance to the individual [13]. This mutation is
understood to have evolved 700 years ago under the pathogenic
evolutionary pressure of bubonic plague [14]. The survival
of these alleles from the pandemic in the current human
populations underscores the need to identify associations of
host genetic elements with respect to infectious diseases.
Extending the implications of the above example, studies can be
used to classify a population according to the risk of acquiring
infection and severe clinical manifestations of the disease. A
well-known example is the O blood group in ABO blood grouping.
The O blood group confers a protective effect to host in COVID-19
[15], increasing the susceptibility to cholera [16–18]. Furthermore,
along with the O blood group, Rh-negative type compared to
other blood groups was less susceptible to SARS-CoV-2 infection
and had better clinical outcome. In addition, the AB group is
known to require increased respiratory support (invasive), and
is at higher risk of death due to COVID-19 [19]. Genome-wide
association study (GWAS) by Genetics Of Mortality In Critical
Care (GenOMICC) has studied the critically ill COVID-19 patients
in UK to discover host genetic variants associated with critical
illness. The study has highlighted that although ABO locus was
previously associated with COVID-19, it did not show the same

in their study. But the presence of signal close to genome-wide
significance at the ABO locus potentially indicates its role in
COVID-19. Whether ABO locus is associated with critical illness
or not - is a matter of future research and more studies in this
direction would be essential for in-depth understanding.

This is possibly relevant for large number of pathogenic
diseases that have no/asymptomatic effect on a subset of the
population. An example of such a disease previously shown to
have a major impact on global food supply is the Creutzfeldt–
Jakob disease caused by the prion protein. An SNP (rs1799990)
leading to heterozygosity of methionine/valine at 129-codon of
their prion protein gene confers immunity to the disease [20].
In the modern age endeavor toward personalized medicine and
continual decrease in the cost of next-generation sequencing
(NGS) enabled human genome sequencing, it is possible to
understand and elucidate the genomic architecture of any
given population. This information when overlaid with the
rate at which diseases are spreading through a population can
give us insights into population susceptibility for infection/s.
The targeted administration of therapeutic interventions on
susceptible groups of populations could reduce the load on
medical infrastructure.

Diseases and its associated human host genetic
variation

Statistical and genomics basedmeasures are used to understand
the host component involved in disease susceptibility. Human
genetic components driving disease infection and prognosis
were identified by a great variety of approaches. This includes
twin studies, linkage analysis, complex segregation analysis and
whole-genome sequencing approaches such as GWAS.

Assessment of human genetic components in twin studies
identified 86% of hereditary components in Measles [21]. Even
tuberculosis has a genetic component as highlighted by twin
studies [22] which were later proven to be the result of defects
in IL12/IFNγ dependent signaling pathway leading to a condi-
tion termed Mendelian susceptibility to mycobacterial disease
(MSMD). In addition, Hepatitis B has also shown different asso-
ciations in twin and population studies [23–25]. Furthermore,
Hepatitis B viral clearance associated with hepatocellular car-
cinoma has host genetic elements modulating disease severity,
such as human leukocyte antigen HLA-DP and HLA-DQ loci
[26].

Moreover, an unbiased view of genomes of affected indi-
viduals is provided by GWAS, which has revolutionized the
area of disease genetics allowing the field to move out of the
candidate gene approach [27]. It has enabled the identification
of many lead SNPs associated with diseases. The GWAS
catalog is maintained by EMBL at https://www.ebi.ac.uk/gwa
s [28]. The GWAS Catalog contains 5037 publications and
257 351 variant-trait association (as on 5 May 2021). GWAS
studies require large sample sizes as millions of genomes
and variants are analyzed together. It is ideal to have a
population set with a homogeneous ethnic background to
avoid spurious associations [29]. Mycobacterium leprae or M.

lepromatosis causes leprosy by long-term infection damaging
the nervous system, eyes and respiratory tracts. Using GWAS,
several candidate genes have been observed as host genetic
factors modulating disease severity, including TNFA, IL10,
PARK2 in the past and more recently LACC1 [30]. Genetic
components and mutations in the interleukin-coding genes
have been observed to be involved inmany diseases as shown in
Table 1.

https://www.ebi.ac.uk/gwas
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Table 1. List of infections with associated human genetic variation

Disease Associated genetic element Study methodology Disease Reference

COVID-19 SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6,

XCR1, ABO, OAS, TYK2, DPP9, IFNAR2, CCR2

GWAS COVID-19 [15, 31, 32]

AIDS CCR5 GWAS, PCR, PCR-RFLP AIDS [33, 34]
Hepatitis IL28B GWAS Hepatitis [35–37]
Hepatitis Different HLA types, TLR-3, TLR-9, NTCP GWAS Hepatitis [25, 38–43]
Dengue MICB, TNF, CD209, FcγRIIA, TPSAB1, CLEC5A,

IL10, PLCE1

GWAS Dengue [44–46]

Malaria TLRs, TNFs, HBB, ABO, ATP2B4 PCR-RFLP and sequencing, PCR,
snp directed seq, GWAS

Malaria [47–52]

Tuberculosis TLRs, IFN-γ , AGMO, FOXP1, UBLCP1 GWAS, Candidate gene approach Tuberculosis [53–58]
Leprosy IL10, PACRG, NOD2, HLA-DRB1/DQA1, LTA,

GATA3, IFNG, TLR1

Case control, GWAS Leprosy [30, 59–64]

Meningococcal
disease

CEACAM, SPLUNC1, CFH/CFHR3, IL-1,

Compliment factors

Candidate gene approach, GWAS Meningococcal
disease

[65–69]

Creutzfeldtjakob
disease

PRNP GWAS Creutzfeldt
Jakob
disease

[70]

Pneumonia MBL2, CD14, IRAK-4, MyD88, TIRAP Candidate gene approach, GWAS Pneumonia [71–76]
MSMD IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1,

ISG15, IRF8, NEMO, CYBB

Candidate gene approach, GWAS MSMD [77–80]

Cold Sores TLR3, TRAF3, UNC93B1, KIF1B Candidate gene approach, GWAS Cold Sores [81–84]
Warts, Cervical
cancer

CXCL12, KLF12, NR5A2, MIR365, ARRDC3 Case control, GWAS Warts,
Cervical
cancer

[85–87]

Gastroenteritis FUT2, FUT3, ABH Candidate gene approach, GWAS Gastroenteritis [88–90]
Candidiasis TLR1, TLR3, Dectin-1, CARD9, STAT1 GWAS, Candidate gene approach,

mice model
Candidiasis [91–94]

Skin/respiratory
Infections

DAPK3, XRN1, IL4, DEFB1, CRP, VDR GWAS, Mice Models Skin/respiratory
Infections

[95–100]

Whipple’s disease HLA-B27, IRF4 GWAS Whipple’s
disease

[101–103]

Infectious
mononucleosis,
cancers

MDC1, RAD54L, TP53BP1, RPA1, LIG3 Candidate gene approach,
Genotyping

Infectious
mononucle-
osis,
cancers

[104, 105]

Influenza IFITM3, IRF7, TMPRSS2, TLR3 PCR amplification and
sequencing, GWAS

Influenza [106–110]

Mononucleosis,
pneumonia

TLRs, MBL PCR-RFLP and sequencing, Mononucleosis,
pneumonia

[111–115]

Respiratory
infections

IFN-γ , IL-4, SLC39A1 GWAS, Case control studies Respiratory
infections

[116–119]

Host components and COVID-19

The current COVID-19 pandemic is characterized by complexity
of clinical phenotypes, with the majority of severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) infections being
asymptomatic ormild (Figure 1). In brief,we aremaking an effort
toward threading the available literature on host factors and
clinical characteristics leading to variability in disease outcome
of COVID-19.

Ethnic diversity, one of the fundamental host population
characteristics, has a role toward susceptibility in pathogenic
diseases, even in the case of COVID-19. Blacks, South Asian pop-
ulations such as Pakistanis have an elevated risk of contracting
COVID-19 and are highly probable toward SARS-CoV-2 infection,
as highlighted in the UK-based population study. It is important
to note that Niedzwiedz et al. [120] also observed increased
association of higher risk of infection (without hospitalization)
in those who are socioeconomically disadvantaged and with
no qualifications. At the same time, adjustment for the above

factors only led to modest attenuation for the hospital cases.
The meta-study from 49 562 COVID-19 patients from 46 studies
across 19 countries worldwide associated and categorized the
mutations according to their prevalence in COVID-19 diagnosed,
hospitalized and critical cases. The study also reported 13 SNPs
with significant associations to the genes: SLC6A20, LZTFL1,

RPL24, FOXP4, TMEM65, ABO, OAS1, KANSL1, TAC4, DPP9, RAVER1,

PLEKHA4 and IFNAR2 [121]. Moreover, the 3p21.31 gene cluster is
associated in COVID-19 and it increases susceptibility to severe
disease manifestation [15].

Other determinants such as age, gender and comorbidities
are also shown to modulate the clinical variability of COVID-
19. These factors are looked primarily from the standpoint of
human SARS-CoV-2 receptors angiotensin-converting enzyme 2
(ACE2), entry point for SARS-CoV-2 and a directly associated
serine protease involved in SARS spike protein cleavage-
Transmembrane protease, serine (TMPRSS). In older patients,
higher severity and mortality of the disease was reported and
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Figure 1. COVID-19 and host association. The wealth of literature and the discoveries highlight the multicomponent role of the differential factors and their role in

the current COVID-19 pandemic. The subcomponents of the major factors have been captured in the figure.

explained by age-related dynamics of host factor expression
of ACE2 [122]. A 10-year increase in age showed a 1.2-fold
increase in ACE2 expression. A lower nasal epithelial ACE2

expression and COVID-19 prevalence is reported in children
[123, 124], although no decrease in ACE2 protein levels is
reported in children. Moreover, this observed correlation needs
further investigation, as some studies have found no correlation
between ACE2 expression and COVID-19 pulmonary risk factors
among children [125].

In contrast to the above cited examples, large population
studieswith severe COVID-19 evaluated independent risk factors
such as male gender, asthma, cardiovascular disease, chronic
obstructive pulmonary disorder (COPD), diabetes and smoking,
compared to age-matched healthy controls. The findings indi-
cate no significant difference in ACE2 localization [125–127].
However, the role of ACE2 variation in susceptibility to SARS
infection needs further studies and investigations as similar
associations with entry receptors have been reported during
other viral diseases such as MERS [128] and HIV [129]. Addition-
ally, SNPs in the entry receptor (ACE2) and TMPRSS2 may also
affect the contrasting reports.

Studies showed that there is no correlation between
ACE2 polymorphisms and COVID-19 susceptibility [130, 131].
Although, the increased frequencies of ACE2 SNPs (rs4830542,
rs4240157, rs2074192, rs233575 and rs879922) in the European
and the admixed American population have been associated
with severe illness, while lower frequencies of the same confers
protection in East and South Asian populations [132]. The SNP
rs2285666 has been associated with different disease outcomes
in the same population [133]. The G allele is associated with
increased infection and fatality risk, whereas the A allele has
been reported in milder cases of infection [134].

Few SNPs, rs73635825 (S19P) and rs143936283 (E329G), were
observed in an in silico study [135]. Although numerous studies
have reported the association of SNP’s in the ACE2 gene and

COVID outcome, the functional role of these SNPs has been
studied by Hashizume et al. [136]. The study reported that seven
globally identified SNPs had no effect on gene expression levels
of ACE2 or virus infectivity. The SARS-CoV-2 spike protein is acti-
vated by cathepsin-mediated or II transmembrane serine pro-
teases (TTSPs) mediated cleavage, thus leading to spike protein
binding and viral entry into the host cell. A study has identified
two Expression quantitative trait loci (eQTL) (rs12329760 and
rs75603675) that may confer COVID-19 susceptibility differences
using the QTLbase database [137].

Seeing the non-reproducibility of SNP studies among dif-
ferent ethnic groups, screening of ACE2 and TMPRSS2 SNPs in
specific populations could be something important to explore
in the future. These variabilities indicate and necessitate fur-
ther studies to identify the involvement of other host factors
modulating COVID-19 susceptibility and severity.

Gene expression differences driven by
noncoding genetic diversity lead to
inter-individual variability in pathogenic
diseases

Other than genetic diversity in the coding region, a major
factor contributing to phenotypic diversity among the human
populations is the difference in gene expression levels [138].
Further, the variation in gene expression levels is also attributed
to the genetic diversity in the noncoding region of the genome.
In this section, we discuss in detail the functional role played
by the genetic variations in the noncoding region of the genome
which has functional role in modulating the downstream gene
expression. This is corroborated by the fact that most of the
GWAS studies report that mutations are present in noncoding
regions [139]. A 17% difference in gene expression was observed
between African and European populations [140],which are also
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subsequently validated in larger studies as well [141]. The highly
conserved genomic regions inclusive of enhancer, promoters
and transcription factor binding sites, among others, are genetic
factors that modulate gene expression. Transcriptome-wide
association studies (TWAS) functionally annotate the effect
of SNPs at the transcriptional level and identify regulatory
SNPs called eQTLs [142, 143]. For COVID-19, the study [32]
identified SNPs rs10735079, rs74956615, rs2109069 and rs2236757
by GWAS. Then, using TWAS the same group associated disease
severity with increased expression of oligoadenylatesynthetase
3 (OAS3) and with C-C chemokine receptor type 2 (CCR2)
around rs10735079 and rs1138594, respectively, in lung tissue
[15]. Similarly, in latent tuberculosis, SNP rs62292160 was
shown to increase the expression of IL4 [144]. In Sporadic
Creutzfeldt–Jakob disease (CJD), increased expression of STX6
in multiple brain regions was associated with the risk of
disease contraction. The SNPs rs12754041, rs10797664 and
rs6425657, each in strong linkage disequilibrium with the SNP
rs3747957, showed a high probability of being causal [145]. The
advancement in genomic tools has made it possible to identify
and find associated elements with gene expression levels. This
paves the way to discover the functional mechanisms causing
the underlying alterations and thereby, aid in targeting and
developing therapeutics.

Beyond gene expression: RNA maturation and
transposable elements in infectious disease
outcome

Various studies have reported the differential expression of
cytokine, chemokine and interferon genes and their possible
association with disease severity, in case of sepsis, and
MTB infection [146–148]. This leads us to think whether the
differential gene expression is the sole determinant of disease
severity? Of the plausible other factors with functional role in
disease severity, alternate transcripts and noncoding RNA seems
to be important modulators.

One of the crucial steps in RNA maturation is alternative

splicing (AS) that allows the retention of exons, or parts of exons,
and introns in mature transcripts and causes the proteome
diversity expansion. Infections can cause global changes in the
alternate splicing pattern,which could be due to intrinsic factors
such as polymorphism at the splice sites, signaling events or
due to direct intervention by virulence factors. Recent studies
have shown a change in AS landscape in host cells during a
viral infection [149]. In vitro studies of HIV infection identified
alternative conformations for the HIV-1 Rev-responsive element
(RRE) and 5′ untranslated region (UTR), increasing the possibility
of alternative structures playing an important part in the trans-
port of viral RNA from nuclease and in its subsequent packaging
in virions [150]. For better understanding of the fundamental
question, if the RNA structure affects splicing, it is possibly
pertinent to distinguish multiple conformations for the same
sequence in cells. The expression of genes in HIV-1 from the
same primary transcript is aided by the ability of RNA to form
alternative conformations at critical splice sites [151].

Transposable elements, particularly L1 and Alu elements, are
capable of introducing novel splice sites [152]. Indeed, Alu inser-
tions into a gene introduces both splice acceptor and donor sites,
and thereby holds potential of creating new exons [153]. Most
Alu-derived exons undergo AS, contributing to transcript diver-
sity. Moreover, mRNA translation is regulated by the enriched
presence of Alu in the 5′UTR of human genes. Additionally,

numerous AS events of Alu-derived exons are tissue-specific,
possibly suggesting TE contribution to cell type, defined by tran-
scriptome differences [154–156].Human genesmake use of alter-
native polyadenylation (polyA) sites, and TEs render the cues for
some of these events, suggesting the role of TEs in regulating
the 3′ end processing of host transcripts. Transcript diversity is
further promoted by TEs, by providing alternative promoters for
host genes. High-throughput techniques have manifested the
all-round role of TEs as alternative gene promoters, and their
contribution to tissue-specific expression profiles in normal
tissues.

Several mechanisms, including genetic and epigenetic path-
ways, are known for intronic Alu-mediated gene expression. An
intronic Alu polymorphismwithin theACE genewas shown to be
associatedwith the SARS-CoV-2 infection severity andmorbidity
[157, 158]. Many studies have highlighted Alus as a key modula-
tor of gene expression with involvement in diverse physiological
processes [159, 160]. Knowing this, along with the knowledge of
human demographics, the role Alu polymorphisms in the host
response to SARS-CoV-2 infection becomes worthy to consider,
especially the Alu polymorphism in the key genes for immune
response.The retrotransposition of Line1into chromosomal DNA
may result in genomic instability, whereas reverse transcription
in the cytosol may activate innate immune sensors [161]. Jones
et al. [161] proved that HIV-1 infection enhances L1 retrotranspo-
sition in Jurkat cells in a Vif- and Vpr-dependent manner. They
also reported extrachromosomal L1 DNA buildup in primary
CD4+ T cells as an outcome of HIV-1 infection. These data indi-
cate an unexplored interaction between HIV-1 and endogenous
retrotransposable elements, with possible role in the regulation
of innate immune response to HIV-1 infection, genomic insta-
bility and cytopathicity associated with the infection. Alternate
transcripts and transposable elements have been extensively
studied with respect to metabolic disorders and in response to
stress conditions. Studies focused to elucidate the role of these
elements and of noncoding RNA in the context of infectious
diseases may be an important area of research to explain and
understand the observed diversity of clinical outcome.

Disease severity from the aspect of pathogen

In the previous sections we have discussed the host components
modulating the disease outcome. However, the outcome of an
infection is determined by the complex interplay of the pathogen
and the host immune system. Pathogen virulence and their role
in the mortality of the host are also defined by the nature of
the pathogen. Hence, the need to understand and factor in the
pathogen’s role in disease outcome is highlighted in this section.

M. tuberculosis, the leading cause of infectious diseasemortal-
ity, is classified into eight lineages (Lineage 1–8) having diverse
geographical host associations. The L1–3, L4, and L5-6, and L7 are
restricted to Asia, Europe-American, West Africa and Ethiopia-
specific populations, respectively [162]. Recent studies have
shown the sub-lineages of the L2 and L4 to be associated with
higher virulence and are more geographically widespread [163].
This increased virulence is attributed to the delay or decreased
host immune response causing enhanced transmission of the
infection [164, 165]. Additionally, the severity of the L2 lineage
infection when associated with host CD209_336 A/G SNP in
patients leads to poorer outcomes and are at increased risk
of mortality [166]. Apart from pathogens, virulence factors
(VFs) are the critical elements essential in determining both
the basis of cellular and molecular pathogenesis. VFs aid
in the establishment of colonies [167–169], modulating host
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Figure 2. Key players in delineating clinical outcome of pathogenic diseases. The outcome of the epidemic/pandemic at the local and global level has been modulated

bymany factors, inclusive of human genetic diversity, transcriptome, noncoding RNA and the pathogen/s genomic architecture. Themulticomponent aspect highlights

the role of integrative genomics for better understanding of disease severity and mortality.

mechanisms for replication and survival [170–173] and evasion
of immune response [174, 175].

Interestingly,while known to cause asymptomatic infections,
H. pylori virulence factors cytotoxin-associated gene A (CagA),
vacuolating cytotoxin A (vacA) and blood group antigen binding
adhesin (BabA) are associated with the development and sever-
ity of diseases including peptic ulcer disease, gastric adenocar-
cinoma and gastric high-grade B cell lymphoma [176–179]. The
chromosomal integrity of the cag-pathogencity (cag-PAI) island
or the lack thereof has been associated with pathological pro-
gression. Severe pathology is linked with the clinical isolates of
H. pylori having deletion or rearrangement in the cagA promoter.
Intact cag-PAI was reported to be in the strains from East Asian
ancestry than in the European and African strains [180]. This
variation may be indicative of the certain subset of populations
being susceptible to severe disease outcome, while the remain-
ing population could be predisposed to benign disease condition
only, even if infection occurs.

Finally, clinical isolates and/or variants also characterize the
infection and the development of disease. Possibly, the most
relevant example of the role of variants in the diverse clinical
presentation and disease development is that of SARS-CoV-2
and its numerous variant of concern (VOC) induced infection
[181, 182]. SARS-CoV-2 virus being a positive sense RNA genome
is more prone to genomic modifications, including deletion
mutations and SNPs leading to the selection of the virus either
toward increased or decreased virulence. The D614G mutation
in the surface glycoprotein region along with P323L in the RNA-
dependent RNA polymerase (RdRp) is among the few mutations
that have become globally predominant. The predominance
could be explained by the higher viral load in the host [183]
causing increased infectivity byD614G.Mutations have also been
associated with the clinical outcome of the disease. A study by

Nagy et al. [184] have shown association of five mutations, L84S
in theORF8 protein, L37F in theNSP6 protein,G196V in theORF3a
protein, F308Y in the NSP4 protein and the S197L mutation, in
the nucleocapsid phosphoprotein with mild cases. Additionally,
they also reported 15mutations within seven genes: L54F, D614G
and V1176F in the surface (S) glycoprotein, A97V and P323L in
the RdRp, Q57H and G251V in the ORF3a protein, P13L, S194L,
R203K, G204R and I292T in the nucleocapsid phosphoprotein,
I33T in the ORF6 protein, S1197R and T1198K mutations in the
NSP3 protein are associated with the severe cases of COVID-19.

Continuous evolution of SARS-CoV-2,newmutation and their
selection and subsequent emergence of lineages may confer it
an evolutionary advantage. Constant and continuous genomic
surveillance of mutations will not only be extremely useful in
keeping track of viral evolution but also would be resourceful in
the development of the vaccines.

Future perspectives

NGS technologies today have accelerated the identifications
and characterization of pathogenic organisms, especially detec-
tion of emerging variants [185]. The expansion of current tech-
niques to identify and stratify host populations on the basis of
infectious disease risk will improve our understanding of host–
pathogen interaction and the role of host factors in modulating
disease severity.

More studies are required to thread together the information
across hierarchies and integrate genomic studies of both the
pathogen and host along with respective epidemiological,
transcriptomic, and clinical information. The threading of all
facets including human genetic diversity, genetic elements,
genes, noncoding RNA, transposable elements of the host as
well as the pathogen, in the bottom-top approach, may link and
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piece together valuable information (Figure 2). The information
thus gathered would aid in the identification of targets for
drugs and therapeutics. Furthermore, the formulation of specific
hypotheses based on population-wide studies would provide us
with anticipated knowledge for experimental testing.

Key Points

• Human genetic variants are an important modulator
of the host response to pathogen infection.

• Among other factors, the host response at RNA level is
shaped by differential expression of genes, alternate
transcripts and the noncoding RNA.

• The pathogen genome architecture and its ability to
elicit or evade immune response is also an important
factor.

• Integrative Genomics of host-pathogen is integral to
understand and elucidate the INTERACTOME shaping
disease severity and outcome.

• Identification of population subgroups toward suscep-
tibility/protection against infection would help public
health decision making.
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