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Abstract: Since Otto Warburg’s first report on the increased uptake of glucose and lactate release by
cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes
proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is
complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and
antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and
inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a
dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key
player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the
link between cancer–nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the
roles of relatively underappreciated metabolites in cancer–nerve crosstalk, including lactate, vitamins,
and amino acids, and propose the investigation of nutrients in cancer–nerve crosstalk based on their
tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of
cancer–nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and
may lead to the identification of potential targets for future cancer therapies.

Keywords: metabolites; lactate; amino acid metabolism; vitamins; cancer; cancer–nerve crosstalk;
perineural invasion; tumor innervation

1. Introduction

Cancer places a heavy burden on the global population as the second leading cause of
death, with severe detriment in countries without access to sufficient medical care [1]. In
2020 alone, the World Health Organization’s GLOBOCAN reported that over 10 million
men and 9 million women were diagnosed with some form of cancer [2]. The most
prominent cancers among women include breast, colorectal, lung, cervical, and thyroid;
while lung, prostate, colorectal, stomach, and liver cancers are the most common among
men [2]. Though genetic factors may play a role in cancer onset, a heavy emphasis has
been placed on the preventability of cancer, as highlighted by the increased probability of
disease onset by smoking, sun exposure, and virus and bacterial incubation [3,4]. Over the
last 20 years, increasing evidence has implicated diet as a major contributor in up to 20% of
cancer cases [5]. This is made even more apparent by the variance in cancer dominance
between countries and cultures [6] and the incidence of cancer among populations without
access to proper nutrition [7].

The role of an altered metabolic state in which cells exhibit an increased conversion of
glucose into lactate even in highly oxygenated areas, denoted the Warburg effect, has been
an accepted hallmark of cancer since the 1920s [8,9]. This reliance on aerobic glycolysis
leaves cells with a large deficiency in ATP and increased by-products such as reactive
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oxygen species (ROS) [9–11]. For cancer cells, maintaining ROS homeostasis via glutathione
is essential, as moderate levels are proven to contribute to tumorigenesis and invasion while
an overabundance leads to cell and DNA damage [10,12,13]. Moreover, increased ROS leads
to upregulation of glutathione to maintain homeostasis; this increased defense can allow
cancer cells to become resistant to therapies that rely on the induction of oxidative stress [14].
As the catabolism of glucose leaves them starved of energy, cancer cells can become
dependent on glutamine for ATP [15–18]. Glutamine plays a vital role in macromolecule
synthesis through the tricarboxylic acid (TCA) cycle (Figure 1) [16,19,20]. Therefore, glucose,
glutamine, and their by-products are prevalent in studies searching for metabolic targets in
cancer therapies [21–24].
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PSPH: phosphoserine phosphatase, ROS: reactive oxygen species, SHMT: serine hydroxymethyl-
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amino acids to inhibit cancer progression, as many induce adaptive resistance to chemo-
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Figure 1. Complex mechanisms induced by glucose, glutamine, and lactate uptake encompass
the metabolism of tumor cells. 3-PG: 3-phosphoglycerate, 3-PH: 3-phosphohydroxypyruvate,
ASL: arginosuccinate lyase, ASNS: asparagine synthetase, ASS: arginosuccinate synthase,
αKG: alpha-ketoglutarate, GDH: glutamine dehydrogenase, GS: glutamine synthetase, LDH: lac-
tate dehydrogenase, MCT1/4: monocarboxylate transporter 1/4, NOS: nitric oxide synthase,
PDH: pyruvate dehydrogenase, PHGDH: phosphoglycerate dehydrogenase, PSAT: phospho-
serine aminotransferase, PSPH: phosphoserine phosphatase, ROS: reactive oxygen species,
SHMT: serine hydroxymethyltransferase, TXNRD1: thioredoxin reductase 1.

Alternatively, researchers have come to acknowledge the role of lactate not only as a
waste product but also as the driving force of mitochondrial respiration in oxidating cancer
cells [25]. Thus, there has been continued interest in the investigation of metabolites in
cancer progression. Amino-acid products of the TCA, urea, folate, and methionine cycles as
well as those exogenously supplemented have proven important in facilitating cancer-cell
protein and DNA synthesis as well as waste (e.g., ROS and nitric oxide synthase (NOS)),
which progresses tumorigenesis [11,26]. Recent studies have targeted many amino acids
to inhibit cancer progression, as many induce adaptive resistance to chemotherapy and
radiation-therapy treatments [27–32]. In order to slow cancer progression, some clinicians
have even suggested patients adhere to an “anti-cancer diet” to starve tumor cells of key
nutrients [33,34]. However, many cancers alter their reliance on specific metabolites, rendering
dietary restrictions ineffective, which has caused researchers to investigate pathways via
targeted therapies [35,36]. Alternatively, some vitamins (e.g., vitamins A, C, and D) have been
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identified as antitumorigenic agents, presenting them as promising treatments in inhibiting
tumor growth, while the upregulation of others (e.g., vitamin B12) is associated with decreased
patient outcomes [37–42]. Continued examination of the contributions of lactate, amino acids,
and vitamins in cancer mechanisms may provide more significant therapeutic options.

Within the past two decades, researchers have also acknowledged the interconnection
of the nervous system with cancer progression and metastasis [43–48]. This cancer–nerve
crosstalk occurs in cancers of highly innervated areas, including the pancreas [49–52], head
and neck [53–55], colon and rectum [56–58], breasts [59–62], prostate [63–65], cervix [66–68],
lungs [69], etc. There are two established subtypes of cancer–nerve crosstalk: perineu-
ral invasion (PNI) occurs when cancer cells migrate into the perineural layer of adja-
cent nerves [70–72] while its relative opposite, tumor innervation (TI), describes the phe-
nomenon in which neurites extend into solid tumors [73,74]. PNI has been deemed a
prognostic factor of select cancers, including cervical [68], liver [75], and colorectal [48], as
well as a signifier of tumor recurrence in breast [61] and prostate cancers [76]. However,
there still lack effective treatments of either form of the crosstalk, as the lack of suffi-
cient pre-surgical screenings for PNI and TI complicate resection [77] and radiation and
chemotherapeutic options are limited [78,79]. It is vital that there be continued exploration
into the mechanisms of cancer–nerve crosstalk, as both PNI and TI contribute to progressive
cancer-related pain, metastases, and worsened patient prognosis [74].

Previous studies have presented neurotransmitters and neurotrophins (e.g., sub-
stance P [80], nerve-growth factor (NGF) [81–83] and brain-derived neurotrophic fac-
tor (BDNF) [84]), chemokines (e.g., CX3CL1 [85] and CCL2 [86,87]), extracellular vesi-
cles [66,88], and Schwann cells [52,89] as key players in cancer–nerve crosstalk. Moreover,
glutamate, the product of glutaminolysis, acts as a potent central nervous system neuro-
transmitter that facilitates PNI in endometrial cancer [90] and TI in gliomas [57]. Glucose
also works alongside neurotransmitters to modulate cancer metabolism and immune cell
activity in the tumor microenvironment [91], while hyperglycemia in patients with type 2
diabetes mellitus correlates with an increased incidence of PNI in pancreatic cancer [92,93].
However, because there is presently a strong focus on targeting glutamine and glucose
metabolism in cancer, this review will focus on the less-appreciated metabolites in cancer–
nerve crosstalk that may be targeted to advance cancer therapeutics. As known contributors
to cancer, nutrients should now be investigated in the context of cancer–nerve crosstalk.

Using literature obtained via PubMed and Google Scholar databases (published in En-
glish through March 2022), this review will highlight select nutrients and their anti- and/or
pro-cancer effects on metabolism, invasion, and metastasis. As discussed above, there
exist many reviews that highlight the value of glutamine, glucose, and their by-products
in cancer; therefore, this review will focus on the roles other key nutrients play in cancer
metabolism and aggressiveness. Additionally, we identify potential target metabolites
as key players in cancer–nerve crosstalk based on their roles in cancer, as well as their
known mechanistic contributions to neurite outgrowth and nerve regeneration. Further
investigation into these nutrients will provide vital insights to develop targeted therapies
and promote improved global patient outcomes.

2. Metabolites and Cancer
2.1. Background

In 1924, Otto Warburg published his findings, introducing dysregulated metabolism
as a hallmark of cancer [94]. This altered metabolic state, aptly titled the Warburg effect, is
described by the phenomenon in which cancer cells increase their uptake of glucose and
production of lactate with a heavy reliance on aerobic glycolysis [94]. In this metabolic
state, cancer cells produce very limited ATP via glycolysis and may become dependent
on glutamine as an energy source [21]. Therefore, suppression of glucose and glutamine
metabolism is heavily investigated in cancer therapeutics [21–24].

Lactate has gained a new appreciation for its contribution to oxidative respiration
under normoxic conditions [95]. The discovery that lactate is both a waste product and
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vital tumor energy source highlights that metabolites other than glucose and glutamine
may promote an environment fit for cancer-cell growth and proliferation. Downstream
amino-acid by-products, e.g., asparagine [96], arginine [97], cysteine [98], serine [99], and
glycine [100], have also been investigated for their contribution to the survival of cancer
cells. While the deprivation of these nutrients appears to be an effective treatment in
some cases [101,102], more investigation into therapies targeting each metabolic pathway
is needed. Alternatively, some amino acids and key vitamins, e.g., vitamins A [37], B [103],
D [104], E [105], K [106], and C [107], act as antitumorigenic factors and suppress cancer
progression. To bring attention to these relatively underappreciated metabolites, this review
highlights lactate, vitamins, and amino acids for their roles in progressing, suppressing,
and preventing cancer (Table 1).

Table 1. Metabolite contribution to tumor survival varies between cancer types.

Metabolite Cancer Type Role in Tumor Progression

Vitamin A

Breast 4-HPR induces cell death [37]; vitamin A and retinol reduce risk [105]

Colon/Colorectal 4-HPR induces cell death [37]

Head/Neck 4-HPR induces cell death [37]

Gastric Inhibits polycyclic hydrocarbon-induced carcinomas [37,108]

Lung Blood levels of α- and β-carotene, total carotenoids, and retinol are
inversely associated with cancer risk [109]

Prostate 4-HPR induces cell death [37]

Vitamin B1

Breast

Intermediate concentrations promote Ehrlich’s ascites proliferation in
thiamine-deficient patients; high concentrations inhibit proliferation [110];
patients exhibit decreased expression of SLC9A3 transporter
gene [111,112]

Head/Neck Patients exhibit decreased expression of SLC9A3 transporter gene [112]
Intake reduces risk of esophageal cancer [103]

Vitamin B3 Head/Neck Intake reduces risk of esophageal cancer [103]

Vitamin B6 Head/Neck Intake reduces risk of esophageal cancer [103]

Vitamin B9 Head/Neck Intake reduces risk of esophageal cancer [103]

Vitamin B12

Head/Neck Intake increases risk of esophageal cancer [103]

Leukemia/Lymphoma Elevated plasma levels associated with 1-year cancer risk [113]

Liver Elevated plasma levels associated with 1-year cancer risk [113]

Lung Positively associated with cancer risk in dose-dependent manner [114]

Pancreatic Elevated plasma levels associated with 1-year cancer risk [113]

Vitamin C
Breast Low concentrations induce cell invasiveness;

high doses restrict EMT [115]

Skin Low doses reduce cell viability and invasiveness;
high doses promote cell migration [116]

Vitamin D

Breast Calcitroil and D3 analogs suppress MMP-2 and -9 and VCAM-1; low
serum D3 levels are associated with high incidence [117]

Colon/Colorectal
Low serum D3 levels are associated with high incidence [117]; analog
PRI-2191 enhances ability of 5-FU to restrict cell cycle [118]; serum
levels of ≥33 ng/mL correlates with a 50% decreased risk [119]

Gastric Low serum D3 levels associated with high incidence [117]

Head/Neck MART-10 induces cell-cycle arrest and suppresses p21 and p27 [120]

Prostate
Lower serum levels are associated with an increased risk; D3 and
analogs inhibit invasiveness and expression of MMP-2 and -9 and
VCAM-1 [117]
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Table 1. Cont.

Metabolite Cancer Type Role in Tumor Progression

Vitamin E

Breast Tocotrienols exhibit chemotherapeutic and antitumor properties [41];
γ-tocotrienol induces cell-cycle arrest [121,122]

Colon/Colorectal Tocotrienols exhibit antitumor properties [41]; γ-tocotrienol mediates
apoptosis via apoptotic caspase-3 and NFκB suppression [123]

Liver Tocotrienols exhibit chemotherapeutic properties [41]

Lung Tocotrienols exhibit chemotherapeutic properties [41]

Pancreatic Tocotrienols exhibit chemotherapeutic properties [41]

Prostate Tocotrienols exhibit chemotherapeutic properties [41]

Vitamin K Breast K2 induces nonapoptotic cell death [42]

Arginine

Breast
Low plasma levels act as a prognostic biomarker [124];
arginine starvation is used to treat arginosuccinate synthase-deficient
patients [101,124]

Ovarian Cancer cells are deficient in arginosuccinate synthase-1; ADI-PED-20 is
used to degrade arginine [125]

Prostate Low plasma levels act as a prognostic biomarker [126]

Skin
Cells are deficient in arginosuccinate synthase-1; ADI-PEG20-resistant
cancer exhibits c-MYC binding to the promoter of arginosuccinate
synthase-1 [26]

Asparagine

Breast Maintains health of glutamine-independent cells [96]

Cervical Facilitates mTOR activation in the absence of glutamine [96]

Liposarcoma Maintains health of glutamine-independent cells [96]

Cysteine

Breast Inhibition of histone deacetylase-6 sensitizes TNBC cells to cysteine
deprivation via cystine/glutamate antiporter-targeted therapies [98]

Colon/Colorectal Starvation induces a reduction in liver-metastatic cell proliferation [29]

Pancreatic The deletion of cystine transporter gene SLC7A11 inhibits autophagy
and diminishes cysteine homeostasis [127]

Glycine
Colon/Colorectal Metabolism increases when starved of serine [128]; serine–glycine

inhibition should be used in conjunction to decrease tumor size [102]

Lung De novo serine and glycine are allocated to glutathione synthesis [128]

Lactate

Breast

10 mM L-lactate acts as chemoattractant and facilitates migration [129];
intermediate and high supplementation upregulates oncogene,
proliferation gene, tumor suppressor, and transcription-factor
expression [130];

Cervical

When given glucose and lactate, oxidative cancer cells prefer lactate;
cells thrive when given lactate supplementation; oxidative cells exhibit
high expression of MCT1 versus MCT4; MCT1 inhibition induces
necrosis in oxidative cells [25]; DLAD targets metabolism [131]

Colon/Colorectal Glycolytic cells fail to thrive upon glucose starvation with lactate
supplementation [25]

Head/Neck DLAD targets metabolism [131]

Lung NFκB signaling [132]; LDH-A inhibition sensitizes cells to
radiation [133]

Skin DLAD targets metabolism [131]
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Table 1. Cont.

Metabolite Cancer Type Role in Tumor Progression

Serine

Breast
Cells prefer serine over glycine and exhibit a decrease in nucleic acid
synthesis when starved of serine [99]; brain metastatic cells upregulate
de novo serine when starved of exogenous alternative [134]

Colon/Colorectal

Cells prefer serine over glycine and exhibit a decrease in nucleic acid
synthesis when starved of serine [99]; metabolism increases when
starved of serine; starvation decreases YAP activation [135];
serine–glycine catabolism induced by stress promotes formate
production [136]; serine–glycine inhibition should be used in
conjunction to decrease tumor size; starvation induces metabolic stress
and p53-activated glycolysis [102]

Lung Promotes purine synthesis in cancer cells; de novo serine and glycine
are allocated to glutathione synthesis [128]

2.2. Lactate

Lactate is the major metabolite of glycolysis, which is catabolized from pyruvate by
lactate dehydrogenase (LDH) (Figure 1) [94,137]. The primary isomer of lactate produced
in humans is L-lactate, while D-lactate is synthesized at 1 to 5% the concentration of
L-lactate [131,138]. Therefore, this review will focus on L-lactate unless stated otherwise. In
healthy tissues, endogenous lactate levels are around 1.5 to 3 mM; however, under Warburg
effect-like conditions, cancer cells contain 30 to 40 mM lactate [131]. In the past, lactate was
recorded only as the waste product of glycolysis under hypoxic conditions; however, within
the last 2 decades, researchers have gained an appreciation for its facilitation of oxidative
metabolism in oxygenating cancer cells [25]. As such, when fed glucose-rich media with
10 mM sodium lactate supplementation, cervical cancer cells favored lactate and switched
from glycolysis to lactate oxidation [25]. These cells continued to thrive following glucose
starvation [25]. Conversely, glycolytic colorectal cancer cells had an adverse reaction when
glucose was removed from their media [25]. In the oxidative cervical cancer cells, mRNA
for monocarboxylate transporter-1 (MCT1), a protein that imports lactate, is transcribed at
a higher rate than MCT4 mRNA, the protein exporter of lactate. MCT4 exhibited higher
expression versus MCT1 in glycolytic colorectal cancer cells [25]. The study concluded
that MCT1 and hypoxia are mutually exclusive in glycolytic tumors, and MCT1 inhibition
induced lung carcinoma cell necrosis and sensitizes cells to irradiation in vivo [25]. One
breast cancer study found that endogenous lactate receptor G protein-coupled receptor
81 (GPR81) mRNA expression is elevated in clinical estrogen receptor alpha-positive
(ERα+) and human epidermal receptor-growth factor 2-positive (Her2+) breast cancer
versus triple-negative breast cancer (TNBC) and benign tissue samples [139]. In vitro,
GPR81 regulates MCT1 expression and lactate uptake in MCF-7 breast epithelial breast
cancer cells and is responsible for cancer-cell proliferation and survival when lactate is the
main nutrient source [139].

Bonuccelli et al. found that 10 mM L-lactate acted as a chemoattractant to almost
double breast cancer-cell migration versus untreated cells [129]. In vivo, mice treated with
L-lactate at 500 mg/kg of body weight (BW) increased lung metastases by 10.6-fold versus
control mice [129]. Apicella et al. cultured non-small-cell lung cancer (NSCLC) tumors
ex vivo before being injected into mice resistant to mesenchymal-to-epithelial transition
(MET) tyrosine kinase inhibitors (TKI) [132]. This study found that resistant tumors upreg-
ulated lactate production and nuclear factor kappa-B (NF-κB), which induced hepatocyte
growth factor (HGF) transcription by adjacent cancer-associated fibroblasts [133]. This path-
way was shown to contribute to tumor resistance to MET TKI; stromal HGF and tumor
MCT4 were also upregulated in epidermal growth-factor receptor TKI-resistant tumors of
NSCLC patients [132].
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In a genetic evaluation of in vitro breast cancer, MCF-7 cells were incubated with 0 to
20 mM exogenous lactate and analyzed for the expression of proto-oncogenes (i.e., NRAS,
MYC, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha PIK3CA),
proliferative genes (i.e., ATM, CCND1, CDK4, CDK1A, CDK2b, AKT1, and MIF), tumor
suppressors (i.e., BRCA1 and BRCA2), and transcription factors (i.e., HIF1A and E2F1) [130].
Following 48 h, cells treated with 4500 mg/L glucose (endogenous lactate) upregulated
oncogenes, proliferative gene expression (except for MIF), tumor-suppressor genes, and
transcription factors by over 2-fold [130]. Oncogenes, transcription factors, tumor sup-
pressors, and proliferation genes were upregulated after 6 h of 10 mM treatment [130].
Expression was lower, yet still significant, after 48 h for all genes except for BRCA1 [130].
Following 6 h of 20 mM exogenous lactate therapy, MYC, transcription factors, tumor
suppressors, and proliferation genes except ATM and CDK2b increased in expression [130].
Similarly, all but NRAS, PIK3CA, ATM, and CDK2b slightly decreased between 6 and
48 h [130]. The authors concluded that lactate changes cancer-cell transcription and acts as
both a pro- and antitumorigenic factor in in vitro breast cancer [130].

A variety of therapies have been investigated in targeting glycolysis and lactate.
Docetaxel-resistant prostate cancer cells were sensitized to chemotherapy following treat-
ment with sodium oxamate, a structural analog to pyruvate which inhibits LDH and
glycolysis [30]. The study found success in targeting LDH-A expression in vitro [30]. In
papillary thyroid carcinoma patients, LDH-A mRNA and protein levels correlate with an
aggressive phenotype and poor prognosis [140], while also associated with high glycolytic
activity, radioresistance, and poor survival of NSCLC patients [133]. LDH-A promotes
migration, proliferation, and epithelial-to-mesenchymal transition (EMT), regulates tu-
morigenicity and autophagy via the AMP-activated protein kinase (AMPK) pathway, and
inhibits apoptosis of thyroid cancer in vitro and in vivo [140]. LDH-A inhibition sensitizes
NSCLC cells to radiation therapy by blocking cellular energy metabolism and increas-
ing X-ray-induced DNA injury via ROS production [133]. Inhibition, alone [140] and in
conjunction with irradiation [134], induces apoptosis and autophagy of cancer cells.

Alternatively, D-lactate dimers (DLAD) have been found to be cytotoxic in some
neuroblastoma and cervical cancer studies; therefore, Dikshit et al. utilized DLAD 3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide to evaluate melanoma cell growth
in dose-dependent manner (1.25 to 10 mg/mL) [131]. Following only 1 day of 10 mg/mL
treatment, melanoma cells experienced complete cytotoxicity [131]. DLAD was found to
contribute to dose-dependent inhibition of mitochondrial function, with inhibitory effects
on cell growth even with pH neutralization [131]. In vivo, melanoma xenografts regressed
in size and showed significantly decreased proliferation over a 21-day period. Furthermore,
immunohistochemistry for innate immune cells indicated a significant increase in immune
response and tumor growth inhibition [131]. With minimal metabolic effect on fibroblasts
versus squamous-cell carcinoma cells in vitro, there exists promise for DLAD treatment in
targeting tumor lactate metabolism [131].

2.3. Vitamin A

Vitamin A is a group of fat-soluble retinols and their derivatives, including retinyl ester,
retinal, retinoic acid, and pro-vitamin A carotenoids, including α- and β-carotene [108].
Retinol is mostly acquired from the diet in precursor forms, e.g., retinyl esters from animal
sources and pro-vitamin A carotenoids from plants [141].

Since retinoids have an important role in regulating cell growth, proliferation, and
differentiation, studies have investigated the correlation between vitamin A and cancer
patient prognosis [142,143]. A meta-analysis with 31 studies highlighted an inverse asso-
ciation between vitamin A intake and gastric cancer risk [108]. Another meta-analysis of
17 studies reported that higher blood concentrations of α- and β-carotene, total carotenoids,
and retinol are significantly associated with decreased lung cancer risk [109]. Fulan et al.
found an inverse association between the total intake of vitamin A/retinol and breast cancer
risk [105]. Both natural and synthetic retinoids have been shown to exert chemotherapeutic



Nutrients 2022, 14, 1722 8 of 26

effects in cancer with antiproliferative, proapoptotic and antioxidant activities [37]. Syn-
thetic retinoid derivative fenretinide (4-HPR) has shown succuss in tumor-cell cytotoxicity
in many cancers such as breast, prostate, colon, head and neck, and lung [37].

2.4. Vitamin B

Cobalamin (vitamin B12) is a water-soluble vitamin that is abundant in foods of animal
origin [144]. Vitamin B12 can also be supplemented in foods in which it is not naturally
synthesized. For humans to absorb vitamin B12 from food, hydrochloric acid in the stomach
must separate B12 from the protein to which it is attached and then should combine
with intrinsic factors to be absorbed by the body [145]. Analogs of cobalamin include:
methylcobalamin (MeCbl), adenosylcobalamin (AdCbl), hydroxycobalamin (OHCbl), and
cyanocobalamin (CNCbl). MeCbl and 5-deoxyadenosylcobalamin are active in human
metabolism, while OHCbl is found in foods and is used as the first line of treatment
for cyanide poisoning. CNCbl is a synthetic B12 analog used in food fortification and
supplementation [146]. Vitamin B12 plays an important role in two biochemical reactions in
humans: the formation of methionine by methylation of homocysteine (Figure 1), by which
tetrahydrofolate, a precursor of purine and pyrimidine synthesis, is produced [147] as well
as the conversion of L-methylmalonyl coenzyme A into succinyl coenzyme A, which is
essential for the formation of the neuronal myelin sheath [148].

There has been some evidence of a relationship between intake of vitamin B and
cancer [149]. In a review of the United Kingdom’s Health Improvement Network primary-
care database, elevated plasma B12 levels were linked with a higher 1-year cancer risk,
particularly for myeloid, liver, and pancreatic cancers. This suggests that some cancers may
affect B12 metabolism [113]. Cancer caused by chromosomal breaks from the incorporation
of uracil instead of the appropriate base is linked to folate deficiency and potentially
vitamin B12 and B6 deficiencies [150]. In a nested study, higher blood B12 levels were
associated with increased overall lung cancer risk [114]. One meta-analysis, however,
showed that vitamins B1, B3, B6, and B9 are associated with reduced risk of esophageal
cancer, while vitamin B12 was associated with induced esophageal cancer risk [103].

Furthermore, the decrease in thiamine (vitamin B1) transporter gene SLC9A3 has been
evident in in vitro breast cancer cells as well as breast and gastric tumors [111,112,151].
Ng et al. highlighted a significant increase in plasma SLC9A3 methylation levels in cancer
patients versus healthy participants, resulting in thiamine deficiency in patients [112].
In an in vivo study of breast cancer, mice were supplemented with 0 to 2500 times the
recommended daily amount to combat this deficiency; mice given 12.5 to 75 times the
recommended dose exhibited a significant increase in cancer-cell proliferation versus
untreated mice [110]. However, it was also noted that oversupplementation, i.e., mice
given 2500 times the recommended dosage, saw a decrease in tumor growth, suggesting
the potential of thiamine overdose as a cancer therapy [110].

Thiamine is a coenzyme of pyruvate dehydrogenase (PDH), which converts pyruvate into
acetyl-co-A to connect glycolysis and the TCA cycle [152,153]. However, similar to thiamine,
the PDH subunit PDH-E1β is downregulated in breast cancer and HeLa cervical cancer cells
as well as in vitro mouse fibroblasts under prolonged hypoxia [154]. This reduction in PDH
was found to induce aerobic glycolysis and lactate production [154]. Therefore, the authors
concluded that the activation status of PDH-E1β informs cancers cells whether to perform
in a Warburg effect-like metabolic state (when silenced) or to enhance tumor growth (when
upregulated) [154]. Interestingly, the group also found that bladder, melanoma, ovarian, and
prostate cancer patients presented with high ratios of PDH-E1β, with prostate cancer patients
experiencing up to a 50% amplification in total PDH expression.

2.5. Vitamin C

Ascorbic acid (vitamin C) is a water-soluble compound rich in fruits and vegeta-
bles. Unlike other species, humans need to consume vitamin C from external sources, as
humans do not have gulonolactone oxidase to synthesize endogenous vitamin C [155].
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Vitamin C is an important antioxidant and reducing cofactor in many enzymatic reactions
related to collagen synthesis, tyrosine metabolism, hypoxia-inducible transcription factor
(HIF) regulation, and epigenetic regulation of histone and DNA demethylation [156].

Due to its antioxidant activities, vitamin C has been widely researched as an anti-
cancer agent for decades [38]. However, the use of vitamin C is cancer therapeutics is
limited, as its anticancer effects are only observed in vitro [38,39]. However, it was recently
shown that a high dose of intravenous vitamin C selectively reduces the proliferation and
growth of cancer cells, with limited interference in healthy cell metabolism [108,157,158].
Yang et al. showed that high concentrations (1 to 5 mM) of vitamin C significantly in-
hibit cell proliferation and increase apoptosis in melanoma cells, while low concentrations
(100 µM) support cell growth and migration [116]. Daily oral administration of low concen-
trations of vitamin C (0.0075 g/g of BW) promotes significant melanoma tumor growth
in mice (p < 0.05) compared to control mice [116]. Zeng et al. treated breast cancer cells
with low, intermediate, and high doses of vitamin C (0.01 to 2 mM) and demonstrated that
low and intermediate doses induce cell migration and invasion while high doses suppress
EMT [115]. High doses of vitamin C (4 g/kg of BW) also significantly suppressed the
metastasis of breast cancer in a xenograft mouse model [115]. These studies suggest that
pharmacological doses of vitamin C over 0.1 mM may increase the production of ROS and
DNA damage in cancer cells, while physiological doses promote the tumor growth and
metabolism [158]. Although potential antitumorigenic mechanisms of high-dose vitamin C
(e.g., hydrogen peroxide generation, enzymatic cofactor reactions, antioxidant, and anti-
inflammatory activities) have been proposed, more clinical investigations are needed to
support the potential of vitamin C as an effective cancer-therapy option [159–162].

2.6. Vitamin D

Vitamin D is a precursor to the fat-soluble steroid hormone calcitriol (1, 25(OH)2D3) [163].
Vitamin D3 (cholecalciferol)and vitamin D2 (i.e., ergocalciferol) can be synthesized by exposing
skin to ultraviolet light or consumed from fortified food and supplements [104]. Vitamin D
is hydroxylated into 25-hydroxyvitamin D (25(OH)D) in liver and is activated to produce
calcitriol in the kidneys [164]. Calcitriol notably regulates calcium-phosphate homeostasis for
bone health [165]. Upon binding to the vitamin D receptor (VDR), calcitriol regulates gene
transcription related to cellular growth, differentiation, apoptosis, and the function of the
immune, nerve, and cardiovascular systems [165,166].

Decades of research have demonstrated that low serum 25(OH)D is related to the initi-
ation of many cancers, such as colon, breast, prostate, and gastric [164,167]. Accumulating
evidence indicates that calcitriol has antitumorigenic effects through its antiproliferative,
proapoptotic, antiangiogenic, and antimetastatic activities in various cancers [104,164,168].
Calcitriol and vitamin D3 analogs suppress the secretion of proteolytic enzymes in breast
and prostate cancer cells while also inhibiting the expression of receptors of cell-adhesion
molecules, e.g., vascular cell-adhesion protein 1 (VCAM-1) [117]. This is a noteworthy
observation, as proteolytic enzyme activation and cell-adhesion-molecule expression in
cancer cells can increase invasiveness and metastasis [117]. Some studies have shown that
1,25(OH)2D3 and vitamin D analogs have potential anticancer effects [40]. Chiang et al. com-
pared the effects of 1,25(OH)2D3 and 19-nor-2-(3-hydroxypropyl)-1α,25-dihydroxyvitamin
D3 (MART-10) on hypopharyngeal and tongue cancer cells [120]. MART-10 showed the
greater inhibiting effect on both cancer-cell growth via G0/G1 cell-cycle arrest and the
upregulation of p21 and p27 expression. Milczarek et al. reported that vitamin D analogs
sensitize colon cancer to 5-fluorouracil in vivo [118]. Gorham et al. suggested a daily intake
of 1000 to 2000 IU/day of vitamin D3 to decrease the risk of colorectal cancer [119].

2.7. Vitamin E

Vitamin E is a group of hydrophobic compounds in eight isoforms consisting of α, β,
γ, and δ subtypes of tocopherols and tocotrienols [169]. Tocopherols are saturated forms of
vitamin E, while tocotrienols are unsaturated with short tails and three double bonds [121].
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They are rich in oils such as vegetable, palm, and rice bran, along with cereal grains [170].
After being absorbed in the small intestine, vitamin E, specifically α-tocopherol, binds to
an α-tocopherol transfer protein in the liver [171].

Due to their lower bioavailability versus α-tocopherol, tocotrienols have been ne-
glected for years [172]. However, it has been reported that some tocopheroland tocotrienol
isoforms (i.e., γ and δ) have greater anticancer activities than the most abundant isoform,
α-tocopherols [173]. In addition, there is increasing evidence that supports the anticancer
effects of tocotrienols in breast, colorectal, lung, prostate, pancreas, and liver cancers [41].
γ-tocotrienol, for instance, increases cell-cycle arrest in G1/S phase in MCF-7 and MDA-
MB-231 breast cancer cells [121,122] and induces apoptosis in HT-29 colon cancer cells
by increasing apoptotic caspase-3 and downregulating NF-κB signaling [123]. Moreover,
tocotrienols significantly sensitize cancer cells to chemotherapeutic drugs [174].

2.8. Vitamin K

Vitamin K is a group of lipid-soluble vitamins that has two natural forms: vitamin K1
(phylloquinone) and vitamin K2 (menaquinone) [175]. Vitamin K1 can be found in green leafy
vegetables and olive and soybean oils, while vitamin K2 is mainly present in fermented food
such as cheese, natto, and curds, endogenously generated by intestinal bacteria [176].

In the prospective cohort study of the European Prospective Investigation into Cancer
and Nutrition-Heidelberg, dietary intake of vitamin K2 had an inverse association with
cancer mortality [177]. An alternate prospective cohort analysis in a Mediterranean popula-
tion also indicated that dietary intake of vitamin K is inversely associated with the risk of
cancer mortality [175]. Vitamin K2 also increases nonapoptotic cell death with autophagy
in TNBC cells [42]. However, the relationship between vitamin K and cancer is still unclear,
and further studies are required to properly understand the mechanistic contributions of
vitamin K to cancer.

2.9. Asparagine

Asparagine is a nonessential amino acid that is either synthesized from glutamate and
aspartate by asparagine synthetase (Figure 1) or acquired from exogenous sources, e.g.,
cereal grains [178]. In recent years, asparagine, a precursor to the Class 2A carcinogen acry-
lamide, has been found to be important in maintaining the health of glutamine-independent
liposarcoma and breast cancer cells [19,96,178]. As an exchange factor, asparagine works to
import exogenous amino acids, e.g., arginine and serine, and 2 mM asparagine activates
the mammalian target of rapamycin-1 (mTOR1) protein complex, a major complex that
regulates cell growth and proliferation, in the absence of glutamine in HeLa cervical cancer
cells [96,179]. Krall et al. noted that these functions promote asparagine-induced protein
and nucleotide synthesis, contributing to the longevity of cancer cells [96]. Furthermore,
Knott et al. demonstrated that while dietary asparagine restriction does not affect tumor
growth, high-asparagine diets (4%) promote EMT and tumor metastasis in vivo versus
low-asparagine diets (0.6%) [180].

Previously, studies focused more on the importance of L-asparaginase, a bacterial en-
zyme utilized as the first treatment of acute lymphoblastic leukemia and lymphoma [181–184].
One in vitro study found that silencing asparagine synthase increased ovarian cancer cells’
sensitivity to L-asparaginase up to 500-fold, concluding that asparagine synthetase may be
used as a predictor of L-asparaginase therapy efficacy [181]. Unfortunately, the effectiveness
of the treatment does not translate to in vivo models [185]. A more recent preclinical study
showed that the administration of 20,000 U/kg asparaginase alone for 14 days insufficiently
produced leukemia cytotoxicity and required additional glutaminase activity for both as-
paragine synthetase-positive and -negative mice [186]. Moreover, a metabolic analysis of
19 leukemia cells and 26 leukemia patients proved that cancer cells of lower mitochondrial
respiration and glycolytic function are more sensitive to asparaginase therapy than higher
glycolytic cells [187]. Continued investigation into targeting asparagine may contribute to
more effective and clinically translatable cancer therapies.
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2.10. Arginine

Arginine (2-amino-5-guanidinovaleric acid) is the semi-essential amino-acid precur-
sor of nitric oxides, polyamines, and glutamate, which is upregulated in times of stress
and directly activates mTOR [97,188]. In the urea cycle, citrulline and aspartate synthe-
size arginosuccinate by arginosuccinate synthase, arginosuccinate synthase synthesizes
arginine by arginosuccinate lysate, and arginine synthesizes nitric oxide and citrulline
by nitric oxide synthase (Figure 1) [97,189]. Recent studies have suggested that utilizing
the presence of diminished plasma arginine levels acts as a biomarker of clinical prostate
(<67.18 µmol/L) and breast cancers [126,190]. While not proposing a cutoff for diagnosis,
Hu et al. reported that luminal A, luminal B, HER2+, and TNBC patients showed signifi-
cantly lower arginine levels (7.34 ± 5.64, 9.98 ± 6.84, 8.27 ± 6.78, and 4.18 ± 3.34 µmol/L,
respectively) compared to healthy patients [97,189,190]. Additionally, a diet rich in soy
protein, fish, walnuts, and peanuts can supplement intracellular arginine synthesis [191],
on which melanoma and ovarian cancer cells have been found to be dependent on in
cases of arginosuccinate synthase deficiency [25,125]. Therefore, arginine starvation, which
functions by inducing asparagine synthetase and depleting aspartate, has been used to
treat arginosuccinate synthase-1-deficient breast cancer in vitro [124] and in vivo [101].
Ji et al. utilized PEGylated arginine deiminase 20,000 molecular weight (ADI-PEG20) to
degrade arginine in ovarian cancer cells and xenograft models [125], while Izzo et al. found
the therapy unsuccessful in a limited clinical study of liver cancer [192]. One in vitro
study of ADI-PEG20-resistant melanoma reported that the oncogene c-MYC binds to the
arginosuccinate synthase-1 promoter to upregulate arginosuccinate lysate and PI3K/AKT
sensitivity [26]. mTOR signaling, glutamine, glutamine dehydrogenase, and sensitivity to
glutamine inhibitors are also enhanced [26].

2.11. Serine and Glycine

Serine is a nonessential amino acid synthesized when 3-phospho-glycerate is oxidized
to 3-phospho-hydroxypyruvate by phosphoglycerate dehydrogenase (PHGDH), transami-
nated to phosphoserine by phosphoserine aminotransferase (PSAT), and finally dephos-
phorylated via phosphoserine phosphatase (PSPH) [128,193,194]. Glycine, which is trans-
formed from serine de novo in mitochondria via serine hydroxymethyltransferase (SHMT)
and vitamin B6 (Figure 1) [128,136], is a nonessential amino acid and has been shown to
work alongside serine in protein synthesis in 60 tumor-derived cell lines (NCI60) [195].
Dolfi et al. also highlighted that glycine exchange rates significantly correlate with cell
proliferation and DNA synthesis in these 60 cancer-cell lines [195]. Both serine and glycine
are highly regarded for their roles in protein, phospholipid, and glutathione synthesis via
the serine synthesis pathway (SSP) [99,196,197]. As key players in one-carbon metabolism
(i.e., folate and methionine metabolism), both serine and glycine collaborate in nucleotide
synthesis, e.g., purine, in healthy patients [198,199]. However, while serine is accepted
to contribute to cancer-cell purine synthesis, glycine has been demonstrated to work in
a cancer-type-dependent manner [128]. For example, Labuschagne et al. demonstrated
that in vitro breast and colon cancer cells prefer serine over glycine, and when starved of
serine, cells show reduced nucleotide synthesis; furthermore, cells fed 0.4 to 2 mM serine
exhibit increased proliferation [99]. The study found that cancer cells react to glycine in
a dose-dependent manner: while low concentrations (0.4 mM) moderately increase cell
proliferation, higher concentrations (1 to 2 mM) inhibit cancer cell proliferation [99]. An-
other study found that brain metastatic breast cancer cells upregulate de novo serine when
deprived of the exogenous alternative, and PHGDH suppression reduces brain metastases
of NCSLC and TNBC in vivo [134]. A recent in vitro genetic analysis found that when fed
serine-free media, serine-starvation-resistant colon cancer cells increased serine, glycine,
and threonine metabolic pathways [135]. In the short term, this serine inhibition decreases
Yes-associated protein activation, which controls tumorigenesis, but does the opposite over
a prolonged period, as SSP promotes the catabolism of PHGDH, PSAT1, and PSPH [135].
Furthermore, Meiser et al. found that serine–glycine catabolism is induced by stress and
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contributes to formate levels in in vivo colorectal cancer [136]. Interestingly, a study of
NSCLC found that most de novo serine and glycine are allocated for glutathione synthe-
sis [128], an important antioxidant in ROS homeostasis. Maddocks et al. proposed that
serine and glycine inhibition must be used in parallel in vivo to induce a significant decrease
in tumor size in colon cancer [102]. The study concluded that serine starvation in vitro
induces cell metabolic stress and causes cells to rely on p53-mediated glycolysis [102].

As previously noted, SSP and serine–glycine metabolism enzymes are also implicated
in cancer [193,197]. One breast cancer study found that PHGDH and PSPH are highly
expressed in in vitro TNBC, and these, along with SHMT-1, are also elevated in stromal
TNBC tumors [193]. Tumor PSPH positivity, stromal PSPH positivity, and stromal SHMT-1
negativity are linked to decreased survival in TNBC and HER-2 breast cancers [193]. Addi-
tionally, glycine decarboxylase, which transforms glycine into the one-carbon metabolism
intermediate methylenetetrahydrofolate, was elevated in MDA-MD-453 and MDA-MB-435
breast cancer cell lines [193].

2.12. Cysteine

Cysteine is the rate-limiting substrate in glutathione production in cells [200]. Cancer
cells can become dependent on cysteine in order to uphold the functions of glutathione,
e.g., ROS depletion, protein modification, and cell signaling [14,98]. Cysteine is regulated
via the cystine–cysteine cycle, in which extracellular cystine is captured, imported via
the cystine/glutamate antiporter system, and transformed into cysteine by thioredoxin
reductase-1 (Figure 1) [14,201]. Because cancer cells produce an abundance of ROS as a
product of aerobic glycolysis, increased levels of glutathione, and thus increased cysteine
levels, are vital in maintaining ROS homeostasis to promote tumorigenesis [10,14]. While
a recent study of in vitro and in vivo ovarian cancer found cysteine depletion to be a suc-
cessful therapy [202], many patients do not respond to this method of induced oxidative
stress [14,98]. Consequently, studies have investigated targeting the cystine/glutamate
antiporter system [29,98]. Tarragó-Celada et al. evaluated liver-metastatic colon cancer
in vitro and discovered that metastatic cell proliferation significantly decreases following
cystine starvation, and cells are particularly sensitive to cystine/glutamate antiporter-
targeted therapies [29]. Alothaim et al. demonstrated that inhibitors of histone deacetylase-
6, a moderator of tumor-cell proliferation and metastasis, sensitize cystine/glutamate
antiporter-targeted therapy-resistant TNBC cells to cysteine deprivations by signaling
necroptosis and ferroptosis cell death [98]. Alternatively, one in vitro study utilized au-
tophagy inhibition to diminish cysteine homeostasis via the deletion of the SLC7A11 cystine
transporter gene in pancreatic cancer cells [127]. However, more clinically translatable
studies are needed to develop the complete mechanistic understanding of cysteine in cancer
and cysteine-targeted therapies.

3. Metabolites and Cancer–Nerve Crosstalk
3.1. Background

In the last two decades, an emergence of evidence has supported the role of the
nervous system as a key player in cancer progression, increasing patient pain and poor
outcomes [70,203]. PNI occurs when cancer cells invade adjacent nerves to aid in metastasis
to secondary sites, with a high prevalence in cancer such as colorectal, head and neck, liver,
pancreatic, and prostate [75,204]. TI, however, is the event in which neurites from adja-
cent nerves infiltrate nearby solid tumors, e.g., breast, cervical, head and neck, lung, and
pancreatic cancers [62,66,69,205]. This crosstalk complicates cancer treatment, as there is
limited success in preoperative diagnoses of nerve involvement in cancer, making surgical
interventions more difficult to successfully complete [77], and few studies have explored
radiation and chemotherapy as a method of blocking cancer and/or neurite invasion [78,79].
Though more studies have investigated the mechanism of PNI, it is evident that both forms
of cancer–nerve crosstalk are progressed via chemokines, neurotrophins, and neurotrans-
mitters [45]. However, the role of tumor metabolic dysregulation in cancer–nerve crosstalk
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remains underappreciated. Only within the last 5 years has literature immerged presenting
metabolic players, e.g., vitamin C uptake gene SLC2A3 [206], asparagine synthetase [28],
neuron-secreted serine [207], and lactate importer MCT1 [205], as contributors to PNI
and/or TI. Alternatively, there is abundant literature examining the neuroregulatory prop-
erties of these metabolites. Combining this knowledge with the present understanding
of tumor metabolism may aid in developing a more comprehensive understanding of
cancer–nerve crosstalk mechanisms and in educating future potential therapies.

3.2. Known Contributors of Cancer–Nerve Crosstalk
3.2.1. Vitamin C and SLC2A3

Vitamin C has an important role in synthesizing neurotransmitters. Recently, some
studies showed the effect of vitamin C on peripheral nerve regeneration after traumatic
injury [208,209]. In addition, Gao et al. reported that the solute carrier family 2 mem-
ber 3 (SLC2A3) expression was remarkably associated with PNI in colorectal cancer
(Figure 2A) [205]. SLC2A3 gene upregulation, which encodes glucose transporter 3, showed
decreased disease-free survival in colorectal cancer patients [210]. Liu et al. showed that
low SLC2A3 expression in acute myeloid leukemia significantly suppressed the effect of
vitamin C, resulting in diminished overall survival [211]. Further investigation on tumor
SLC2A3 expression should be conducted to develop a more comprehensive understanding
of SLC2A3 and vitamin C in cancer–nerve crosstalk.

1 
 

 

Figure 2. Metabolism-related cancer–nerve crosstalk. (A) Vitamin C transporter SLC2A3 is shown
via immunohistochemistry to be upregulated in colorectal cancer patients with perineural invasion
(PNI) [206]. mRNA (B) and immunohistochemistry (C) analyses found that asparagine synthetase
(ASNS) is upregulated in PNI-positive oral squamous-cell carcinoma patients. Dotted circles represent
nerve trunks, and stars indicate the tumor region [28]. (D) Lactate importer MCT1 is colocalized with
Sox2- and KLF-positive (cell-proliferation markers) in cases of PNI in pancreatic adenocarcinoma [205].
Scale is 50 µm. Figures are modified from Gao et al., Fu et al., and Sandforth et al., respectively. Figure
rights for reuse are available via the Creative Commons Attribution (CC BY) License.
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3.2.2. Asparagine and Asparagine Synthetase

While the present literature does not highlight the importance of asparagine in the
nervous system or neural disorders, the mutation of asparagine synthetase-promoting
genes is linked to severe impairments. Asparagine synthetase deficiency is a congenital
disorder that causes cognitive impairment, microcephaly, seizures, and progressive cerebral
atrophy [212]. In a clinical and in vitro study of oral squamous-cell carcinoma, Fu et al.
presented a correlation between high asparagine synthetase levels and histological and
mRNA evidence of PNI (Figure 2B,C) [28]. Moreover, the study found that L-asparagine
was the only amino acid with high sensitivity and specificity in diagnosing PNI, and
patients with high asparagine synthetase exhibited PNI-positive tumors [28]. More studies
are necessary to examine the roles of asparagine and asparagine synthetase in PNI and TI
for the potential of developing future therapeutics targeting these pathways.

3.2.3. Serine and Glycine

Serine not only promotes cancer-cell proliferation, but also aids in maintaining the
health of neurites. Nusser et al. observed that NGF treatment activates protein kinase A,
leading to the phosphorylation of RhoA, a G protein that regulates cell-cycle progression,
gene expression, and cell motility [213], on serine [214]. This cascade inhibits the RhoA-Rho-
associated kinase binding necessary to restrict neurite outgrowth [214]. Moreover, a more
recent in vitro analysis found that NGF-induced serine phosphorylation promotes signal
transducer and activator of transcription 3 (STAT3), which is then responsible for induced
neurite outgrowth [215]. While limited studies exist, Tapia et al. discovered glycine (50 µM)
activates chloride-ion membrane currents of neurons in vitro, and glycine receptor activation
correlates to depolarizing excitatory potentials [216]. Interestingly, glycine was found to affect
neurite outgrowth in a dose-dependent manner, but neurons become desensitized after long
exposure, e.g., higher concentrations are needed to induce outgrowth [216].

Banh et al. published the first documented study implicating the role of serine in
tumor innervation [207]. In the study, in vitro pancreatic ductal adenocarcinoma cells
upregulated serine synthesis following serine/glycine starvation, which promoted cell
growth in a dose-dependent manner [207]. Additionally, in this nutrient-poor environment,
axons release amino acids, e.g., serine, to support the health of exogenous serine-dependent
cancer cells, and in vivo, pancreatic tumors in mice starved of serine/glycine showed
increased innervation by sympathetic and sensory nerves [207]. The group found that
blocking innervation via NGF receptor TRK inhibitor, LOXO-101, slowed tumor growth in
serine/glycine-deprived mice, suggesting the promise of utilizing serine/glycine starvation
with innervation inhibitors as cancer therapies [207]. However, more studies should be
conducted to prove its therapeutic efficacy in other tumor types and the clinical setting.

3.3. Proposed Targets for Cancer–Nerve Crosstalk Research
3.3.1. Lactate

In the exercise sciences, it is understood that muscles release lactate (and its protonated
form lactic acid) into the bloodstream following physical activity [217]. Studies have shown
that while some lactate is processed by the liver and utilized for oxidative respiration,
lactate can also cross the blood–brain barrier and mediate cognitive function [218]. Once
imported into neurons by MCT1 in vivo, lactate signals silent information regulator-1
(SIRT1) to induce upregulation of transcriptional factor PGCa and secreted factor FNDC5
to ultimately facilitate BDNF expression [218]. A recent meta-analysis of interval training,
characterized by increased lactate output, concluded that physical activity induces BDNF
release in humans [219]. While no distinct link between lactate and cancer–nerve crosstalk
has been confirmed, BDNF is a known contributor of both PNI [220] and TI [88]; therefore,
continued examinations of the role of lactate in this relationship are warranted.

Alternatively, Sandforth et al. found a distinct correlation between MCT1, which
imports lactate, and PNI in pancreatic cancer (Figure 2D) [209]. In humans, MCT1 has been
found in oligodendrocytes, astrocytes, microglia, endothelial cells, and neurons, and the
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wellbeing of glia–neuron metabolic crosstalk relies on MCT functionality [221]. Addition-
ally, Lin et al. showed that LDH-A release from damaged neurons facilitates angiogenesis
in the central nervous system via interaction with adjacent vimentin-expressing endothelial
cells [222]. Further studies should be conducted to fully comprehend the value of lactate,
its transporters, and LDH in cancer–nerve crosstalk and investigate the efficacy of lactate
silencing/inhibition as a treatment option.

3.3.2. Vitamin A

Retinoic acid and NGF have been reported to show synergistic effects on neuroprotec-
tion related to neuronal survival and growth [223]. Combination treatment of NGF and
all-trans retinoic acid (ATRA) on 8705-C thyroid papillary tumor cells inhibited their prolif-
eration and invasion [224]. Arrieta et al. investigated the effect of ATRA on chemotherapy-
induced peripheral neuropathy in the male Wistar rat model [225] by administering
20 mg/kg per os (PO) of ATRA for 15 days. ATRA was found to suppress chemotherapy-
induced neuropathy by increasing NGF and retinoic-acid-receptor beta (RAR-β) expression.
Additionally, the group conducted a randomized, double-blinded, controlled study in
which 95 NSCLC patients were administered 20 mg/m2 of ATRA per day for 1 week
before undergoing chemotherapy over two courses (21 days per course) [225]. ATRA-
treated patients presented with a reduction in axonal degeneration [225]. Higashi et al.
investigated the effect of retinoic acid on neuroblastoma cell lines and found that treat-
ment with 1 to 10 µM of 13-cis-retinoic acid for 3 to 12 days upregulated cell expression
of chromodomain-helicase DNA-binding protein 5 (CHD5), a tumor-suppressing gene,
and induced neuronal differentiation in SH-SY5Y, NGP, and SK-N-DZ cells [226]. NGF
also increased CHD5 expression and neuronal differentiation in SY5Y cells. The study
concluded that 13-cis-retinoic acid administration for a year after surgery has a preventive
effect on recurrence in neuroblastoma patients [227]. As NGF is one of the key players in
cancer–nerve crosstalk, the link between retinoic acid and NFG in cancer of the nervous
system calls for future studies to determine the full extent of this relationship [81–83].

3.3.3. Vitamin B

Neurodegenerative disease is caused by alterations in the central nervous system
and has been credited to protein misfolding induced by disordered metabolite control of
proteins [228]. Protein misfolding is the cause of many types of neurodegenerative diseases,
including Alzheimer’s disease (AD) [229]. Studies have presented NGF as a beneficial
treatment of AD due its role in promoting neurite outgrowth [230]. Therefore, Ina and
Kamei probed the mechanism of vitamin B12-mediated neurite outgrowth and found that
low concentrations of NGF (10 ng/mL), vitamin B12 (6 to 100 µM) promoted neurite out-
growth and the differentiation of PC12 pheochromocytoma cells (a type of neuroendocrine
tumor) into neuron-like cells [231]. Upon further investigation, the study found that by
using protein kinase inhibitors, vitamin B12 stimulates PC12 differentiation in a manner
that involves the same signal-transduction pathways activated by NGF. The results suggest
that vitamin B12 can stimulate neural differentiation, and that like NGF, it stimulates the
mitogen-activated protein kinase/extracellular receptor kinase (MAPK/ERK)-signaling
pathway [231]. In addition, Okada et al. showed that MeCbl (≥100 nM) promotes neurite
outgrowth and neuronal survival [232]. These outcomes were mediated by the methylation
cycle and demonstrated that MeCbl increases ERK1/2 and AKT activities through this
process [232]. Neurotrophins, such as NGF and BDNF, also activate ERK1/2 and AKT [233].
This activation of ERK1/2 promotes neurite outgrowth and AKT initiates branching of dor-
sal root ganglia neurites [234]. In a follow-up study, Okada et al. revisited this mechanism
and determined that MeCbl increases mTOR activity, a protein kinase that regulates neurite
outgrowth and nerve regeneration, through the activation of AKT, which in turn promotes
neurite outgrowth in cerebellar granule neurons [235,236].

In addition to vitamin B12, other isoforms of vitamin B are linked to promoting periph-
eral nerve regeneration, including B1 and B6 [208]. These neurotrophic B vitamins support
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the development of new cell structures and are key players in nerve regeneration while also
maintaining neuronal viability. Vitamin B1 acts as a site-directed antioxidant and facilitates
the use of carbohydrates for energy production, vitamin B6 balances nerve metabolism, and
vitamin B12 promotes neural cell survival and myelin sheath maintenance [236]. It has been
determined that a combination of vitamin B complex is necessary to optimize regeneration
in cases of peripheral neuropathy [237]. Deficiencies in these vitamins have been associated
with nerve dysfunction and damage and can lead to peripheral neuropathy [238]. Altun
and Kurutaş suggested that tissue vitamin B complex levels vary during crush-induced
peripheral nerve injury, and supplementation during these acute time periods may accel-
erate nerve regeneration [239]. These neuroregulatory properties of vitamin B, especially
vitamin B12 (in an NGF-like manner) [231] show the potential value of targeting vitamin B
in PNI and TI therapies. However, further research may provide a clearer mechanism by
which vitamin B contributes to this crosstalk.

3.3.4. Vitamin D

The active form of vitamin D, 1,25(OH)2D3, is a hormone that has a similar influence
as that of neurosteroids [240]. Vitamin D has an important role in neuronal differentiation
and maturation via neurotrophin regulation [241]. NGF, glial-cell-derived neurotrophic
factor (GDNF), and neurotrophin 3 levels are increased by vitamin D, to facilitate neuronal
growth [242]. Male Sprague Dawley rats injected with vitamin D3 for 8 days showed
significant increased GDNF in the cortex with significantly decreased infarction amount
after middle cerebral-artery ligation [120]. Rats from mothers with vitamin D3 deficiency
showed significant changes in brain structure and low NGF and GDNF levels at birth [243].
Even though there has been no apparent link between vitamin D and cancer–nerve crosstalk,
the value of vitamin D in controlling neurotrophin expression [241] highlights its potential
in mediating PNI and/or TI and requires further investigation.

3.3.5. Vitamin E and K

Vitamin E has an important role in maintaining normal neurological function and
structure [244]. In in vivo sciatic-nerve-crush injury models, vitamin E acetate showed a
neuroprotective effect with steady improvement in motor-nerve-conduction velocity and
thermal hyperalgesia [245]. In addition, Pace et al. showed that vitamin E significantly
reduced the incidence of chemotherapy-induced peripheral neuropathy and its severity in
patients following cisplatin chemotherapy, without affecting the antitumorigenic activity
of cisplatin [246]. These neuroprotective properties of vitamin E suggest its potential in-
volvement in cancer–nerve crosstalk, and therefore warrant additional studies. Vitamin
K1 and K2 treatment of PC12D cells (100 µg/mL) in the presence of 2.5 to 50 ng/mL NGF
significantly increased neurite outgrowth [247]. One study found that vitamin K-induced
neurite outgrowth is potentially mediated via protein kinase A and MAPK cascades [248].
In the nervous system, vitamin K-dependent growth-arrest-specific protein 6 activates re-
ceptors of TAM, which includes tyrosine-protein kinase receptor 3, receptor tyrosine kinase,
and MER proto-oncogene tyrosine kinase [249]. Similar defects in TAM are associated
with cancer, indicating the potential for vitamin K to facilitate cancer initiation [249]. More
studies are needed to fully understand the mechanisms and contributions of vitamin K in
the nervous system, cancer progression, and cancer–nerve crosstalk.

4. Conclusions

In this review, we have summarized the current knowledge of significant yet rela-
tively underappreciated metabolites in cancer development and metastasis (i.e., lactate,
vitamins A, B, C, D, E and K, asparagine, arginine, serine, glycine, and cysteine). In addi-
tion, we discussed metabolites and their regulators currently established as contributors
to cancer–nerve crosstalk (i.e., SLC2A3, asparagine synthetase, and serine) and suggested
metabolites that may be implicated in cancer–nerve crosstalk based on their tumorigenic
and neuroregulatory properties (i.e., lactate and vitamins A, B, D, E, and K). However,
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there remains limited information to make a clear connection between these nutrients
and cancer–nerve crosstalk. It is our hope that this review serves researchers as a guide
to developing future studies to determine the roles of metabolites in cancer and nerve
crosstalk in order to expand the collective understanding of cancer mechanisms that may
be beneficial in developing potential therapies for cancer, PNI, and TI.
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