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Copy number of 8g24.3 drives HSF1 ®
expression and patient outcome in cancer:
an individual patient data meta-analysis
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Abstract

Background: The heat-shock transcription factor 1 (HSF1) has been linked to cell proliferation and survival in
cancer and has been proposed as a biomarker for poor prognosis. Here, we assessed the role of HSF1 expression
in relation to copy number alteration (CNA) and cancer prognosis.

Methods: Using 10,287 cancer genomes from The Cancer Genome Atlas and Cbioportal databases, we assessed
the association of HSF1 expression with CNA and cancer prognosis. CNA of 8g24.3 was categorized as diploid
(reference), deletion (fewer copies), gain (+ 1 copy) and amplification (2 + 2 copies). Multivariate logistic regression
modeling was used to assess 5-year survival among those with a first cancer diagnosis and complete follow-up
data (N =9568), categorized per anatomical location and histology, assessing interaction with tumor stage, and
expressed as odds ratios and 95% confidence intervals.

Results: We found that only 54.1% of all tumors have a normal predicted 8g24.3 copy number and that 8q24.3
located genes including HSF1 are mainly overexpressed due to increased copies number of 8g24.3 in different
cancers. The tumor of patients having respectively gain (+ 1 copy) and amplification (2 + 2 copies) of 8g24.3 display
a global increase of 5-year mortality (odds ratio =1.98, 95% Cl 1.22-3.21) and (OR =2.19, 1.13-4.26) after full
adjustment. For separate cancer types, tumor patients with 8g24.3 deletion showed a marked increase of 5-year
mortality in uterine (OR =4.84, [2.75-8.51]), colorectal (OR=4.12, [1.15-14.82]), and ovarian (OR =1.83, [1.39-241])
cancers; and decreased mortality in kidney cancer (OR =041, [0.21-0.82]). Gain of 8g24.3 resulted in significant
mortality changes in 5-year mortality for cancer of the uterus (OR=3.67, [2.03-6.66]), lung (OR = 1.76, [1.24-2.51]),
colorectal (OR=1.75, [1.32-2.31]) cancers; and amplification for uterine (OR=4.58, [1.43-14.65]), prostate (OR =441
[341-5.71]), head and neck (OR =268, [2.17-3.30]), and stomach (OR = 0.56, [0.36-0.87]) cancers.

Conclusions: Here, we show that CNAs of 8g24.3 genes, including HSF1, are tightly linked to 8g24.3 copy number
in tumor patients and can affect patient outcome. Our results indicate that the integration of 8g24.3 CNA detection
may be a useful predictor for cancer prognosis.

Keywords: Copy number alteration, 8g24.3, HSF1, Individual patient data meta-analysis, Patient outcome

* Correspondence: mickael.durand-dubief@ki.se

3Department of Biosciences and Nutrition, Karolinska Institutet, Neo building,
Blickagdngen 16, S-141 52 Huddinge, Sweden

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-019-0241-3&domain=pdf
http://orcid.org/0000-0002-8556-4459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mickael.durand-dubief@ki.se

Brusselaers et al. Human Genomics (2019) 13:54

Background

Early diagnosis and accurate prognostic markers of can-
cer help practitioners in treatment decisions to
ultimately optimize patient outcomes. Despite the ad-
vancements in diagnostic methods and the use of
molecular diagnostics, for example, next-generation se-
quencing panels run in routine in an increasing number
of laboratories for cancer patients [1, 2], clinical prog-
nostics are often limited to histology, positivity of lymph
nodes, and presence of metastases [3, 4]. In the light of
personalized medicine, there is a need to explore feasible
and reliable new biomarkers to improve prognostic in-
formation [5].

Recent studies have raised interest in the heat-
shock transcription factor 1 (HSF1), master regulator
of cell stress response for adaptation and survival [6].
When activated, HSF1 facilitates the transcription of
genes, such as the heat shock proteins (HSPs) chaper-
ones required to relieve the proteotoxic stress that
can cause cell death [6]. Overexpression of HSF1 has
been linked with cancer proliferation, and malignancy,
suggesting that HSF1 could serve as a prognostic
marker [7, 8]. Numerous clinical and basic research
studies showed that high expression level of HSF1 is
associated with poor outcomes in many cancer types
[7-12], pointing out the potential of HSF1 as a prog-
nostic biomarker [12, 13].

Nevertheless, the origin and the interpretation of
HSF1 overexpression in cancer are poorly understood
since HSF1 appears to drive a distinct regulation in can-
cer cells [8]. So far, consensus suggests that HSF1 over-
expression helps to relieve the stress of protein
unbalances [10, 14], likely caused by aneuploidy or an
imbalanced karyotype [15-17]. Intriguingly, overexpres-
sion of HSF1 cancer signature gene clusters at the end
of chromosome 8q [18]. However, mechanisms that
drive HSF1 overexpression in different cancers remain
largely unknown but may hold a key in understanding
tumor development and the relationship to survival.

Clinical studies have now emerged with transcrip-
tomic, genomic, and clinical patient data offering unpre-
cedented opportunities to understand the molecular
events associated with cancer, and its related outcome
[19]. Gene expression seems to exhibit different expres-
sion profiles in various human cancer types [20]. In
addition, acquired copy number alteration (CNA) in
cancer cells is common [21] and can play a significant
role in cancer development by altering gene dosage and
affecting the expression of multiple genes, and regula-
tory regions [22-24].

The aim of this study using an individual patient data
meta-analysis approach is to assess the overall role of
HSF1 expression in relation to CNA in cancer
prognosis.
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Methods

Search strategy and selection criteria

This study used data from cBioportal portal (http://
www.cbioportal.org) [18, 19], which includes peer-
reviewed studies, METABRIC data (Molecular
Taxonomy of Breast Cancer International Consor-
tium), and unpublished data from The Cancer Gen-
ome Atlas (TCGA) [25, 26]. A descriptive summary
of all data extracted from cBioportal on the acquired
CNA and RNA expression per cancer type is pre-
sented in Additional file 1: Table S1.

For the survival analyses, only individuals without a
prior history of cancer, and with identical CNA for
the genes present in the 8q24.3 region (i.e., patient
with heterogeneous CNA were excluded), as well the
5-year survival information, were included.

Data extraction

Data extraction and genomic analyses were conducted
by MDD and data management, and individual pa-
tient data meta-analyses by NB. Demographics, clin-
ical information, and cancer genomics datasets were
extracted for all individuals. Normalized mRNA ex-
pression data (Z-scores 2.0) were computed for the
relative expression of an individual gene and tumor
to the gene of the expression distribution compared
to the reference population diploid for the corre-
sponding gene (by default for mRNA), or normal
samples (when specified)(http://www.cbioportal.org/
faq.jsp). For CNA categories, data were obtained from
Cbioportal [25, 26] and derived from Affymetrix
SNP6 data (copy number ratio from tumor samples
minus ratio from the matched normal tissues) com-
puted with the GISTIC 2.0 algorithm [27].

The estimated copy number alteration of the 8q24.3
region was categorized according to the predicted copy
number: deep deletion (-2) (0.1%), shallow deletion (-
1) (4.7%), diploid or normal (0) (54%), gain (+ 1) (32%),
and amplification (> + 2) (8.6%).

The main outcome in the individual patient data
meta-analysis was the 5-year mortality (dead or alive)
since the exact number of days of survival was only
reported for 22% of the cohort and the secondary
outcome was the risk of being alive, and healthy or
not (to assess the combined effect of recurrence and
mortality). The following data were collected and cat-
egorized: sex (categorized as male or female), age at
time of diagnosis (categorized as <40, 40-49, 50-59,
60-69, and > 70 years), anatomical location and histo-
logical subtype, HSF1-expression (categorized in quar-
tiles), tumor stage (categorized as stage 0-1 or in
situ, stage II, stage III, stage IV), calendar period (cat-
egorized as 1978-2005, 2006—2008, 2009-2010, 2011-
2013), study (42 different studies), history of any
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Number of| Number of genes
Gene Ontology pathway genes in obsel & P’Z:',':; 'c‘::r
category | (enrichment)
Ribonucleoprotein complex biogenesis GO:0022613 340 19 (x5.99) 4.31E-06
ribosome biogenesis GO:0042254 244 17 (x6.71) 1.18E-06
Biological process ribosomal large subunit biogenesis GO:0042273 50 8 (x14.29) 9.19E-05
ncRNA metabolic process GO:0034660 405 19 (x5.99) 7.49E-05
RNA processing GO:0006396 649 25 (x4.57) 2.03E-05
14 genes @ NCRNA processing GO:0034470 292 17 (x6.71) 1.82E-05
Ribonucleoprotein complex GO:1990904 577 23 (x4.95) 4.74E-05
Intracellular ribonucleoprotein complex GO:0030529 576 23 (x4.95) 4.59E-05
Cellular component Preribosome GO:0030684 52 11 (x10.4) 9.23E-09
Preribosome, large subunit precursor GO:0030687 17 8 (x14.3) 5.54E-09
Nucleolus GO:0005730 623 26 (x4.39) 1.76E-06
Molecular function | AINA binding GO:0003723 1120 33 (x3.46) 4.31E-05
17 anticorrelated genes NA NA
Notes : (a) Spearman correlation mean cutoff 2 0.3 ; P <0.05

(b) Spearman correlation mean cutoff <-0.3 ;P <0.05

(€) P-value of Fisher's one-tailed test with multiple testing correction algorithms (g:GOSt treshold) correction; Input gene list =11999.
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Fig. 1 Expression of HSF1 in cancer is globally linked to the expression of genes involved in ribosomal biogenesis and not HSPs family genes. a
Heatmap correlation of HSP gene family expression with HSF1 in different cancer types. X indicates no available data. b Hierarchical clustering for
all gene expression with HSF1 in different cancer types. ¢ Gene ontology analysis for the most positively and negatively expressed genes with
HSF1 (Spearman’s correlation value cut-off 2 0.3 and cut-off < —0.3, p <0.01). The number of genes in the category represents the genes
identified in the Gene Ontology pathway. The number of genes observed shows the number of a gene correlated with HSF1 presents in the
corresponding Gene Ontology category and its relative over-representation enrichment

cancer (yes or no), and 5-year outcome (alive with or
without recurrence, or dead). Missing values were
crosschecked with other relevant variables. Length of
follow-up and length of survival were missing for the
majority of individuals, and therefore not used for
survival modeling (only to complete missing data on
the outcomes). Data on body mass index, smoking,
alcohol-use, cancer-specific risk factors, and treatment
were missing in the majority of the individuals or too
heterogeneous among cancer types and were therefore
not included.

Data analysis

To avoid bias due to heterogeneous gene expression
of HSF1 across various cancers (Additional file 1: Ap-
pendix 2), we analyzed co-expression using the Spear-
man correlation test generated from cBioportal. JMP®
v13 (SAS Institute) and Tableau desktop® 10.5 (Tab-
leau Software) were used for data processing and
visualization. Gene ontology analysis was performed
using Panther v12.0 [28].

Individual patient data meta-analyses were con-
ducted in Stata/MP14.2 (StataCorp) using two
methods to assess 5-year mortality and healthy sur-
vival overall and for each anatomical location and
histological subtype [29]. Differences in descriptive
statistics were compared by means of chi-square
tests, with p values <0.05 representing statistically
significant differences. All results were expressed as
odds ratios (OR) and 95% confidence intervals (CI)
using diploidy as reference. If the odds ratio of 1
(indicating no difference) is included in the 95%
confidence interval, the results do not indicate statis-
tically significant differences between both groups.
The first approach was based on random effect mod-
eling using the ipdmetan package in Stata, which is
a two-stage individual patient data meta-analysis
pooling and visualizing the effect of binary outcomes
by means of forest plots [30]. I statistics were used
to quantify statistical heterogeneity, with values <
50%, 50-75%, and >75% defined as low, moderate,
and high heterogeneity, respectively [31]. Results
were weighted by anatomical location, histological
subtype, and study. Since this approach did not
allow adjustment for confounding or interaction,

multivariate logistic regression analyses were also
conducted (one-step approach) [29]. For each ana-
tomical location, three models were presented to
compare four risk groups: diploid (reference), shal-
low/deep deletion (combined), gain, and amplifica-
tion. Model 1 was unadjusted, model 2 was adjusted
for sex, age, and calendar period and clustering by
study, and model 3 was additionally adjusted for
HSF1 expression and interaction with tumor stage.
Interaction with tumor stage and HSF1 was assessed
by likelihood-ratio testing. For histological subtypes,
8q24.3 CNA gain and amplification were combined
into one category to increase power, and only
models 1 and 2 were presented. Subgroup analyses
distinguishing between gain and amplification were
only conducted for the 15 histological subtypes with
the highest number of individuals with gain or amp-
lification. Analyses were only presented if at least 10
individuals were included in each risk group and are
based on complete-case analyses.

Results

HSF1 expression profile across different cancers type

In total, 11,069 patients were included with information
on CNA and RNA expression. In none of the 45 histo-
pathological cancer types, HSF1 expression displayed ob-
vious linkage with HSPs genes (Fig. 1a). When looking
at the whole expression level, hierarchical clustering pre-
sented a set of genes correlated with the HSF1 expres-
sion, indicating a consistent transcriptional program
involving HSF1 in different cancer types (Fig. 1b). After
multiple testing corrections, we found 114 genes associ-
ated with HSF1 expression (p <0.05), and only 17 anti-
correlated genes (p <0.05) for all cancer types. Gene
ontology analysis revealed that most of the correlated
genes were involved in pathways such as ribosomal bio-
genesis (p =1.18.107°), and non-coding RNA metabolic
processes (p =7.49.107°)(Fig. 1c). No significant global
enrichment was found for negatively correlated expres-
sion. These results support previous works indicating
that HSF1 overexpression in cancer is not associated
with HSPs expression in cancer, but rather linked to
protein translation, and RNA processing processes to
support cell proliferation [8, 18, 32].
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amplification, + 2, or more copies

Fig. 2 Copy number alteration of HSF1 drives HSF1 expression in cancers. a Distribution of HSF1 copy number alteration per different cancer
types. Numbers in brackets indicate the number of patient samples per cancer type. b Pie charts of HSF1 CNA as a function of the HSF1 quartile
expression per histopathological cancer types. Color annotations are described in the legend. Each pie chart displays the number of tumors
analyzed and the median value of HSF1 for all samples in the category. Tumors having both CNA data and HSF1 were included. Abbreviations: N,
number of samples; deep deletion, — 2 copies; shallow deletion, — 1 copy, diploid is the reference with normal HSF1 copy number; gain, + 1 copy;

HSF1 CNA drives HSF1 expression

We first look at the HSF1 locus only, analysis of HSF1
CNA distribution showed that deep deletion and shallow
deletion represented a small proportion of tumor, while
gain or amplification of HSF1 is often overrepresented
(Fig. 2a) in particular for the following histological
subtypes: testicular seminoma (82%), uveal melanoma
(76%), esophageal squamous cell carcinoma (74%), and
neuroendocrine prostate cancer (68%). When assessing
the link between CNA and expression for HSF1, we
categorized patient samples having both CNA and
expression data. In most of the histological subtype,
higher copy number of HSF1 tends to overexpress
HSF1, whereas the groups having low expression of
HSF1 have fewer «copies of HSF1 (Fig. 2b,
Additional file 1: Appendix 3 displays the complete
analysis).

8g24.3 CNA drives mainly the expression of HSF1 and
8g24.3 genes

Most genes co-expressed with HSF1 were localized on
chromosome 8 (59 of 114 genes, p = 4.10’10)(Fig. 3a) of
which, nearly half of them co-localized with HSF1 in the
8q24.3 region (6.46 megabases)(48 genes, p =
4.107'%)(Fig. 3b) confirming previous reports [18]. Since
the HSF1 gene is located in 8q24.3, we assessed if
HSF1 overexpression in cancer could be linked to
genome organization rather than a global change in
transcriptional programming. The relationship of
HSF1 CNA with the average copy number alteration
of genes localized in 8q24.3 showed a strong correl-
ation (R* =0.984, n =11,069) indicating that copy
number of genes located in 8q24.3 evolves together
with HSF1 (Fig. 3c). Overview of the average CNA of
8q24.3 genes suggests that only half of the tumor
samples (54.1%) displayed a diploid pattern, whereas
less than 5% showed deletions and nearly 40% of the
cancer patient has 8q24.3 gain, or amplification
(Fig. 3d, left panel). The associated heat map shows
that most samples had a null variance for the average
copy number alteration of 8q24.3 genes pointing that,
independently of their copy number; 8q24.3 region re-
mains homogenous in tumors (Fig. 3d, right panel).
In fact, 93% of the 11,069 patient samples showed a
null variance of CNA for 8q24.3 genes (Fig. 3e). The
variance analysis of CNA for all genes located in

8q24.3 showed that only 7% of the patient samples
displayed heterogeneity from this region (Fig. 3f).
These results are in agreement with a previous pan-
cancer study that did not identify significant CNA
peaks between HSF1 and the end of 8q24.3 [33].
Therefore, copy number alterations of 8q24.3 genes,
including HSF1, are directly linked to 8q24.3 copy
number in tumors.

To assess the influence of homogeneous 8q24.3
copy on HSF1 expression, we excluded patient sam-
ples carrying heterogeneous copy number of genes lo-
calized in 8q24.3. Not surprisingly, when patient
samples were sub-grouped by the strength of HSF1
expression, patient samples overexpressing HSF1 dis-
play a higher amount of 8q24.3 copy in their genome
(Fig. 3g). Similarly, other genes located within the
8q24.3 region, including cancer-related genes (Add-
itional file 1: Appendix 4), displayed similar trends in
different tissues (Additional file 1: Appendixes 5 and
6). Yet, linear regressions analysis of 8q24.3 CNA
compared to the expression of genes located in
8q24.3 confirmed that HSF1 expression is one of the
most correlated genes with 8q24.3 copy number alter-
ation in different tissues (Additional file 1: Appendix
6). These results indicate that 8q24.3 CNA, not only
HSF1, triggers a complex transcriptional change to fa-
cilitate cancer development and proliferation.

Clinical characteristics

Next, we evaluated how 8q24.3 copy number in
tumor could affect the clinical prognosis, taking into
account confounding and interaction by tumor stage
(as assessed by means of the likelihood ratio test).
Therefore, we excluded all patients having heteroge-
neous CNAs within 8q24.3 (n =780) and those with a
prior malignancy or incomplete 5-year follow-up in-
formation (Additional file 1: Appendix 1). In total,
9568 unique individuals were included, of which 54%
were female, 51% were 60years or older, and 28%
were diagnosed between 2011 and 2013, as described
in Additional file 1: Table S2. In total, 24 different
anatomical locations and 45 different histological sub-
types were reported with breast (13%), and brain tu-
mors (11%) being most common. Tumors were in
situ or stage 0—1 in 18%, stage 2 in 11%, stage 3 in
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Fig. 3 Copy number alteration 8g24.3 is the main inductor for Hsf1 expression. a Distribution per chromosome of the positively and negatively
correlated expressed genes with HSF1 expression (see Fig. 1¢) in all histopathological cancer types. p values were calculated using the
hypergeometric test. b Venn diagram showing the proportion of the co-expressed genes with HSF1 presents in the 8q24.3 cytoband. p values
were calculated with the hypergeometric test. Abbreviations: n, number of genes. ¢ Linear correlation between HSF1 CNA and the average CNA
of 8924.3 genes for all samples. Abbreviations: N, number of individual; RMSE, root-mean-square error; R’ = determination coefficient. d
Categorical treemap of the average CNA of genes present in 8g24.3 for all tumor samples (left panel). Numbers displayed for the treemap
represent the average copy number alteration for all genes located in 8g24.3. “0" is the number of extra copy relative to the diploid reference.
The left panel displays for each category presented in the right panel the associated variance of the average CNA. Intermediate colors not
presented in the color legend represent the average copy number alteration for all genes with non-null variance. e Categorical treemap of the
CNA variance for all genes located in 8q24.3 for all individuals. 92.9% of the tumor patients display a homogenous 8q24.3 region independently
of the copy number alteration. f Categorical treemap summarizing categories of tumor displaying different 8g24.3 CNA. Heterogeneous CNA of
genes within the 8g24.3 region have been categorized as heterogeneous. g Treemap of all tumor samples grouped per quintile of HSF1
expression strength displaying the proportion of different 8g24.3 CNA category. Tumor samples having heterogeneous 8g24.3 copy number are
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15% and stage 4 in 7%, and information was missing 7%)(p <0.0001), and the proportion of diploidy de-
in 50%. creased by age (65% in <40 years, 50% in >70 years; p <
In total, 5174 (54%) of cancers were diploid for 8q24.3  0.0001). Diploidy was most common in thyroid cancers
(Additional file 1: Table S2), 12 (0.1%) had deep dele- (97%), thymus cancer (89%), and hematological cancer
tion, 454 (5%) shallow deletion, and respectively 3082  (83%). The 8q24.3 gain was especially common in tes-
(32%) and 9568 (9%) showed gain or amplification. ticular cancer (75%) and head-and-neck cancer (62%).
Women presented more frequently with diploidy and Diploidy was more common in stage 0—1 or in situ tu-
amplification (55% and 11%) than men (53% and mors (59%) compared to stage 4 (42%)(p < 0.0001).
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Cancer type Total (re‘,‘g‘e"r'ge) geln Oges Rato w;/gm
Bladder, urothelial carcinoma 62/128 25149 26160 —_—— 075 (0.31-1.84) 254
Brain, glioblastoma multforme 458/577  361/453 46157 —_—— 114 (0.55-2.35) 337
Brain, lower grade glioma 98/513 761390 857 —_—— 067 (0.30-1.48) 302
Breast, invasive carcinoma 35436 161202 8170 —_—— 150 (0.61-3.67) 256
Breast, invasive ductal carcinoma 195/862 82/374 33/160 * 0.93 (0.59-1.46) 5.28
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Colon, adenocarcinoma 75/382 22/138 44/204 * 1.36 (0.73-2.52) 4.01
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Hematological, acute myeloid leukemia 126/191 108/167 17123 + 1.55 (0.58-4.14) 224
Hematologicalllymphoid, diffuse large B-cell lymphoma 8148 6/31 2112 ———— 0.83 (0.14-4.85) 0.86
Kidney, chromophobe 7166 5139 116 % 0.19 (0.01-3.70) 032
Kidney, clear cell carcinoma 151/528 112/397 29172 * 1.60 (0.93-2.77) 452
Kidney, renal papillary cell carcinoma 391288 27/251 10728 e ——— 4.84(1.96-11.9) 253
Liver, hepatocellular carcinoma 1211370 371115 45/155 —— 0.90 (0.52-1.57) 448
Lung, adenocarcinoma 1705516 52180  88/249 —_—— 157 (0.99-2.48) 523
Lung, squamous cell carcinoma 184/501 421135 116/282 * 1.79(1.11-2.89) 5.06
Mesothelioma 70087 49062 13116 —_—— 1,08 (0.26-4.48) 125
Ovaries, serous cystadenocarcinoma 281/579 35/82 104/205 * 1.35(0.81-2.27) 476
Pancreas, adenocarcinoma 98/174 52/102 29/44 —.— 1.88 (0.88-4.01) 3.18
Pheochromocytoma 4135 3/104 nz ! . + 860(050-1484) 035
Prostate, adenocarcinoma 61492 31339 11102 - 1,06 (0.11-10.3) 053
Rectum, adenocarcinoma 29/163 4152 2087 ——+— 3.45(1.09-10.9) 176
Skin, melanoma 119/367 471146 49/160 + 0.91(0.56-1.50) 492
Soft tissue sarcoma 841248 34/119 25/59 —_— 1.91(0.94-3.89) 345
Stomach, adenocarcinoma 1007287 3803 471149 —_—— 0,65 (0.38-1.12) 457
‘Stomach, adenocarcinoma diffuse type 28172 12131 12135 — 0.78 (0.28-2.15) 215
‘Stomach, tubular adenocarcinoma 3179 1016 12141 _+— ! 0.25 (0.07-0.84) 161
Testicles, non-seminomatous germ cell tumor 1148 014 1727 : - 1.59 (0.06-41.7) 027
Thymus, thymoma 6/123 5110 110 —- 2.40(0.25-23.1) 054
Thyroid, folicular cancer 1104 1196 3 - * 122(039-37987) 024
Thyroid, papillary cancer 14395 13/387 115 % 130(1.23-1374) 050
Uterus, carcinosarcoma 32156 si11 17126 —_—— 200(039-10.16) 099
Uterus, endometrial carcinoma 5/23 211 116 - 1.00 (0.07-14.64) 0.39
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Uterus, serous carcinoma and papillary serous carcinoma 321113 5125 12138 —_—— 1.30 (0.37-4.58) 153
Overall (I-squared = 34.7%) |° 1.31(1.10-1.56) 100
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)

Fig. 4 Forest plots assessing the association between 8g24.3 gain (a) and amplification (b) and 5-year mortality per histopathological subtype of
cancer using diploidy as a reference. The numbers in the columns refer to the total number of individuals presenting with each cancer type, and
the number who died within 5 years, for the total group of individuals, those with diploidy (reference) and those with gain (a) or amplification
(b). Individuals with deletion are not included in these analyses, since diploidy is considered the reference. Weights are derived from a random-

effects model. Abbreviations: OR, odds ratio; Cl, confidence interval

Overall prognosis

At 5years after diagnosis, 28% has died, 47% were
alive without recurrence, and 11% had a recurrence
but were still alive. Recurrence information was miss-
ing in 19% of individuals who survived. Of those who
died, 49% presented with 8q24.3 diploidy, of those
who were alive, and disease-free, 59% (p <0.00001,
Additional file 1: Table S2).

The two-step meta-analyses, weighted by study
using 8q24.3 diploidy as reference, showed a 32%
(OR=1.32, [95% CI 1.03-1.69]), 36% (1.36, [1.15-
1.60]), and 23% (1.23, [1.01-1.51]) increased 5-year
mortality for shallow/deep deletion, gain, and ampli-
fication, respectively (all low heterogeneity), with
similar results when weighted by anatomical location
(moderate heterogeneity) or histological subtype (low
heterogeneity) (Additional file 1: Table S3). The for-
est plots for gain and amplification by histological
subtype are presented in Fig. 4. The odds of disease-
free survival were 20-25% lower in those without
8q24.3 diploidy in all models (Additional file 1:
Table S3).

The one-step meta-analysis approach was used to
assess if the effects of 8q24.3 ploidy on mortality
remained after adjustment for confounding and inter-
action using diploidy as a reference. The unadjusted
5-year mortality (model 1, n =9568) showed similar
results as above, with respectively 42%, 31%, and 20%
increased risks for shallow/deep deletion, gain, and
amplification (Table 1). After adjustments for age,
sex, calendar period, and clustering by study (model
2, n =7593), the results remained stable yet lost sig-
nificance. Since interaction between 8q24.3 ploidy and
tumor stage was present (p =0.0016) but not between
ploidy and HSF1 expression (p =0.0976) (data not
shown), model 3 (n =4110) is additionally adjusted
for interaction with tumor stage and confounding by
HSF1-expression, resulting in doubled risks among
those with gain (OR=1.98, [1.22-3.21]) or amplifica-
tion (OR =2.19, [1.13-4.26])(Table 1).

Prognosis per anatomical location

The two-step meta-analysis approach (Fig. 4) shows
that, compared to diploidy as reference, gain was as-
sociated with a significantly increased mortality for 7
subtypes, including papillary thyroid cancer (OR =
13.00), uveal melanoma (OR=9.38), and renal

papillary cell carcinoma (OR =4.84); and a decreased
mortality for tubular gastric adenocarcinoma (OR =
0.25). For amplification, mortality was significantly
higher than diploidy for squamous cell head and neck
carcinoma (OR =2.23). For each anatomical location,
all three models were presented if feasible (Table 1).
For deletion, model 2 showed a significantly increased
5-year mortality for cancer of the uterus (OR =4.84),
colorectal (OR=4.12), lung (OR=1.91), and ovaries
(OR=1.83), and decreased risk of kidney cancer
(OR =0.41). After full adjustment (model 3), only the
results for ovarian (OR=1.52) and kidney cancer
(OR =0.52) were confirmed. For gain, model 2 found
significant associations for cancer of the uterus (OR =
3.67), lung (OR =1.76), colorectal (OR =1.75), ovaries
(OR=1.53), and stomach (OR =0.60), which were
confirmed in model 3 for cancer of the uterus (OR =
1.99), lung (1.77), and ovaries (OR =7.24). Amplifica-
tion was associated with cancer of the uterus (OR =
4.58), prostate (OR =4.41), head and neck (OR = 2.68),
and stomach (OR =0.56) in model 2, and ovaries in
model 3 (OR =9.73).

Prognosis per histological subtype

The 5-year mortality (model 2) was significantly
higher for 8q24.3 deletion in serous cystadenocarci-
noma of the ovaries (OR=1.83) and squamous cell
carcinoma of the lungs (OR =1.79); and for gain/amp-
lification in endometrial carcinoma (OR =3.63), rectal
adenocarcinoma (OR =2.43), prostate adenocarcinoma
(OR =1.92), squamous cell carcinoma of the lungs
(OR =1.92), serous cystadenocarcinoma (OR =1.44),
chromophobe renal cell carcinoma (OR=1.38), and
tubular adenocarcinoma of the stomach (OR-=
0.21)(Additional file 1: Tables S4-S5).

Discussion

Here, we showed that expression of HSF1 as well as
other genes localized in 8q24.3 are tightly linked to
8q24.3 copy number. This large individual patient
data meta-analysis approach showed evidence for
higher 5-year mortality among individuals with 8q24.3
deletions, gain, and amplification. These overall re-
sults remained rather stable after adjustment for con-
founders and interaction by tumor stage, which
supports a causal relationship that cannot be ex-
plained by tumor stage, HSF1 expression, or by the
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assessed confounders. Up to 9-fold increased risks
were found for specific cancer types. This supports a
potential causal relationship between 8q24.3 CNA and
prognosis at least in some histological subtypes—al-
though protective effects were found in a limited
number of cancer types (kidney and stomach).

Therefore, this suggests that 8q24.3 CNA and its
complex transcriptional change imply either respon-
sive or resistance in treatment, which needs further
clinical and molecular investigations. For example in
the different histological subtypes, it would be inter-
esting to investigate with other known genomic bio-
markers important in cancer as well exploring the
link with complex karyotypes to explore assess the
link with the stress of protein unbalances in tumors.
It is also worthwhile to understand why both a dele-
tion and a gain of 8q24.3 can lead to a poor progno-
sis in some tissues such as lung, colorectal, and
ovaries. Possibly copy number change in 8q24.3 could
alter transcriptional programming or could be associ-
ated with other genomic change including transloca-
tions and inversions that alters the resistance to
treatment or favorize tumor growth.

The main strength of this meta-analysis is that the
results are based on a large population with available
data on an individual level. Both applied meta-
analyses approaches obtained similar results, with low
to moderate statistical heterogeneity for all analyses.
Yet, information was incomplete or missing for im-
portant prognostic variables such as tumor stage
(missing in 50%) and confounders such as body mass
index, smoking, and alcohol intake. Therefore, the
most adjusted models were conducted on 42% of the
cohort (complete case analysis), resulting in reduced
power, which in turn contributed to the loss of statis-
tical significance compared to the unadjusted analyses.
Residual confounding cannot be ruled out. Conse-
quently, the results have to be interpreted with cau-
tion, in particular, for specific histological subtypes
with the low number of patients included in the
analyses.

Our findings may have substantial implications for
the understanding and interpretation of biomarkers
in cancer research and clinical investigations. Indeed,
no less than 5000 publications were found for 16
popular genes including HSF1 in 8q24.3, of which
800 publications related to cancer field (Add-
itional file 1: Appendix 4), mainly because those
genes were found overexpressed in cancer (Add-
itional file 1: Appendix 5).

Conclusions
Integration of 8q24.3 CNA detection may have sub-
stantial implications for interpreting the molecular
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pathogenesis of cancer. In a general aspect, our work
indicates that histological diagnoses using biomarkers
can be tightly linked to large CNA associated with
complex gene expression pattern, pointing out the
importance of understanding molecular pathogenesis
to optimize cancer treatment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540246-019-0241-3.
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