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Iron is a trace element, essential to support life due to its inherent ability to exchange 
electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic 
pathways is essential to both pathogenic microorganisms and their hosts. During evolu-
tion, the shared requirement of micro- and macro-organisms for this important nutrient 
has shaped the pathogen–host relationship. Infectious pancreatic necrosis virus (IPNv) 
affects salmonids constituting a sanitary problem for this industry as it has an important 
impact on post-smolt survival. While immune modulation induced by IPNv infection has 
been widely characterized on Salmo salar, viral impact on iron host metabolism has 
not yet been elucidated. In the present work, we evaluate short-term effect of IPNv 
on several infected tissues from Salmo salar. We observed that IPNv displayed high 
tropism to headkidney, which directly correlates with a rise in oxidative stress and anti-
viral responses. Transcriptional profiling on headkidney showed a massive modulation 
of gene expression, from which biological pathways involved with iron metabolism were 
remarkable. Our findings suggest that IPNv infection increase oxidative stress on head-
kidney as a consequence of iron overload induced by a massive upregulation of genes 
involved in iron metabolism.

Keywords: iron overload, electronic paramagnetic resonance spectroscopy, nutritional immunity, oxidative stress, 
infectious pancreaticc necrosis virus, rna-seq

inTrODUcTiOn

Iron is a functional constituent of proteins involved in a wide range of biological process including 
oxygen transport, energy production, and DNA synthesis, becoming essential for nearly all organ-
isms (1, 2). Despite being so important, it has toxic properties when presented in its free forms (3). 
Iron exists in two oxidation states, Fe2+ and Fe3+, which electron transfer may elicit the production 

Abbreviations: IPNv, infectious pancreaticc necrosis virus; tf, transferrin; lf, lactoferrin; EPR, electronic paramagnetic 
resonance; RBC, red blood cells; DMPO, 5,5-dimethyl-1-pyrroline N-oxide; DMSO, dimethylsulfoxide; TEMPOL, 4-hydroxy-
2,2,6,6-tetramethylpiperidine-1-oxyl; hpc, hour post challenge; EMC, extracellular matrix components.
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of reactive oxygen species (ROS) responsible for tissue damage 
(2, 4). To avoid these negative effects, iron is available coupled 
with proteins such as transferrin (tf), lactoferrin (lf), ferritin, and 
hemoproteins as haemo- or haptoglobin (2, 5, 6). Iron absorp-
tion is either performed from the diet (as heme or free-iron) 
or efficiently recycled from senescent circulating erythrocytes. 
Consequently, iron absorption must be highly regulated to avoid 
toxic overloads (3). In vertebrates, absorption is mainly regulated 
by Hepcidin, a liver-derived hormone, which binds to the only 
know efflux transporter ferroportin (3, 7). Once bound, hepcidin 
induces transporter internalization and degradation, inhibiting 
release of iron to the bloodstream (8, 9). Hepcidin gene transcrip-
tion is regulated by iron levels, a rise on the iron level in plasma 
induce upregulation hepcidin mRNAs (10), in contrast, when 
iron level are restricted expression of hepcidin is inhibited and, 
therefore, iron is released from tissues (11).

Several pathogens including virus, bacteria, fungi, and proto-
zoa use different host-cell elements as niches for survival, where 
access to fundamental nutrients such as iron is an important 
driving force in to live. Evidence has recognized a crucial role 
in iron regulation involving host defense mechanisms, where 
iron deficit confers relative resistance to infection (7, 12–15). 
This lead to the concept of nutritional immunity, as a whole of 
constitutive and inducible mechanisms that regulate the iron 
availability to pathogens and thus limit their capacity to infect the 
host (1, 16). The iron sequestration seems to have a dual function 
of denying iron to invading microorganisms and protecting the 
host tissues from oxidative stress owing to Fenton chemistry. Not 
surprisingly, many microorganisms have evolved mechanisms 
that evade or subvert iron-targeted nutritional immunity (17). 
For example, many viruses disrupt iron homeostasis inducing 
increase on iron intracellular loads and leading the viral disease 
develops (18). Indeed, viral replication increases the cell metabo-
lism by using the cellular means to synthesize their own proteins  
(19, 20). Viral protein synthesis and genome replication require 
iron, becoming this mineral fundamental for efficient propaga-
tion on the host (21). In aquatic environments, the iron fertiliza-
tion leads to blooms of phytoplankton (22), and consequently, 
as the blooms rates increase, viral replication should be boosted 
(23). Thus, viruses might be benefited from the increase of 
biological productivity that complements iron-induced cellular 
growth. However, as algal growth increase so does the replica-
tion of viruses infecting the organisms sharing the same habitat. 
Then, nutritional immunity should be a strong adaptive response 
protecting species living in high iron environments as observed 
in seas (18).

Infectious pancreatic necrosis virus (IPNv) is a bisegmented 
double-stranded RNA virus belonging to the family of Birnaviridae 
(24, 25). IPNv has an important impact on salmonids post-smolt 
survival, being one of the top three causes of losses in the salmon 
industry (26). Several studies have been performed aiming to 
understand the molecular mechanism of immune responses  
triggered by IPNv on salmonids. From them, it has been elucidated 
that Salmo salar infected with IPNv modulate immune respon-
ses, cytokine activity, stress response, metabolism, and hormone 
activity (26). Transcriptomic profiling comparing susceptible 
and resistant families have shown that a moderate but constant 

immune response including upregulation of genes involved with 
M2 macrophages system while downregulation of genes related 
to tissue differentiation and protein degradation confers protec-
tion to viral infection (27, 28). However, the mechanism by which 
IPNv outbreaks generates high mortalities on salmonids has not 
been completely elucidated. Through cellular culture, it has been 
shown that iron depletion, by hepcidin overexpression, reduces 
the infective capacity of IPNv (29). Furthermore, Atlantic salmon 
infected by Piscine orthoreovirus stimulate heme synthesis and 
iron metabolism (30), suggesting iron modulation induced by 
viral infection in fish. Up to date, no studies on fish have shown 
the impact of IPNv infection on iron metabolism and its further 
interactions with the cellular function. In the present work, we 
evaluated short-term effect of IPNv on several infected tissues 
from Salmo salar. We observed that IPNv displayed high tropism 
to headkidney (HK), which was correlated with an increase in 
iron load and oxidative stress responses in HK. Further, transcrip-
tional profiling on headkidney showed a massive modulation 
of iron metabolism-related genes such as a strong modulation 
of hepcidin, ferritin, or ferroportin suggesting a key role of the 
nutritional immunity during a viral infection in fish.

MaTerials anD MeThODs

Virus isolation and Quantification
Chilean IPNv was isolated from Salmo salar headkidney by tissue 
homogenization on PBS and posterior centrifugation. The infec-
tious supernatant was used to infect CHSE-214 cell line for viral 
isolation, plaque cloning, and subsequent passage by sequential 
transfer in cell culture. Monolayer cultures of CHSE-214 cells 
were maintained in Eagle’s minimum essential medium (EMEM) 
containing 10% fetal bovine serum. For virus amplification, 
drained monolayer cultures were infected at a level of infection 
(multiplicity of infection) of 0.01 plaque forming units (PFU) 
per cell. Viral adsorption was allowed during 1  h at 15°C to 
posteriorly add EMEM 5% fetal bovine serum. Viral detection 
was examined by qPCR with primers (WB117) and Universal 
ProbeLibrary probes (UPL) specific for the VP2 segment of the 
IPN virus.

animals and culture conditions
The experiments were performed at the ThermoFish Lab, Bio-
technology Center, University of Concepcion, Concepcion, Chile. 
All experimental procedures were carried out in compliance 
with “International Guiding Principles for Biomedical Research 
Involving Animals” established by the European Union Council 
(2010/63/EU). Salmo salar at eggs stage were obtained from 
AquaGen S.A., Melipeuco, Chile, and were maintained on tanks 
with recirculating freshwater, flow rate of 5 m3 h−1, and water was 
U.V.-sterilized. A 24 h dark cycle photoperiod was used until the 
embryos hatched and cultivation parameters were controlled, 
water temperature (7 ± 0.7°C), dissolved oxygen (9 mg L−1), total 
ammonia concentrations (0.05  mg  L−1), nitrite concentrations 
(0.01 mg L−1), and pH (8.0 ± 0.5) during this period. Once the 
yolk sac was completely absorbed, the photoperiod was changed 
to 12:12-h light-dark photoperiod (L:D), water temperature was 
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gradually increased to research 12°C (±0.8°C) and they were fed 
twice a day with a commercial diet (BioMar).

experimental Design and sampling
Parr Atlantic salmon, Salmo salar (121 ± 11.3 mg) were used for 
the viral challenge (n = 30). A total of twenty fish were selected 
for control and challenge group. Fish were starved for 12 h and 
then challenged by immersion method (31) in 5  L water with 
a dose of 10  ×  105  PFU/mL−1 of clarified supernatant from 
IPNv-infected CHSE-214 cell monolayers (n = 15). In parallel, 
fish in a control tank was similarly treated by adding 100  mL 
of virus-free cell culture supernatant to the water (n = 15). The 
fish were kept in the bath for 2 h and then was separated into 
two different tanks with the same original conditions. Fish were 
maintained for 24 h in these tanks. The order of sampling was 
decided randomly. For sampling 100 mg mL−1 MS-222®, Tricaína 
methanesulphonate (Sigma-Aldrich, MO, USA) was used to 
partially sedate fish decreasing stress during sampling. Blood 
was extracted from vena caudalis and kept on ice in heparinized 
tubes until centrifuged to separate the plasma, which was then 
snap-frozen in liquid nitrogen. Headkidney and liver samples of 
each individual group were dissected and immediately frozen in 
cryotubes in liquid nitrogen. All samples were stored at −80°C 
before RNA extraction.

indirect elisa of hepcidin, cathelicidin-1
Plasma blood was used to determine the presence of Hepcidin 
and Cathelicidin-1 (32), through indirect ELISA (n = 10 fish 
by treatment, control, and virus challenge). Briefly, each plasma 
sample was worked in duplicate and diluted in carbonate 
buffer (60 mM NaHCO3, pH 9.6) to 35 ng/µL (100 µL). Briefly, 
each plasma sample was diluted in carbonate buffer (60  mM 
NaHCO3, pH 9.6), planted (in duplicated for each marker) at 
35 ng/µL (100 µL) in a Maxisorp plate (Nunc, Thermo Fisher 
Scientific, Waltham, United States), and incubated overnight 
at 4°C. After, each well was blocked with 1% bovine serum 
albumin (BSA) for 2  h at 37°C. Then, plates were incubated 
for 90  min at 37°C with the primary antibody anti-synthetic 
epitope (diluted en BSA) of Hepcidin (diluted 1:500) and 
Cathelicidin-1 (diluted 1:500). Later, the second antibody-HRP 
(Thermo Fisher Scientific, Waltham, MA, United States) was 
incubated for 60 min at 37°C in 1:7,000 dilution. Finally, 100 µL 
per well of chromagen substrate 3,3′,5,5′-tetramethylbenzidine 
single solution (Invitrogen, CA, United States) was added 
and incubated for 30 min at room temperature. Reaction was 
stopped with 50  µL of 1  N sulfuric acid and read at 450  nm 
on a VERSAmax microplate reader. All assays were performed 
in triplicate. In the case of indirect ELISA, a calibration curve 
was used to evaluate the antibody efficiency. Briefly, 100 mL of 
each peptide with concentrations of up to 31.25 ng mL−1 were 
incubated overnight at 4°C and then washed with PBST 0.05% 
in a Mindray Microplate washer.

erythrocytes separation
Erythrocytes fraction was obtained from blood using a 
discontinuous gradient of Lymphocyte Separation Medium 
(LSM, Corning, NY, USA) according to the protocol described 

by Peterson and colleagues (33). Briefly, blood was diluted 1:4 
in 0.01 M PBS, pH7.4 (Gibco, Thermo Fisher Scientific, MA, 
USA) and loaded on a gradient containing 4 mL of LMS with 
a density of 1.075 g mL−1 overlaid with 3 mL of LMS with a 
density of 1.060 g mL−1. The gradient contained 0.19 M NaCl 
(pH 7.3). After centrifugation at 400  g per 30  min, the leu-
kocyte fraction was collected from the 1.075  g  mL−1 density 
layer and the 1.075–1.060  g  mL−1 interface of LSM gradient. 
The leukocyte fraction was washed by mixing with PBS and 
frozen at −80°C. Erythrocytes obtained were posteriorly used 
for RNA extraction (n = 10 fish by treatment, control, and virus 
challenge).

rna extraction and cDna synthesis
Total RNA was extracted from headkidney, liver, and red blood 
cells (RBC) with TRI Reagent® (0.5  mL; Sigma-Aldrich, MO, 
USA) according to manufacturer’s instructions (n =  10 fish by 
treatment, control, and virus challenge). The concentration 
of RNA was assessed with the NanoDrop® ND-1000 UV-Vis 
Spectrophotometer (Thermo Scientific, MA, USA), a 260/280 nm 
absorbance ratio of 1.8–2.0 indicates a pure RNA sample. RNA 
integrity was analyzed by denaturing gel electrophoresis. cDNA 
was synthesized from total RNA (200 ng/µL) using the RevertAid 
H Minus First Strand cDNA Synthesis Kit (Fermentas, Waltham, 
MA, USA) according to the manufacturer’s indications. RNA was 
stored a −80°C.

high-Throughput Transcriptome 
sequencing: library construction  
and illumina sequencing
Nine individuals from each group were selected for total 
RNA extraction, using a part of headkidney (20  mg), RNA 
extraction was individually isolated using Ribo-Pure™ Kit 
(Ambion®, USA) according to the manufacturer’s instructions. 
The RNA obtained was subsequently treated with DNase I 
(Fermentas, MA, USA) to remove genomic DNA according to 
the manufacturer’s protocol. RNA integrity number (RIN) was 
evaluated through the 2200 TapeStation (Agilent Technologies, 
CA, USA) using the R6K screen tape and reagents (Agilent 
Technologies, CA, USA). Samples with RIN values  ≥  8 and 
260/280 ratio  ≥  1.8 were used for library construction. Total 
RNA from three individuals by each condition were pooled 
and quantified with Qubit® 2.0 Fluorometer (Invitrogen, CA, 
USA) (n =  3 pools by treatment). Samples were prepared for 
Illumina sequencing using KAPA Stranded mRNA-Seq Kit 
(KapaBiosystems, MA, USA) according to the manufacturer’s 
instruction. Libraries were analyzed on the 2200 TapeStation 
(Agilent technologies, CA, USA) using D1000 screen tape and 
reagents (Agilent Technologies, CA, USA) and quantified by 
qPCR using the Library Quantification Kit Illumina/Universal 
(KapaBiosystems, MA, USA) according to the manufacturer’s 
instructions before pooling for sequencing on MiSeq (Illumina, 
Inc., CA, USA) platform using a run of 2 × 250 paired-end reads 
at the Laboratory of Biotechnology and Aquatic Genomics, 
Interdisciplinary Center for Aquaculture Research (INCAR), 
Universidad de Concepción, Chile.
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rna-seq Data analysis
Raw reads for both conditions were mapped to the genomic 
annotation for Salmo salar (release 100, ICSASG_version 2, 
NCBI) using Tophat2 software (34). Per condition mapped reads 
were assembled into transcripts using as reference the transcrip-
tome annotation of Salmo salar through the implementation of 
Cufflinks2 package (35). In order to consolidate transcriptome 
assembly, we used the package Cuffmerge and posterior tran-
script quantification was performed with Cuffquant obtaining 
per condition expression normalized in FPKM values (Fragments 
Per Kilobase Million). Differential expression analyses were 
performed using Cuffdiff package, statistical analyses were done 
using the statistical model incorporated on this package (35) 
considering a gene differentially expressed with FDR < 0.05.

relative and absolute mrna 
Quantification
qPCR reactions were performed using the Maxima SYBR Green 
qPCR Master Mix (2X) (Fermentas). Each qPCR mixture con-
tained the SYBR Green Master Mix, 2  µL cDNA, 500  nmol/L 
each primer and RNase free water to a final volume of 10  µL. 
Amplification was performed in triplicate on 96-well plates with 
the following thermal cycling conditions: initial activation for 
10  min at 95°C, followed by 40 cycles of 15  s at 95°C, 30  s at 
60°C, and 30 s at 72°C. The list of primers used in this study is 
included in Table S1 in Supplementary Material. An absolute 
quantification approach was used that involved calculating the 
number of gene copies in unknown “test” samples from com-
parison with a standard curve prepared using a serial dilution of 
linearized plasmids with known concentrations (36). The PCR 
product for each gene was extracted from agarose gel using the 
Nucleospin Gel and PCR Clean-Up Kit (MACHEREY-NAGEL, 
Dueren, Germany). The PCR amplicons were cloned the using 
pGEM-T Easy Vector and JM109 High-Efficiency Competent 
Cells (Promega, Madison, WI, USA). The Nucleospin Plasmid 
Quick Pure Kit (MACHEREY-NAGEL) was used to purify the 
plasmid DNA containing the PCR insert. Then, the plasmid was 
linearized using the HindIII restriction enzyme to prevent ampli-
fication efficiency problems that can arise from using supercoiled 
plasmids, and the amount of dsDNA was quantified using the 
QuantiT PicoGreen dsDNA Assay Kit (Invitrogen, CA, USA). 
Copy number calculations, using the following equation, were 
performed based on the concentration of each plasmid, obtained 
by absorbance at 260 nm, and the values observed from the five-
fold serial dilution produced by qPCR:

 
Ncopy

amount= 6.022 10
length 1 10 650

23

9

× ×
× × ×

.
 

The use of these standard curves controlled for amplification 
efficiency differences between assays and allow the calculation 
of “absolute” number of mRNA transcripts, thereby facilitating 
gene comparisons (n = 10 fish by treatment).

electronic Paramagnetic resonance  
(ePr) analysis (ePr spin Trapping)
In order to identify free radical species generated in oxidative 
processes, promoted by the infection, EPR analysis was carried 

out with an EPR EMX micro 6/1 Bruker spectrometer (n = 10 
fish by treatment). EPR equipment works in the band X equipped 
with a Bruker Super High QE resonator cavity and 5,5-dimethyl-
1-pyrroline N-oxide (DMPO) as a spin trap. For this analysis, 
20  mg of liver and 20  mg kidney tissue from fish no- and 
infected with IPN virus were macerated in a solution of DMPO 
100 mmol L−1 in dimethylsulfoxide (DMSO). The measurements 
were made in a flat EPR cell at laboratory temperature (19°C). The 
instrumental conditions were: field center, 3514 G; sweep width, 
200 G; microwave power, 20 dB; frequency, 100 kHz; constant 
time 0.01 ms; weep time, 30 s; amplitude modulation, 1.00 G; and 
receiver gain, 30 dB. 50 spectral accumulations were made for 
each of the samples. The calibration curve was carried out using 
4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL). The  
identification of the radical species produced was based on the 
comparison of the coupling constants aN and aH measured in 
the adducts formed with those reported in the literature for the 
DMPO/⋅OH adduct in DMSO. The simulation and adjustment of 
the EPR spectra were performed using Bruker’s Xenon software.

statistical analyses
The viral-challenge analysis was carried out by pairwise compari-
sons between groups using the Bonferroni method for adjusting 
the level of significance. Predictions of fish numbers from final 
models were calculated and plotted to evaluate interactions. 
All statistical analyses were performed with Stata version 14 
(StataCorp LP). For gene expression, absolute mRNA quantifi-
cation by qPCR, the data were tested for normality and homo-
geneity of variances using the Shapiro–Wilk’s and Levene’s test 
respectively. When necessary, expression was log10 transformed 
to achieve normality and all variances were homogeneous. Data 
obtained was analyzed using Statistica 6.0 software (Statsoft Inc., 
Tulsa, OK, USA) and two-way ANOVA followed by Tukey HSD 
post hoc test for multiple comparisons. Results were considered 
significant when p < 0.05. Graphs were plotted with GraphPad 
PRISM v6.0 (GraphPad Software, Inc., CA, USA).

resUlTs

high Tropism of iPnv to headkidney 
Dramatically increase the Oxidative  
stress in This Tissue
In order to quantify viral load on different tissues infected with 
IPNv, tissue samples from headkidney, liver, and RBC were ana-
lyzed. Total RNA was isolated at 24 h after immersion challenge 
(hpc) with IPNv or virus-free cell culture supernatant (control). 
IPNv detection was performed by qRT-PCR using a Universal 
ProbeLibrary (UPL) specific for the VP2 segment of IPNv. After 
infection, the estimation of the viral copy number showed higher 
loads on headkidney (6 × 102), followed by liver (1 × 101), and 
almost undetectable in RBC. This result indicates that IPNv is 
capable of infected more than 60-folds greater the headkidney 
than the liver (Figure 1) after only 24 post-infection.

The iron load was quantified indirectly through the detection 
of oxidative stress reactive species. We inspect the levels of free 
radicals generated by oxidative processes through EPR analysis 
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FigUre 1 | Viral load expressed in terms of VP2 segment abundance. Measured by qPCR from headkidney, liver, and red blood cells. The experimental groups  
are: virus free (control, black bar), and infectious pancreaticc necrosis virus challenged (gray bar). Different letters denote significant differences between groups. 
Values are represented as the mean VP2 copy number ± SD. Different letters denote significant differences between experimental groups (two-way ANOVA; 
p < 0.05; p < 0.0001).

FigUre 2 | Electronic paramagnetic resonance spectra of DMPO spin adducts in fish tissues challenged with infectious pancreaticc necrosis virus (IPNv) virus 
(53.3 mM, pH 3.6 with 1 N NaOH). (a) liver control, (B) liver IPNv challenged, (c) head kidney control, (D) head kidney IPNv challenged. Upper and lower traces are 
experimental and simulated spectra, respectively. DMPO/⋅OH spin adducts are denoted (*).
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using DMPO as a spin trap. The ROS, such as ⋅OH, are triggered 
by free iron which is quickly converted into oxidative species 
through the Fenton reaction. We measured radical ⋅OH species 
in liver and headkidney, in both IPNv-infected and non-infected 

fish (Figure 2; Table 1). To quantify the production of radical ⋅OH, 
we used interpolation of a TEMPOL calibration curve (see meth-
ods). As shown in Table 1, both non-infected liver and headkid-
ney display similar amount of free radicals (1.43 × 10−6 mol L−1 
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TaBle 1 | Quantification of the DMPO/⋅OH adduct by electronic paramagnetic 
resonance (EPR) spectroscopy.

samples concentration 
(mol l−1)

sD comparison p-Value

Liver control (LC) 1.43 × 10−6 1.46 × 10−8 LC vs LI ***

Liver infectious 
pancreaticc necrosis 
virus (IPNv) (LI)

1.70 × 10−6 4.50 × 10−8 LI vs HI ***

Headkidney  
control (HC)

1.57 × 10−6 1.84 × 10−8 HC vs HI ***

Headkidney IPNv (HI) 2.02 × 10−6 7.94 × 10−8 LC vs HC ns

EPR measurement of hydroxyl radicals (⋅OH) in headkindey and liver tissue. Data 
compares (mean ± SEM) amount of ⋅OH in arbitrary units. Headkindey and Liver were 
extracted and stabilized with spin trap DMPO. Asterisks present statistical analysis: one 
way ANOVA with Tukey’s post-doc test (see table), **p < 0.01, ***p < 0.001.

6

Tarifeño-Saldivia et al. Iron Overload and Virus Infection in Fish

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1296

in liver and 1.57  ×  10−6  mol  L−1 in headkidney). On infected 
tissue, the production of radical ⋅OH is dramatically increased 
in headkidney (2.02 × 10−6 mol L−1) compared to liver displaying 
a slight increase (1.70 × 10−6 mol L−1). The present results show 
a high availability of iron in headkidney as a consequence of the 
⋅OH levels observed in the tissue. The correlation between the 
RNA abundance of the viral segment VP2 (Figure 1) and iron 
load (Figure  2; Table  1) suggest that IPNv, in a short period, 
preferentially infects headkidney.

headkidney Display antimicrobial 
responses soon after infection
In order to explore the activation of antiviral responses in dif-
ferent organs, we evaluated by qRT-PCR the expression of Mx, 
INF-y, and cathelicidin on infected and non-infected samples 
from headkidney, liver, and RBC (Figure 3). We observed that 
after 24 h post-challenge (hpc), the expression of Mx, IFN-y, and 
cathelicidin is highly upregulated in headkidney (Figures 3A–C). 
In contrast, the expression of these genes in liver and RBC 
remain unchanged with the exception of cathelicidin in RBC were 
upregulation was observed (Figure 3C). To confirm that mRNA 
upregulation of cathelicidin reflects a peripheral increase in this 
antimicrobial peptide, we measured the level of this peptide 
in blood plasma by ELISA assay. This analysis confirmed the 
significant increase of cathelicidin in blood plasma (Figure 3D). 
Then, our results indicate activation of antimicrobial responses in 
headkidney, which is triggered by the high infective rate of IPNv 
to this organ leading to the development of a fast host response.

global gene expression changes  
induced by iPnv in headkidney
As our results indicate that headkidney is the most affected and 
responsive tissue at 24 hpc, we decided to explore the transcrip-
tomic profile of headkidney during IPNv infection. Samples 
from infected and non-infected animals were sequenced and 
posteriorly analyzed identifying a total of 16,470 coding genes 
expressed on headkidney in either or both conditions. As shown 
in Figure 4A, a clear pattern of gene modulation was observed 
when clustering the expression of infected and non-infected 
samples on a heatmap plot. Same results were observed through 

principal component analysis, showing that replicates from the 
same condition form clusters on the first principal component 
(PC1), indicating high reproducibility of our preparations 
(Figure 4B). In order to identify modulated genes, which expres-
sion significantly changed, we performed a differential expres-
sion analysis and identified 8,465 genes modulated during IPNv 
infection (FDR < 0.05). From them, 4,263 genes were upregulated 
and 4,203 genes were downregulated as shown in Figures 4C,D.  
To have a global idea about biological pathways affected by IPNv 
infection, we performed a functional enrichment analysis for 
the set of upregulated and downregulated genes using KEGG 
pathways database and ToppFun server for disease enrichment. 
For downregulated genes, in Figure 5A, we observed a massive 
shutdown of biological pathways associated to metabolism such 
as oxidative phosphorylation, glycolysis, and citrate cycle driven 
by the downregulation of genes coding for enzymes such as ATP 
synthases, NADH dehydrogenases, cytochrome c oxidases, succinate 
dehydrogenases, lactate dehydrogenase, pyruvate dehydrogenase, 
citrate synthase, fumarate, and succinate-CoA ligase subunits 
between others (see Tables S2 and S3 in Supplementary Material). 
The expression of genes involved in amino acids metabolisms such 
as asparagine synthetase, glutamate decarboxylase 1b and 2, and 
glutaminase a were downregulated. Genes associated with actin 
filaments such as tropomyosin 1-4a, alpha-tropomyosin, calmodu-
lin, and troponin C type 1, drove the downregulation of Cardiac 
muscle contraction and Adrenergic signaling in cardiomyocytes 
pathways. Additionally, biological process related to cell-matrix 
adhesion were attenuated such as focal adhesions, cell adhesion 
molecules, tight junctions, adherent junction, and ECM-receptor 
interaction (see Tables S2 and S3in Supplementary Material). We 
also observed inhibition of pathways associated to tissue repair, 
proliferation, and migration such as Wnt, ErbB, GnRH, phos-
phatidylinositol, FoxO, and VEGF signaling pathway through the 
attenuation of MAPK, calcium, and PI3K/Akt signaling. Finally, 
the phagosome maturation and cellular response to salmonella 
infection pathway were also downregulated indicating a partial 
blockage of innate immune responses. In other hand, the disease 
enrichment analysis showed several terms associated to nervous 
system related diseases which are driven by the downregulation of 
genes associated to signaling (thra, apc, nr1l2), transport (slc12a5, 
slc9a6, kcnab2, cacna1a, clcn4, among others), structural proteins 
(col1a1, col1a2, col2a1, tubb2a, tpm3), and transcription factors 
(sox5, sox9, sox11, zeb2, foxq1), among other genes (Figure 5B).

For upregulated genes, as shown in Figure 5C, we observed 
an activation of biological pathways such as translation and tran-
scription which are probably hijacked by the virus. For example, 
ribosomal proteins, enzymes responsible for rRNA modifica-
tions, ribosome maturation, and cytoplasmic export are dramati-
cally upregulated (see Table S3 in Supplementary Material). As 
well mRNAs coding for components of the Spliceosome (U1, 
U2, U4/U6, U5, Prp19, and EJC/TREX complex), pyrimidine 
metabolism, and RNA transport (Nuclear pore complex includ-
ing several nucleoporins). Associated with immune responses, 
we found activated the JAK–STAT signaling pathway, Cytosolic 
DNA-sensing, and herpes simplex infection pathway leading 
to the overexpression of type I interferon, interferon regula tory 
factors, and interferon-induced proteins. Moreover, proteins 
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FigUre 3 | Expression profile of genes associated with antiviral responses. mRNA expression measured by qRT-PCR for (a) Mx, (B) IFN-y, and (c) cathelicidin 
from headkidney (left), Liver (middle), and red blood cells (right). (D) Salmo salar plasma concentration (pg × mL−1) of Cathelicidin. The experimental groups are:  
virus free (control, black bar), infectious pancreaticc necrosis virus challenged (gray bar). Values are represented as the mean mRNA/protein abundance ± SD. 
Different letters denote significant differences between groups (two-way ANOVA; p < 0.05; p < 0.0001).
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components of standard proteasome and immunoproteasome 
were also upregulated. Supporting these observations, the disease 
enrichment analysis showed several terms associated to inflam-
mation and immune responses (Figure  5D) such as leukemia, 
autoimmune disease, malignant lymphoma, and HIV infection.

iPnv induce a Massive Upregulation  
of the genetic Machinery involved  
in intracellular iron availability
Our results indicated that IPNv efficiently infects headkidney, 
remarkably increased the production of free radicals as an 

indirect measure of high iron load, triggering a massive tran-
scriptome dysregulation. It has been widely documented that 
viral infections induce oxidative stress in infected tissue through 
iron overload. Viruses induce cellular iron overload because 
fundamental processes such as genome replication and protein 
synthesis require this mineral. To evaluate if IPNv induces iron 
overload in headkidney from Salmo salar, we explored the 
expression of genes tightly linked with iron uptake, transport, and 
storage on our RNAseq data. As shown in Figure 6, we observed 
upregulation of genes associated to Fe2+ and/or Fe3+ uptakes such 
as iron reductases (frrs1, steap2), iron channel (slc11a2), transfer-
rin (tfa), and transferrin receptor (tfr1a), which suggested a rise 
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FigUre 4 | Transcriptional dynamics of coding genes in headkidney during infectious pancreaticc necrosis virus (IPNv) infection. (a) Gene expression clustering  
of the 16,470 genes expressed on headkidney. (B) Principal component plot (PCA) of sample replicates (orange = control samples and green = infected samples). 
(c) Venn diagram indicating the number of differentially expressed genes. (D) MAplot (average expression vs. fold of change) displaying all differentially expressed 
genes induced by IPNv infection.
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FigUre 5 | Functional annotation of pathways and disease modulated during infectious pancreaticc necrosis virus infection. (a) Functional enrichment analysis 
displaying the biological pathways enriched by the set of downregulated genes, (c) and upregulated genes. (B) Top 10 disease enriched by the set of 
downregulated genes, (D) and upregulated genes. Biological pathways were manually group and colored by biological process.
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on intracellular iron. As iron uptake is potentiated, mechanisms 
related to the iron intracellular storage seems to be activated. We 
observed an increase in the mRNA abundance of ferritin (both 
middle and heavy subunits) and Heme synthesis process (alad, 
alas1, alas2, cpox, fech, hmbsa, hmbsb, ppox, urod, uros) as well as 
the mitoferrin transporter (slc25a37). In addition, we observed 
upregulation of genes associated with heme degradation (blvra, 
blvrb, gusb, hmox1a) that could help raising the levels of circula-
ting iron. Finally, we observed that iron efflux seems to be attenu-
ated as the expression of ferroportin (slc40a1) is downregulated. 
These results together suggest an increase in iron bioavailability 
that could be responsible for the rise in oxidative stress.

homeostatic response to iron Overload
As the increase of oxidative stress might be explained by high 
levels of intracellular iron, we evaluated if homeostatic responses 
were activated in order to lower iron levels. Much progress 

has been made in our understanding of the role of the “clas-
sic” antioxidant enzymes (e.g., superoxide dismutase, catalase, 
glutathione peroxidase) in mediating of the oxidative stress. 
However, it is becoming clear that other oxidant-induced gene 
products may also play vital roles in the protective response to 
oxidative stress. One such stress-response protein the hepcidin 
and the heme oxygenase-1 (HO-1). By qRT-PCR, we assayed 
the expression of hepcidin and HO-1 on headkidney, liver, and 
RBC from infected and non-infected animals. As shown in 
Figure 7A, the expression of hepcidin increase in liver and RBC 
while no changes were observed in headkidney. We monitored 
peripheral levels of hepatic hepcidin in blood plasma by ELISA 
assay, which confirms the increase of this hormone in the plasma 
(Figure 7B). Moreover, the expression of HO-1 did not change 
in liver and RBC while it was upregulated on infected headkid-
ney indicating a high rate of heme degradation on this organ 
(Figure 7C).
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FigUre 6 | Massive upregulation of genes involved in iron intracellular availability. Expression of genes associated to iron uptake, storage, heme synthesis and 
degradation as well as transcriptional regulation, obtained from the RNA-seq data from infected and non-infected headkidney (normalized expression in Fragments 
Per Kilobase per Million reads or FPKM).
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DiscUssiOn

In the present work, we have evaluated the effect of IPNv infec-
tion on post-smolt Salmon salar after 24  h post-challenge. We 
measured viral load in headkidney, liver, and RBC by Absolute-
qRT-PCR and observed that IPNv displayed higher infection 
rates for headkidney than for liver or RBC. High tropism of IPNv 
for headkidney, spleen, and pancreas was already described by 
Munang’andu and colleagues (37), however, the viral load on 
this study was evaluated only from 7 days post-challenge leading 
uncovered the early stages of infection in Salmo salar. Early detec-
tion of IPNv after immersion challenge has been documented on 
rainbow trout (24), the viral load observed in headkidney were 
detectable at 24 hpf (hours post fertilization). Additionally, the 
lower viral load in liver observed in our results are concordant 
with an early infection, as an increase in liver infection correlates 
with the onset of mortality (37).

Viral infection has a series of detriment effect on the host 
tissue, among them, oxidative stress is often associated with 

enhanced pathogenesis (38). In our study, higher viral loads in 
headkidney were accompanied by the rise in iron availability 
and free radical detection which were dramatically increased 
in comparison to the liver. In the same direction, our results 
showed that hepcidin upregulation correlates with lower viral 
loads in liver and RBC. It is possible that, at 24 hpc, the fast 
transcriptional response of liver and RBC could help decrea-
sing iron intracellular availability, as a mean to eliminate/ 
block IPNv on these tissues. However, further analysis inclu-
ding expression dynamics at long term are required to probe 
that hypothesis.

We observed that antiviral responses were also pronounced 
on headkidney, for instance, the expression of innate immune 
genes such as inf-y, mx, and cathelicidin was increased on 
infected samples and remains unchanged on liver and RBC. 
Interestingly, it has been documented that viral infection 
blocks the expression of Interferon as a strategy of immune 
evasion (39); however, it has also been reported that increase 
levels of Interferon correlate with viral replication (37), which 
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FigUre 7 | mRNA and protein expression profile of genes associated with the iron homeostatic response. Expression measured by qRT-PCR for (a) hepcidin,  
(c) heme oxygenase-1 from headkidney (left), Liver (middle), and red blood cells (right). (B) Plasma concentration (pg × mL−1) of Cathelicidin. The experimental 
groups are: virus free (Control, black bar), IPNv challenged (gray bar). Values are represented as the mean mRNA/protein abundance ± SD. Different letters  
denote significant differences between groups (two-way ANOVA; p < 0.05; p < 0.0001).
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is in agreement with our results. Experiments that have used 
cultured cells found that iron might increase the expression of 
virus replication genes, possibly through its effects on transla-
tion via eukaryotic translation initiation factor 3, eIF-3 (40, 41). 
Our results suggest that eIF-3 complex, which is required for 
several steps in the initiation of protein synthesis (42), also was 
highly modulated in headkidney of infected fish. In addition, 
the viral infection induce a strong transcriptional modulation 
in other transcriptional and DNA process mechanisms includ-
ing RNA transport, spliceosome, nucleotide biosynthesis, 
DNA replication, and ribosome biosynthesis. In contrast, we 
observed a massive shutdown of pathways involved in energy 
and amino acid metabolism such as glycolysis, citrate cycle, 
and pyruvate metabolism were attenuated on infected head-
kidney. Our results are contrary to what has been described 
for widely studied viruses such as VIH-1 and HCMV, where 
a dramatic increase in glucose uptake, aerobic glycolysis, 
and pyruvate metabolism are essential for viral replication  

(43, 44). However, it has been described that infectious bursal 
disease virus or IBDv (a member of birnavirus family), infect-
ing young chickens, downregulates the expression of proteins 
involved in energy metabolism as well as amino acids transport 
and metabolism (45) suggesting a family-specific metabolome 
modulation. On one hand, viral replication is highly dependent 
on nucleotide precursor such as the aspartate and glutamine 
amino acids (46–48), as they provide y-nitrogen for purine and 
pyrimidine biosynthesis (49). Our results showed downregula-
tion of asparagine synthase and glutaminase lead to an increase 
of aspartate and glutamine, as well as an increase of pyrimidine 
metabolism and pentose phosphate pathways, which might be 
promoted by a rise in nucleotide precursors. In other hand, 
mitochondria is the main source of ROS through a combina-
tion of the mitochondrial electron transport chain and the 
Fenton reaction (50). Our results showed downregulation of 
several enzymes associated to glycolysis and the components 
of the mitochondrial electron transport chain, suggesting 
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impaired oxidative phosphorylation leading to an increase in 
oxidative stress (51, 52). We also observed upregulation of the 
superoxide dismutase (sod1 gene), a key enzyme for hydrogen 
peroxide (H2O2) formation (member of the Fenton reaction), 
supporting the contribution to increase oxidative stress. Then, 
based on our results, IPNv infection might increase oxida-
tive stress on headkidney (in part) through mitochondrial 
dysfunction.

The present study show that in headkidney, IPNv induce 
the modulation of mRNAs tightly related with tissue degrada-
tion as extracellular matrix components (EMC) and cell–cell 
contact, which are required for successful viral replication and 
propagation (53). EMC is a complex structure involved in a 
wide range of biological processes such as cell proliferation, 
migration, and differentiation, which dysregulation leads to 
diverse pathologies (54). Our data also show that infected fish 
induces downregulation of several components of focal adhe-
sion, EMC–receptor interaction, cell adhesion molecules, and 
other inflammatory cytokines in headkidney. The mentioned 
process suggests that the virus promote a tissue damage, which 
is follows for a leukocyte proliferation in the infected tissue. 
Interestingly, our previous data have identified a strong and 
significant increase of leukocyte immune effectors and tissue 
degradation in the headkidney of infected salmon (55). Our 
result support this observation because il6, il1ß, il12, tnf-, ifny 
mRNAs are significantly induced during infection, supporting 
the potential development of a specific leukocyte response. 
However, further studies are needed to support this hypothesis. 
Other birnavirus, as IBDv, also induces EMC damage affecting 
the organization of these molecules on highly susceptible cells 
in the spleen of chickens (56). Dengue virus for example is able 
to trigger the downregulation of host genes involved in main-
taining cell junction integrity and collagen assembly (EMC) to 
accomplish successful infection (57). Then, ECMs might play a 
contrasting role during viral infection by supporting cell-to-cell 
viral transmission and restrict viral infection by a mechanism 
that still remains to elucidate.

A previous study have evaluated the transcriptional response 
of headkidney from IPN-resistant and susceptible families of 
Atlantic Salmon (28). The overall result of this work showed 
that IPN-susceptible families activate inflammatory responses 
soon after infection 1dpc, but they are not able to sustain 
this response in a long term (5dpc). Through a microarray 
assay, they compared transcriptional modulation induced by 
IPNv challenge and observed that IPNv induce upregulation 
of endocrine function, and downregulation of tissue prolif-
eration, immune-related genes (mainly innate response), and 
protein metabolism. These results are in agreement with our 
observations at 1dpc concerning downregulated pathways such 
as amino acid metabolism, tissue proliferation and phagosome 
maturation, but we did not observed enrichment of pathways 
associated to the endocrine function. Our transcriptomic 
analysis uncovered modulation of iron-binding genes through 
the upregulation of heme synthesis and degradation sugges-
ting the development of the nutritional immunity in response  
to the virus infection in fish. Based on our EPR results, we 
found an increase of free radical production on headkidney, 

which directly imply a large availability of iron in this tissue. 
Iron is indispensable for life, many proteins involved in crucial 
cellular processes require this mineral (58–60). Interestingly, 
viral infection induces an increase in iron bioavailability in 
host cells to promote virus replication and propagation (18). 
However, an excess of intracellular iron catalyze the genera-
tion of free radicals through Fenton Chemistry and produce 
damages on lipids, proteins, and DNA (18) leading to apoptotic 
processes. Further exploration of genes associated with oxida-
tive stress, iron uptake, storage, and efflux on our transcrip-
tomic data reflects an accumulation of intracellular iron. ROS 
may contribute to tissue damage in many pathophysiological 
conditions and participate in physiological signaling processes 
(61). In vertebrates, HO-1 has been widely studied as a model 
for redox-regulated gene expression (62). Furthermore, anti-
oxidants and metal-chelating compounds can modulate HO-1 
expression (63). The present data show an increase of the mRNA 
abundance of heme oxygenase 1 in headkidney in individuals 
challenged and highlight the increase of the oxidative stress 
(ROS) in this tissue as a consequence of the IPNv infection. 
In addition, our study also show that the iron reductases, Fe2+ 
membrane transporters, transferring, and tfr1a responsible for 
Fe3+ internalization, ferritin for storage, mitochondrial iron 
transporter, and iron regulatory proteins where upregulated. 
Moreover, the iron efflux transporter, ferroportin (slc40a1), 
was downregulated supporting an increase in iron bioavailabil-
ity and an increase of oxidative stress iron-mediated. Control 
of dietary iron absorption and systemic iron metabolism is 
mainly regulated by the hormone Hepcidin (3). Transcription 
of hepcidin gene is upregulated by high iron levels, infection 
and inflammation (64, 65), being released mainly by the liver 
and reducing iron export by binding to the iron exporter fer-
roportin-1 (3). We observed an overexpression of hepcidin 
mRNA in infected liver and RBC, as well as a rise in blood 
plasma levels in infected animals. These results suggest that 
IPNv increase the intracellular concentration of iron by a mas-
sive activation of genes involved in iron metabolism. This rise 
of intracellular iron, increase the production of free radicals 
and triggers homeostatic responses and might also promote 
apoptosis in infected headkidney.

In conclusion, our results highlight the close interaction bet-
ween iron load, oxidative stress, and immune performance. 
Our data demonstrate the extensive plasticity of the immune 
response in fish and highlights the importance of iron homeo-
stasis mechanisms where infected animals are able to develop 
an underlying nutritional immunity under viral infection. This 
approach delineates new immune mechanisms triggered dur-
ing a viremia, where new vaccine strategies might be developed 
to improve the immunological performance and therefore 
increase the survival.
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